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Abstract
In this paper, we propose an extension to the policy gradient algorithms by allowing starting
states to be sampled from a probability distribution that may differ from the one used to
specify the reinforcement learning task. In particular, we suggest that, between policy updates,
starting states should be sampled from a probability density function which approximates the
state visitation frequency of the current policy. Results generated from various environments
clearly demonstrate a performance improvement in terms of mean cumulative rewards and
substantial update stability compared to vanilla policy gradient algorithms where the starting
state distributions are either as specified by the environment or uniform distributions over the
state space. A sensitivity analysis over a subset of the hyper-parameters of our algorithm also
suggests that they should be adapted after each policy update to maximise the improvements
of the policies.

Keywords: Reinforcement learning control

1. INTRODUCTION

Over the last few years, a wide variety of on-policy search
algorithms for reinforcement learning (RL) - for which the
framework is explained in details in Section 2 - have been
designed to find policies that maximise the expected long-
term return in challenging continuous environments where
starting states are sampled from a predefined distribution
(Hessel et al. [2017], Mnih et al. [2015], Schulman et al.
[2017]). These algorithms proceed according to the fol-
lowing principle: from interactions with its surrounding
environment, an agent updates, and hopefully improves,
its decision strategy using instantaneous collected rewards.
The agent may repeat such a procedure ad infinitum,
eventually discovering decision strategies that maximise
collected rewards.

Policy search algorithms mainly differ through their up-
date rules. More specifically, and whenever the policy
is differentiable and parametrized - which is a common
assumption -, it is possible to design gradient-based up-
date rules using appropriate differentiable loss functions to
maximise the policy expected return (Gu et al. [2016], Lill-
icrap et al. [2015], Schulman et al. [2015, 2017], Wang et al.
[2016]). In case of a non-differentiable policy, gradient-
free update rules may be considered, such as genetic al-
gorithms (Such et al. [2017]), simulated annealing (Atiya
et al. [2004]) or cross-entropy methods (Mannor et al.
[2003], Busoniu et al. [2010]). In this paper, we focus on
the assumption that the policies are differentiable and
parametrized.

In policy gradient algorithms, (see Section 3 for a more
detailed description) the agents update their policies with
their gradient estimates that are computed using expected
return samples for each state-action pair that they have en-
countered while playing their policies. MC-REINFORCE
is a classical example of such an approach (Williams
[1992]). These algorithms are simple to implement, but
exhibit high gradient variance on policy updates, especially
when the amount of interactions is limited (Weaver and
Tao [2013]). State-of-the-art policy gradient algorithms,
often relying on additional function approximators to re-
duce the gradient variance, have greatly helped to solve
challenging tasks in complex environments (Hessel et al.
[2017], Mnih et al. [2015], Schulman et al. [2015], Schulman
et al. [2017]), even though learning structures may be
tricky to tune (Henderson et al. [2017]).

Recent developments in RL have proposed to dynamically
modify starting state distributions to improve the learn-
ing process. Approaches proposed by Salimans and Chen
[2018] and Popov et al. [2017] uniformly sample the start-
ing states from a set of states gathered from expert demon-
strations, whereas Florensa et al. [2017] initially samples
starting states close to goal states, and then progressively
samples states further around. Although showing perfor-
mance as well as variance reduction improvements, these
works rely on the availability of either goal states (Florensa
et al. [2017]) or previously encountered states (Florensa
et al. [2017], Popov et al. [2017], Salimans and Chen
[2018]). As an alternative, following the observation that
the gradient variance is aggravated by a scarcity of state-
action pairs which is amplified over the interaction course
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of the agent, especially when the number of episodes is low,
and following the intuition that this amplification might be
mitigated by favouring the exploration of states that are
often visited by the agent, we propose to maintain an esti-
mation of the state visitation frequency of the policy from
which we sample starting states before each episode. The
derived algorithm, named MCP0-REINFORCE, works as
follows. At the very first episode, the first state is sampled
from the true starting state distribution of the environ-
ment, and the episode is generated by the agent with
a prior policy. At the end of the episode, the collected
set of states observed so far is used to estimate a para-
metric probability density function (PDF) over the state
space. From this point, an episode rolled by the current
policy always starts by a state that has been sampled
from a parametric PDF for which parameters maximise
the likelihood of states already encountered by the agent
with its current policy in previous episodes. When the
agent has generated the last episode, the parameters of
the PDF are updated to maximise the likelihood of all
states encountered by the agent so far and its policy is
updated exactly like in the MC-REINFORCE algorithm.
To continue the policy updates, the MCP0-REINFORCE
is executed again exactly as described above, but the prior
policy is replaced by the updated policy and the first state
of the first episode is sampled from the last parametric
PDF which approximates the state visitation frequency of
the previous policy, and so on. The MCP0-REINFORCE
algorithm is explained in Section 4.

In Section 5, we empirically show that our method allows
to get better performances, with more stable policy up-
dates, than the vanilla policy gradient algorithm for which
the starting state distribution is either the one specified by
the environment or an uniform distribution over the state
space. Furthermore, we provide a sensitivity analysis on
MCP0-REINFORCE over a subset of its hyper-parameters
which suggests that the algorithm is rather sensitive to
them and they should be optimized through the policy
search course. We conclude, in Section 6, by a discussion
on possible future research directions to overcome the
limitations of our approach.

2. RL BACKGROUND

We consider continuous control tasks which may be repre-
sented by a discrete-time Markov Decision Process (MDP).
We consider MDPs with a continuous state space S, a
continuous action space U , a probability distribution over
the starting states s0 ∼ p0(·), a probability density func-
tion (PDF) for generating subsequent states st+1 from
any pair (st, ut) ∈ S × U , i.e. st+1 ∼ P (·|st, ut) and an
instantaneous real-valued reward function ρ associating,
for any transition (st, ut, st+1), a real value ρ(st, ut, st+1) ∈
R. All rewards are assumed to be bounded, i.e. that
∃ρ∗ ∈ R+|∀(s, s′, u) ∈ S2 × U , |ρ(s, u, s′)| 6 ρ∗. State and
action spaces are respectively assumed to be complete,
separable metric Polish spaces equipped with σ-algebras
(dS , σS) and (dA, σA). We also assume that an agent may
interact with the MDP but does not explicitly know its
components.

Let Π denote the set of state-dependent stochastic policies.
Given a policy π ∈ Π and a state s ∈ S, a decision u ∈ U

can be drawn according to π given s, i.e. u ∼ π(·|s),
where π(·|s) is assumed to be a PDF. An agent starting
from a given initial state s0 ∈ S, taking an initial action
u0 ∈ U and following π afterwards will observe an infinite
stochastic episode of states and actions Eπs0,u0

= (s0,u0,
s1 ∼ P (·|s0, u0), u1 ∼ π(·|s1) , . . .) from which a truncated
discounted return from t0 ∈ N to t0 + k − 1 can be
computed:

R
Eπst0 ,ut0
t0...t0+k−1 =

t0+k−1∑
t=t0

γt−t0ρ(st, ut, st+1), (1)

where γ ∈ [0, 1[ is the discount factor, which defines the
sight of the expected observable long-term return. The
expected return in following a stochastic policy π starting
from state s, also called the value function, is defined as
follows:

V π(s) = E
ut∼π(·|st),∀t∈N

st+1∼P (·|st,ut),∀t∈N

{
lim
k→∞

R
Eπs0,u0
0...k−1

∣∣∣∣s0 = s

}
. (2)

Where considering stochastic policies in model-free rein-
forcement learning problems, it is common practice to
compute the expected return of following a policy after
having taken action u in state s through a Q-function:

Qπ(s, u) = E
ut∼π(·|st),∀t∈N\{0}
st+1∼P (·|st,ut),∀t∈N

{
lim
k→∞

R
Eπs0,u0
0...k−1

∣∣∣∣s0 = s
u0 = u

}
.(3)

Using the Q-function defined in Equation 3, the overall
expected return of the policy is computed as follows:

J(π) = E
s∼p0(·)
u∼π(·|s)

{Qπ(s, u)}. (4)

The objective of the agent is to find a policy π∗ ∈
arg maxπ∈Π J(π) that maximises the overall expected dis-
counted return defined in Equation 4. Since the environ-
ment is continuous and the agent does not know explicitly
the components of the MDP, the optimization problem
π∗ ∈ arg maxπ J(π) is intractable. Among the many ap-
proaches to compute an approximation of π∗, we focus
on policy gradient algorithms which can be assimilated to
simulation-based gradient-ascent procedures on differen-
tiable policies.

3. POLICY GRADIENT ALGORITHMS

Policy gradient algorithms, in their core principle, iter-
atively update differentiable policies with gradient esti-
mates of Equation 4 computed through their sequential
interactions with the environment. As long as the number
of sequential interactions with the environment grows,
these estimates are getting closer to the true gradients of
the policies.

The Policy Gradient Theorem, stated as follows and pro-
vided by Sutton et al. [2000], shows how to analytically
compute the gradient of Equation 4:

∇θJ(πθ) =

∫
S

∫
U
pπθ (s)Qπθ (s, u)∇θπθ(u|s)duds, (5)

where

pπθ (s) =

∫
S
p0(s′) lim

T→∞

T∑
k=0

γkPr(s′ → s, k, πθ)ds
′, (6)
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πθ is a differentiable policy parametrized by θ, Pr(s →
s′, k, πθ) computes the (density) probability of reaching
s′ from s in k > 0 steps by following policy πθ and
pπθ is the unnormalized discounted future state visitation
distribution of state s.

Since Qπθ and pπθ are unknown by advance, Equation
5 is intractable. A common approach is to approximate
the gradient through a sampled-based estimator. Let
l ∈ {1, . . . , L} be an index for identifying any truncated
episode Eπθ,lst,ut obtained when playing policy πθ from the
state-action pair (st, ut). The gradient ∇θJ(πθ) defined by
Equation 5 is estimated as follows:

∇̂θJ(πθ) =
1

Z

L∑
l=1

Tl−1∑
k=0

∇θ log πθ(uk|sk)R
E
πθ,l
sk,uk

k...Tl−1, (7)

where Tl is the length of the truncated episode Eπθ,lst,ut and
Z =

∑L
l=1 Tl.

As shown by Williams [1992], Equation 7 is an unbiased
estimator of Equation 5. It is called the REINFORCE esti-
mator. The derived algorithm, namely MC-REINFORCE,
is also detailed by Williams [1992]. The main caveat of
MC-REINFORCE is the high variance over policy up-
dates (Sutton et al. [2000]), especially when the sampling
capacity is limited. This is mainly due to the variation
of the gradient estimates, which is aggravated by (i) the
dependency to the starting state distribution, (ii) the
stochastic transition function of the environment and (iii)
the sampling policy.

The next section describes how we attempt to mitigate
the first of the three above-mentioned issues by explic-
itly focusing exploration on state regions that are more
frequently visited by the policy. To that extent, we as-
sume that the agent is able to modify the starting state
distribution and exploits this ability to favor visitation
of state regions that it frequently encounters during the
exploration phase.

4. MCP0-REINFORCE

The gradient variance of MC-REINFORCE is particularly
sensitive to a low number of available episodes. Indeed,
a low number of episodes implicitly generates a scarcity
of state-action pairs along the trajectory generated by
the policy πθ, which dramatically decreases the quality of
the gradient estimate. At the first steps of the trajectory,
this scarcity is mainly due to the entropy of the starting
state distribution, which is often defined as a uniform
distribution over a subset of the state space. Over the
course of the trajectory, this scarcity is aggravated by both
the entropy of the policy and of the subsequent states
probability density function. In such situations, the state
distribution of the trajectories is often drastically different
of the state visitation frequency of the policy, which has a
substantial impact on the gradient estimate error.

Following the above-mentioned discussion, we propose to
use the discounted future state visitation PDF pπθ (·) as
starting state distribution. Unfortunately, pπθ (·) cannot
be computed analytically. We propose a learning-based
approach by estimating a parametric density function over
the state space aiming at representing the discounted
future state visitation PDF of the policy πθ.

Gaussian mixture ISD

Uniform ISD

Environment ISD

Figure 1. Mass Spring Damper - Mean undiscounted cumu-
lative reward over 30 simulations on cases described
in Section 5. Environment ISD, Uniform ISD and
Gaussian mixture ISD refer to the first, second and
third cases, respectively.

To implement this approach into the MC-REINFORCE al-
gorithm without increasing the sample complexity, we pro-
pose the following new policy gradient algorithm, namely
MCP0-REINFORCE. Before running the very first episode
with a prior policy πθ, the starting state is sampled by the
original probability distribution p0(·). Once the episode is
finished, the parameters of a predefined PDF are computed
to maximise the likelihood of states encountered during the
episode. Before running the second episode with the same
policy, the starting state is sampled from this parametric
PDF. Once the episode is finished, the parameters of the
PDF are computed to maximise the likelihood of states
of the two episodes. Then, the starting state of the third
episode is sampled from the newly computed PDF, and the
process continues like this until the end of the last episode,
for which the starting state has been sampled from the
PDF parametrized to maximise the likelihood of the states
encountered during all the previous episodes. The policy is
then updated exactly like in the MC-REINFORCE algo-
rithm, and the MCP0-REINFORCE algorithm is launched
again by setting (i) the new policy as the prior policy and
(ii) the starting state distribution as the PDF for which
the parameters maximise the likelihood of all the states
encountered by the previous policy.

In the next section, empirical benchmarks for MC-
REINFORCE and MCP0-REINFORCE are discussed and
reported through a variety of environments. We also pro-
pose a sensitivity analysis over the initial learning rate,
the number of episodes and the hyper-parameters of the
PDF structure used to sample starting states in MCP0-
REINFORCE.

5. RESULTS

All the environments share the following characteristics
in their experimental protocols, which are detailed in
their respective subsections. The policy is represented
by two differentiable function approximators, which are
parametrized linear combinations of 500 random Fourier
feature mappers (RFFM) extracted from state vectors
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Gaussian mixture ISD

Uniform ISD

Environment ISD

Figure 2. Catcher Game - Mean undiscounted cumulative
reward (a) and variance on undiscounted cumulative
rewards (b) over 30 simulations on cases described
in Section 5. Environment ISD, Uniform ISD and
Gaussian mixture ISD refer to the first, second and
third cases, respectively.

Gaussian mixture ISD

Uniform ISD

Environment ISD

Figure 3. Ship Steering - Mean undiscounted cumulative
reward over 30 simulations on cases described in Sec-
tion 5. Environment ISD, Uniform ISD and Gaussian
mixture ISD refer to the first, second and third cases,
respectively.

(see a detailed discussion provided by Rahimi and Recht
[2007]). Their outputs form the parameters of a multivari-
ate normal distribution, where the first output is the mean
vector and the second one is the variance diagonal vector
- post-processed with a shifted exponential function. A
new learning rate is computed at each policy update - also
called an iteration - by the ADAM optimizer (Kingma
and Ba [2014]) from an initial learning rate which is
provided in the specific settings. The collected expected
return estimates are centered around zero instead of their
true means, as they can be always positive or negative,
and still leaves the gradient estimator unbiased. Discount
factor and time horizon values, which are set differently for
each environment, are motivated by a trade-off between
the sight defined by the discount factor and the potential
gradient variance which is aggravated by the time horizon.

To assess the improvements raised by our approach, we
have designed three cases. The first and the second cases
run the MC-REINFORCE algorithm while starting states
are sampled from the distribution specified by the envi-
ronment and an uniform distribution over the state space,
respectively. The third case runs the MCP0-REINFORCE
algorithm which replaces the starting state distribution

by a finite mixture of multivariate Gaussian distributions
- also called Gaussian mixture models, as McLachlan and
Peel [2000] have shown that they are universal function
approximators - which is built at the end of each episode
by providing the episodic history to an implementation of
the Expectation-Maximisation algorithm from the scikit-
learn 1 programming library. Specific settings for this es-
timation are outlined for each environment. Whenever
the starting state is sampled beyond the state space, the
variables are clipped on their respective bounds in a way
that is specified by the environment state space.

For each environment, at each iteration, the cases are
compared by their results in terms of truncated mean
cumulative rewards through simulations which are run
independently on 30 different random number generators
(RNG). For each case, each simulation and after each
policy update, the mean truncated return is computed by
running the policy through 30 episodes for which start-
ing states are sampled from the distribution specified by
the environment. Shaded areas in the plots are standard
deviations over the mean truncated cumulative rewards
computed over the different RNGs. For all cases, these re-
sults are gathered by simulating the different policies from
starting states sampled by the true probability distribution
p0.

The following subsections describe in details the results for
each environment. In order to ease the reproducibility of
the experiments - following the recommandations provided
by Henderson et al. [2017] - the full implementation is
available online 2 . We also provide, for the second and
third subsections, a sensitivity analysis for the third case
over (i) the number of episodes rolled by the policy before
update, (ii) the initial learning rate and (iii) the number
of components in the mixture of Gaussian distributions.

5.1 Mass Spring Damper

The Mass Spring Damper system is a simple mechan-
ical system which is popular in reinforcement learning
benchmarks (Bou Ammar and Taylor [2012], Pirotta and
Bascetta [2015]). The experimental protocol is the follow-
ing. The RFFM inner weights and bias are both randomly
and independently sampled by following the N (0, 1

10 ) dis-
tribution. Weights and bias of the linear combination are
initialized with a distribution following N (0, 1

5 ). The dis-
count factor is set to 0.9 and the horizon time T is set
to 40 - these values are also considered by Pirotta and
Bascetta [2015]. The initial learning rate α is 0.05, which
decreases linearly along the number of iterations. At each
iteration, 4 episodes are generated by sampling actions
from the policy and used to estimate its gradient. The
parameters of the starting state distribution, if relevant,
are updated at the end of each episode, using the episodes
previously generated by the current policy. The number of
components of the mixture of Gaussian distributions is set
to 5.

Figure 1 shows the results obtained by running the exper-
imental protocol aforementioned. We can notice that the
mean cumulative reward of the policies updated during the

1 See https://scikit-learn.org
2 See https://github.com/epochstamp/mcp0
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Figure 4. Catcher Game - Mean cumulative reward with learning rates 0.05 (a,b,c), 0.07 (d,e,f) and 0.09 (g,h,i) over 30
simulations. From left to right column, the number of training episodes are 6, 8 and 10, respectively.

three scenarios steadily seems to converge to slightly dif-
ferent values. This type of behaviour was expected because
of the decreasing learning rate and thus to the vanishing
policy updates. We note also that the standard deviation is
small on the third case, while conversely it is much higher
on the two first cases. The positive effect of the bias in
the policy updates induced by the third case is clearly
visible after a few policy updates in the context of this
environment.

5.2 Catcher Game

The Catcher Game has been adapted from an external
programming library by replacing discrete actions with
continuous actions 3 . The experimental protocol is the
following. The RFFM inner weights and bias are both
randomly and independently sampled by following the
N (0, 1

10 ) distribution. Weights and bias of the linear
combination are initialized with a distribution following
N (0, 1

5 ). The horizon time T is set to 1000 and the discount
factor is set to 0.95. The dynamics of the environment are
stochastic, which potentially introduces more variance in
3 See https://pygame-learning-environment.readthedocs.io

the gradient estimate. The learning rate α is 0.09. At each
iteration, 10 episodes are generated by sampling actions
from the policy and used to estimate its gradient. The
number of components of the mixture of Gaussian distri-
butions is set to 9. The parameters of the starting state
distribution, if relevant, are updated at the end of each
episode, using the whole history of the current iteration.
The parameters which are modified for the sensitivity
analysis are the number of episodes which are taken from
{6, 8, 10}, the initial learning rates from {0.05, 0.07, 0.09}
and the number of components of the Gaussian mixture
model from {4, 6, 8, 10, 12}.
Figure 2 shows the results raised by the experimental
protocol aforementioned. We can first notice that the
mean cumulative return of all the policies across cases
are converging to similar values. Furthermore, it can
be observed that during the learning process, the mean
cumulative reward is slightly higher in the third case than
the two others cases, and that the standard deviation over
the mean cumulative rewards is slightly lower.

Figures 4 shows the results in terms of mean cumulative re-
ward obtained by running the experimental protocol which
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Figure 5. Ship Steering - Mean cumulative reward with learning rates 0.005 (a,b,c), 0.007 (d,e,f) and 0.009 (g,h,i) over
30 simulations. From left to right column, the number of training episodes are 20, 40 and 50, respectively.

each combination of hyper-parameters set. These results
show that the performances of the MCP0-REINFORCE
algorithm is rather sensitive to both the number of compo-
nents of the finite Gaussian mixture and the initial learning
rate.

For instance, when 6 episodes are rolled by the policy, and
with an initial learning rate of 0.05, it seems that running
the third case with a mixture of 8 Gaussian distributions
leads to slightly higher mean cumulative rewards than
the others mixtures of Gaussian distributions, though the
mixture of 10 Gaussian distributions yields similar per-
formances. On the other hand, by increasing the learning
rate up to 0.07, it can be observed that running the third
case again with a mixture of 8 Gaussian distributions
to slightly lower mean cumulative rewards than with the
mixture of 10 Gaussian distributions and to a sensitively
higher standard deviation. Following these observations, if
a higher learning rate is chosen, we should expect worse
performances for the third case using a mixture of 8
Gaussian distributions. However, our results show instead
that the performances are close to the best configuration -
which uses a mixture of 12 Gaussian distributions - while
the others ones show lower performances at the 60 first
policy updates.

This phenomenon is also observed when the policy is rolled
through a higher number of episodes, even though the
differences are less visibles, which is expected since the
variance over the policy updates mechanically reduces as
long as the number of episodes grows. However, we can
observe that, with the highest number of episodes (30)
and the highest learning rate (0.09), running the third case
with a mixture of 6 Gaussian distributions leads to slightly
higher mean cumulative rewards than the others mixtures
during the first policy updates, and to slightly lower
mean cumulative rewards with sensitively higher standard
deviations over mean cumulative rewards compared to the
others mixtures.

5.3 Ship Steering

The Ship Steering system is a non-linear system considered
as a reinforcement learning benchmark by Pirotta and
Bascetta [2015]. The experimental protocol is the follow-
ing. The RFFM inner weights and bias are both randomly
and independently sampled by following the N (0, 1

10 ) dis-
tribution. Weights and bias of the linear combination are
initialized with a distribution following N (0, 1

5 ). The hori-
zon time T is set to 30 and the discount factor is set
to 0.6. The learning rate α is 0.009. At each iteration,
10 episodes are generated by sampling actions from the
policy and used to estimate its gradient. The number
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of components of the Gaussian mixture is set to 9. The
parameters of the starting state distribution, if relevant,
are updated every two episodes, using the whole history of
the current iteration. The parameters which are modified
for the sensitivity analysis are the number of episodes
which are taken from {20, 40, 50}, the initial learning rates
from {0.005, 0.007, 0.009} and the number of components
of the Gaussian mixture model from {4, 6, 8, 10}.
Figure 3 shows the results obtained by running the experi-
mental protocol aforementioned. It is interesting to notice
how the second case - the uniform distribution - exhibits a
huge error in the middle of policy updates for quite some
time before eventually decreasing. On the other hand,
the third case eventually converges to a slightly higher
mean cumulative reward than the first one. The third case,
despite having a lower mean cumulative reward over the
first policy updates, eventually gets higher mean cumula-
tive rewards than the two others cases. Finally, the first
and the third cases eventually converge to similar mean
cumulative rewards and standard deviations over them,
while the performances of the second case are dramatically
worse than for the others cases.

Figure 5 show the results in terms of mean cumulative
reward obtained by running the experimental protocol
which each combination of parameters set. These results
show that the performances of the MCP0-REINFORCE
algorithm are highly sensitive to the number of compo-
nents of the finite Gaussian mixtures. For example, when
the number of episodes is 20, and the learning rate is
0.005, running the third case with a mixture of 8 Gaussian
distributions leads to higher rewards and lower standard
deviations over the mean cumulative rewards than the
others mixtures. But when the learning rate is higher
(0.009), running the third case with a mixture of 8 Gaus-
sian distribution leads this time to a substantially higher
standard deviation over the mean cumulative rewards after
the 80th policy update, whereas mean cumulative rewards
were higher than the others configurations during the first
policy updates, though the performances are similar to the
third case with a mixture of 6 Gaussian distributions.

6. DISCUSSION AND FUTURE WORK

In this paper, we have proposed to modify the policy
gradient algorithm under the assumption that the agent
may arbitrarily modify the starting state distribution.
More specifically, we have proposed to replace the original
starting state distribution by an approximation of the dis-
counted future state visitation PDF of the policy. This new
approach has been tested on fully continuous environments
and compared with cases where starting state distributions
were (i) as specified by the environment and (ii) uniform
distributions over the state space.

According to the results, it seems that the bias induced by
this particular modification of the starting state distribu-
tion might have a positive effect on the policy updates, i.e.
by increasing the mean cumulative reward and decreasing
the gradient variance over the policy updates. Theoretical
results related to the bias and the variance of the gradient
estimator of the policy where starting states are sampled
from the true discounted future state visitation PDF is
part of the future research work.

We have also provided extended results of our approach to
try to understand how to set the hyper-parameters related
to both the parametric steady-state PDF structure and the
policy gradient algorithm. These results suggest that the
number of components of the Gaussian mixture is not only
dependent of the environment, but also mainly dependent
on the learning rate and the number of episodes that the
agent can generate with its sample policy. While the agent
can not play more episodes than allowed, the number of
components and the learning rate could still be adapted
after each policy update to maximise the improvements of
the policy of the agent. Unfortunately, and especially when
the task is getting harder, it is often difficult to provide
a simple and analytical strategy to that end. Instead,
we suggest that a simulation-based optimization problem
should be formalised, so that its resolution may lead to a
dynamic strategy for choosing hyper-parameters structure
and values leading to the maximisation of improvements
and stability of the policy updates. Among the possible
techniques that may be used to formalize such a strategy,
multi-armed bandits approaches (R.Munos [2014]), where
arms would be associated to instanced hyper-parameters
structures, could offer interesting results, in particular
for guiding the hyper-parameters space exploration in a
context where the budget for sampling episodes is limited
(Trovo et al. [2016]).

Nonetheless, the current approach clearly shows the fol-
lowing limitation in regards of the state-of-the-art rein-
forcement learning challenges. The implicit assumption be-
hind the MCP0-REINFORCE algorithm is that the agent
knows the state space as specified by the environment. Un-
fortunately, in most challenging environments, the agent
does not have access to the state space, but instead to
surrogate representations (e.g., as images and temporal
sequences). In this configuration, the agent is constrained
to start interacting with the environment from states that
have been sampled by the starting state distribution speci-
fied by the environment. An alternative approach could be
to introduce a third-party policy which could be trained to
quickly reach the most probable starting states that would
be drawn by the discounted future state visitation PDF
before deploying the actual policy. In this approach, as
the required expressive power in practice might be higher
as the capacity of the mixture of Gaussian distributions
to have a decent estimate of the state visitation frequency
of the policy from the corresponding surrogate represen-
tations, it could be interesting to consider deep neural
networks for this task, for which recent developments to
transform them into PDFs are good candidates (Huang
et al. [2018], Wehenkel and Louppe [2019]).

Finally, as a last future works proposition, let us underline
the fact that, although this paper has focused on policy
gradient algorithms, our method could perfectly be applied
to gradient-free reinforcement learning algorithms.
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