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Abstract: Modern urban planning not only has to coordinate the needs of many different
inhabitants and traffic participants, but also faces other challenges such as modal shift towards
sustainable transportation. A comprehensive database of historical traffic, which would facilitate
a decision based on data, is lacking in many cities. This became clear in consultation with our
partners from the city of Krefeld. A novel method is the use of public available traffic information
such as traffic colors or travel time data from navigation providers.
In this contribution a method is applied to estimate the travel duration from the traffic colors
on city level. Here we show for the first time how it can be applied cost-effectively and how
the accuracy can be estimated in combination with a validation of the database by test drives
for urban streets. It will also be investigated, whether speed variation has an influence on the
estimation of driving time. We found out that this influence is negligible for the investigated
example and the mean deviation of estimation accuracy from the measured values is less than
six percent. Based on these promising results, it is possible to build up a database for improved
urban and traffic planning at low cost. This can lead to better information for all traffic
participants, thus, an improved traffic flow control could result in a reduction of car traffic
emissions in the end.

Keywords: Parameter Estimation, Convex optimization, Floating Cars, Travel Time, Google
Maps

1. INTRODUCTION

Emission reduction in traffic, for example through devel-
opment towards Smart City is an important social duty.
In consultation with city officials from Krefeld, which
represents a German regional center (see Landesplanungs-
behörde NRW (2017)), several challenges in the implemen-
tation present themselves in the field of mobility manage-
ment. Past approaches on emission reduction, including
driving restrictions and speed limits proved to be of lim-
ited use as shown in Mishra et al. (2019); Davis (2008).
Additional speed limits for instance lead to an increased
amount of stops at red traffic lights and thus to decreased
efficiency of traffic flow. The city administration itself has
regularly an insufficient knowledge of traffic. A detailed
database as basis for planning would be very useful.

Nowadays many traffic information for German medium
sized cities as Krefeld comes from induction loops (Gra-
maglia et al. (2013)). Additionally, a small amount of
cameras is in use at bigger intersections. Sporadically the
different kinds of vehicles crossing a certain point at peak
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hours are counted manually to determine if there is a need
to alter the traffic situation at that specific point. All of
these methods have in common, that they are only able to
capture traffic in a local area, but there is no information
about the traffic in between those areas, see Lenhart et al.
(2008). Moreover, induction loops are often not able to
send live data, as it is in Krefeld. Instead each loop has to
be assessed individually after they have recorded a certain
amount of data. Therefore, the method of Wang and Xu
(2011) based on live data of induction loops is not possible.

A first step towards understanding the overall traffic sit-
uation is done by gathering live traffic information, which
is provided by Bing, TomTom, Google and Here according
to Bauer et al. (2019). Car floating is also portrayed by
traffic colors in Google Maps and can be queried as images
using the Google Maps application programming interface
(API). To identify and possibly resolve shortages and other
problematic set ups, data from the past would be needed.
However, Google does not allow access to their database.
By using Google’s API it is possible to build up an own
database. The cost of the different APIs is a maximum of
10 USD per 1000 queries, see Google Maps (2019b); Google
LLC (2019). However, a single image can cover a whole
city, while one single travel time query would be required
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Fig. 1. Traffic information of the main streets in the
reduced Google Maps view of Krefeld

for every single street in a city. Wagner et al. (2020) were
able to show how travel time can be estimated based on
the traffic colors of a section of autobahn A57.

In this paper it is shown for the first time how this analysis
can be used for inner-city roads and hopefully help to
improve future traffic planning.

2. DATABASE FOR TRAFFIC PLANNING:
LOCAL ROADS

Applying the methods of Wagner et al. (2020) to small
inner-city roads requires a higher precision of detecting
individual road components such as directional lanes or
intersections. The robust implementation of this detection
is very complex. The method is shown on an example
street, which is given as a 3.4 km section of the Cracauer
Street and Friedrich-Ebert Street in Krefeld (Fig. 2).

2.1 Data Collection

For the analysis of traffic colors only basic elements of
Google Maps are relevant. Other elements of map visual-
ization such as buildings or water are not relevant. Thus,
the later map-computation will be more robust by switch-
ing off theses layers. The modified map-representation

Fig. 2. Street path of the example street: given start and
end coordinates in green, street path from Google API
and reference pixel as coordinate origin

8 "distance" : {
9 "text" : "3,4 km",

10 "value" : 3434},
11 "duration" : {
12 "text" : "8 minutes",
13 "value" : 462},
14 "duration_in_traffic" : {
15 "text" : "8 minutes",
16 "value" : 459}

Listing 1. Excerpt from a JSON file for the example street
with length of the street, estimated average travel
time, travel time with live traffic information

is implemented in a custom website using JavaScript,
whereby black roads remain with traffic overlay on white
background, as shown in Fig. 1 for the Krefeld map section.

For each investigated street the pixel path of this street
has to be determined. Necessary start and end coordinates
are assumed to be given. The path is represented by a
customized web page as a red line with green start and
end markers. In addition, a reference pixel is colored violet,
which together with the selected resolution (1 Pixel≈ 7 m)
and section defines the position of each pixel of all images
in the coordinate system (Fig. 2). This is necessary,
because a slight fluctuation of the section position can
occur during the creation of the images.

The coordinates are also used to query the travel time
on this specific street using Google Maps Distance Matrix
API. The JSON file provided by Distance Matrix API
returns two important values, which are used in further
computation: duration in traffic and duration (list-
ing 1). The first value provides the actual travel time in
seconds using live information, the latter does not use live
information and delivers an estimated average travel time
for the specific route.

2.2 Data Processing

From image (Fig. 1) traffic information in form of the
colors green, orange, red and dark red are extracted for
each investigated street. The street path (magenta in
Fig. 3) on smaller streets does not always lie exactly in
the middle of the road. Since both directions have to be

Fig. 3. Street structure: Google street path in magenta,
orthogonal pixels op in blue and the most important
street areas for the analysis
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Algorithm 1 color classification

Input matrix S ∈ [RGB]np×op

Output matrix C: classified colors ∈ [1, · · · , 6]np×op

1: Convert color RGB → Lab (lightness, a, b, color axes)
2: for each triplet (L, a, b) ∈ [Lab]np×op do
3: if a<10 ∧ b< 10 then . background colors
4: if L>=90 then
5: C ← 5 . white
6: else
7: C ← 6 . black
8: end if
9: else . google colors

10: if a<0 ∧ b>0 then
11: C ← 1 . green
12: else if L>50 ∧ a>60 ∧ b>20 then
13: C ← 2 . orange
14: else if 40<L<81 ∧ a<70 ∧ b<55 then
15: C ← 3 . red
16: else if L<40 ∧ a<60 ∧ b<40 then
17: C ← 4 . dark red
18: else
19: classification error . detect color changes
20: end if
21: end if
22: end for

analyzed surrounding pixels of the street path is examined
to find both directional lanes.

To do that RGB values of the pixels orthogonally to the
left and right of the street path are extracted. Empirical
investigation on different street paths results in a ten
pixels’ area to either side of the street center. Thus, a total
of 21 blue orthogonal pixels op are shown in Fig. 3 for an
example position.

The matrix S ∈ [RGB]np×op results from color informa-
tion acquisition of Fig. 3, whereby op represents the num-
ber of orthogonal pixels and np returns the investigated
street length as number of pixels. For these pixels the
RGB values are extracted from a traffic image like Fig. 1.
These color values form a whole range of color gradations,
which are mainly caused by aliasing (see Crow (1977)).
The light green pixels at the roadside in Fig. 3 represent
good example for aliasing.

For further computation the bandwidth of color values is
classified in algorithm 1 as numerical values from 1 to 6
(green, orange, red, dark red, white, black). RGB is not a

Algorithm 2 center directional lanes

Input matrix C ∈ [1, · · · , 6]np×op (see algorithm 1)
Output vectors [cl, cr]: center of direct. lanes ∈ Znp

vectors [bl, br]: street boundaries ∈ Znp

1: for each crow ∈ [1, · · · , 6]op row in C do
2: b← crow ≥ 5 . find background colors
3: [ml,mr]← edges indices middle area in b

. find neighboring colored areas to define
4: l← crow(1 : ml) < 5 . left directional lane area
5: r ← crow(mr : end) < 5 . right direct. lane area
6: [bl, br]← indices of the outer edges of the street
7: [cl, cr]← center of area l and r
8: end for

Fig. 4. Visualization of matrix C for a piece of road:
classified colors (left) and the light blue centers of
directional lane areas cl, cr form algorithm 2 (right)

suitable color space to classify these colors. More robust
results have been achieved after converting the image into
the LAB color space (L: lightness, a and b represents two
color axes, see Kaur and Kranthi (2012); Connolly and
Fleiss (1997)).

To identify the center of the directional lanes (Fig. 3) it
is only important whether a pixel has a background color
(C>4) or a traffic color (C≤4). Algorithm 2 describes how
the areas of the street presented in Fig. 3 and the resulting
lane centers are determined. Fig. 4 shows the results of
both algorithms. On the left hand side traffic image details
from Fig. 3 are classified (C ∈ [1, · · · , 6]) without aliasing
(algorithm 1). On the right hand side all background colors
(C ∈ [5, 6]) are shown as white, the directional lane areas
in dark blue and their centers as light blue (algorithm 2).

The indices of the lane centers are converted back into
coordinates and stored for further analysis of traffic im-
ages, which are recorded at different points of time and at
different dates.

Inner-city streets are characterized by many intersections,
which challenge the directional lane identification. An
example intersection is given in Fig. 5, whereby the orange
pixels of the horizontal road overlap the right lane of the
vertical example street. It is necessary to take intersections
into account. Without considering intersections, the center
directional lane algorithm would be corrupted.

Due to the straightened representation of the road (Fig. 4)
a deviation of values in the boundary vectors (see bl and
br in algorithm 2), which does not equalize after two steps,
is a good classifier for intersection detection (algorithm 3).
After empirical evaluation of different intersections, limit

Algorithm 3 intersection detection

Input vectors [bl, br]: street boundaries ∈ Znp

Output vector [intersect]: inters. detection ∈ Znp

1: for each bl, br ∈ Znp do
2: ∆← difference to the entry after next
3: index∆ ← find ∆ > 2 . limit differential value
4: if index∆ 6= ∅ then
5: find start and end of each intersection
6: intersect (start, · · · , end)← 1
7: end if
8: end for
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Fig. 5. Visualization of the matrix C for an intersection:
vector intersect (alg. 3) hides the light blue pixels

differentiation value parameter in algorithm 3 is set to 2.
The vector intersect with the length of the street np is
set to one in intersections. Thus, in the intersection the
center of directional lanes is not displayed (Fig. 5, light
blue line). With the help of this vector for the left and
right directional lane, each intersection is filled with the
traffic color of the pixel before when evaluating the colors,
in order to prevent errors caused by intersecting streets.

Using the center coordinates of the directional lanes the
traffic colors are extracted from each image of the day and
depicted as a heatmap (Fig. 6). The black areas indicate
missing traffic information.

2.3 Estimation of travel time using traffic colors

Heatmap colors represent a traffic delay relative to
duration (listing 1). A parameter estimation is used to
compute travel time for each investigated street. Duration
(listing 1) is a constant value – this means Google API re-
turns the same value for the same street – while duration
in traffic varies due to live traffic data.

To determine the correlation between travel time and
colors, the latter are assigned to parameters p1 to p5. They
are related to the mean travel time per pixel tp, which
is calculated by the travel time t (duration in listing 1)
divided by the amount of pixels in the street pathnp
with tp = t/np. Travel times tFj

in seconds are extracted
from each duration in traffic capturing, whereby j
represents the jth capturing of the day and nc the amount

Fig. 6. Heatmap of traffic colors for the example street on
June, 5th 2019 for both directions

Fig. 7. Visualization of duration in traffic, duration
and the modeled travel time tM (p∗)

of image capturing with

tF = (tF1 , · · · , tFnc
)T . (1)

MatrixA is defined with

A =

 A1,1 · · · A1,nc

...
. . .

...
Anp,1 · · · Anp,nc

 ,A ∈ [1, 2, 3, 4, 5]
np×nc , (2)

and is created from color values of the heatmap (Fig. 6).
Values of the modeled travel time tMj at the jth capturing
are computed with

tMj (p) =

np∑
i=1

pAij tp, j ∈ [1, · · · , nc] , (3)

by which pAij
returns the parameter value of the color

at i, jth position in A. The objective function G used for
parameter estimation is given by

G(p)=

nc∑
j=1

(
tFj−tMj

)2
=

nc∑
j=1

(
tFj−cTj p tp

)2
, (4)

whereby cTj = (c1j , c2j , c3j , c4j , c5j) represents the count

of the kth parameter with k = (1, · · · , 5) during the jth

travel time capturing. With this the Hessian matrix of the
objective function is computed to

H(p) =
∂2G(p)

∂p2
� 0. (5)

The Hessian is positive semi-definite, which can be shown
using the given symmetric matrix H and all principal

Fig. 8. Travel times with traffic influence for example
street: duration in traffic in black, the real test
drives in blue
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minors equal to 0 with exception of the first one, which is
computed to

∑nc

j=1 2c1j
2 tp

2 ≥ 0. Thus, G(p) is a convex

function over a convex set p ∈ R≥0
5 of non-negative real

numbers, and
p∗ = argmin (G(p)) (6)

represents a convex optimization problem computable
with Matlab Optimization Toolbox from The MathWorks
Inc. (2018). The travel time is computed from (6) with
tM (p∗), which is shown in Fig. 7, where a larger deviation
can be seen between 7 pm and 5 am. The relative error

erelj =

∣∣tFj
− tMj

(p∗)
∣∣

tFj

, j ∈ [1, · · · , nc] (7)

is computed for each j. Mean value and standard deviation
is calculated from it (see Tab. 1).

3. VALIDATION OF GOOGLE MAPS DATA

Real test drives were carried out to check for deviations
or lags from duration in traffic received from Google
API in comparison to the actual travel time. The before
introduced example street was driven off repeatedly in the
afternoon, hereby GPS data was recorded every second.
This was done with two Android smartphones using Phy-
phox (see Staacks et al. (2018)). Simultaneous recording
of different sensor data such as time, location, and speed
for later evaluation was carried out (see Monteiro et al.
(2019)).

In the following only one direction is examined in order
to show the procedure. Travel times measured during
the real test drives versus duration in traffic from
Google Distance Matrix API are shown in Fig. 8. All
GPS measurements which are affected by traffic show a
deviation from values received from Google Maps (2019a).
All measured times are shorter and have a relative error of
(16.5± 10) %, whereby the notation (x± s) is given in this
contribution with the assumption x is normally distributed
and s represents the standard deviation.

So far, the value travel time per pixel tp is assumed to
be constant. Regardless of the traffic situation, speed in
urban areas varies significantly due to many traffic lights
and local speed limits. Therefore tp is adjusted for each
pixel using the collected data taking into account speed
differences along the street.

The length of test drives was measured with (3.34 ±
0.05) km, which means a deviation of -94 meter compared
to the length given by Google Maps (listing 1). For each
test drive the calculated length is divided into np equidis-
tant segments, which represents the number of pixels along
the examined street. Deviation of length is eliminated by
this normalization. Driving time is interpolated linearly
as a function of the distance using roughly 350 individual
measuring points. Travel time per segment with the total
number of segments np = 500 is determined using these
interpolated values. The mean value of the real test drive
travel times of each segment (length of one pixel) is used
for the vector tnp, which is shown in Fig. 9. Modeling the
Travel time is done by adapting (3), which returns the
model travel time vector tMp with

tMpj (p) =

np∑
i=1

pAij tnpi , j ∈ [1, · · · , nc] . (8)

Fig. 9. Duration of stay per pixel for the example: constant
duration in grey, blue from real test drives

Starting from the modified vector tnp a new color pa-
rameter estimation can be made, which considers different
speed during one test drive. Therefore (4) is adapted to

G(p)=

nc∑
j=1

(
tFj−tMpj

)2
=

nc∑
j=1

(
tFj−

np∑
i=1

pAij
tnpi

)2

. (9)

The comparison of duration in traffic and the mod-
eled travel time per segment tnp using the optimal param-
eter set p∗ = argmin(G(p)) results in Fig. 10.

4. CONCLUSION AND DISCUSSION

The correlation between traffic colors and travel time can
be determined by means of parameter estimation. This
parameter estimation has to be conducted for each road.
Once factors for the parameters p∗ have been specified,
a single image can be used to calculate the delays for all
roads shown.

Until now, small roads could not be evaluated without er-
rors due to the significant deviation of the road path from
Google to the actual location of the road. Therefore, only
large roads such as freeways (autobahns) were analyzed
(Wagner et al. (2020)).

With the new algorithms 2 and 3 identifying directional
lanes, the traffic colors can be extracted without errors
and the estimated driving time can be determined with less
than 6 % deviation (1σ) to duration in traffic using
the parameter procedure (Tab 1). This error estimation

Fig. 10. Visualization of duration in traffic, duration
and the model values tMp (p∗) from colors for the
example street with tnp from real test drives
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Table 1. Parameters and resulting relative error

evaluation
example
street,

constant tp

example
st., tnp real
test drives

A57 from
Wagner

et al. (2020)

p1 (green) 1.0468 1.0566 1.0919
p2 (orange) 1.2738 1.2649 2.1796
p3 (red) 2.2937 2.3103 3.1213
p4 (dark red) 4.4213 3.2832 5.2527
p5 (black) 0.9154 0.9267 –

rel. error erel 3.408% 3.328% 10.366%
standard dev. s 2.645% 2.532% 6.618%

applies, as long as input data is randomly distributed,
which is not investigated here. In further research more
extensive test drives might be able to replace duration in
traffic as a basis for the model. Comparing the accuracy
of Google API through test drives, a shorter real driving
time is observed. There are different possible explanations
for deviation of the GPS measurements to driving times
of Google:

• Real test drive measurements do not take into account
the time for parking out and accelerating. Nor the
time for decelerating at destination were carried out,
because the real test drive were measured with a
driving start.
• It seems probable Google schedules a security buffer

in case of being unexpectedly slowed down. This slow
down could be caused by a missed traffic light or a
parked car.
• Google API returns only average values for all divers

with all kind of vehicles. The test drives were made
by only one driver with a car who may have driven
closer to the speed limit than others.

Regardless of the time difference over the entire route, the
local speed can be determined via the test drives. Usage of
local speed tnp leads to an insignificantly smaller deviation
from the measured values duration in traffic than on
the basis of Google’s duration. The additional effort of
real drives is not necessary considering the minor effect it
has for the examined street (Tab. 1). A certain deviation
is always caused by the continuous function of duration
in traffic being approximated by means of discrete
parameters for only five colors (green, orange, red, dark
red, black).

The method with constant pixel time tp (see Wagner
et al. (2020)) was used to calculate the color parameters
for a section of autobahn A57. The investigated road
length was 8.8 km and results yielded an accuracy of
(10.4± 6.6) %. The inner-city road length examined in
this work is only 3.4 km. The calculation resulted in an
accuracy of (3.4± 2.6) % with the constant pixel time tp
(see Fig. 7 and Tab. 1). Further investigations are needed
to determine, if shorter streets will show always a smaller
relative error.

All in all, Google Maps data and the Google API provide
a cost-effective opportunity to build a city-wide traffic
database to support local authorities in urban planning.
Before deploying this method, the terms and conditions
(Google Distance Matrix API) must be reviewed. Further
investigations must show whether a larger number of test
runs could improve the accuracy even further. If this

method could be applied to metropolis areas, further
research is needed. The cause of the deviation in the
evening (Fig. 8 and 10) should also be investigated.
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