Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Learning to falsify automated driving
vehicles with prior knowledge

Andrea Favrin *** Vladislav Nenchev * Angelo Cenedese **

* BMW Group, 85716 Unterschleissheim, Germany (e-mail:
{andrea.favrin,vladislav.nenchev} @bmuw. de)
** Department of Information Engineering, University of Padova, Italy
(e-mail: angelo.cenedese@unipd.it)

Abstract: While automated driving technology has achieved a tremendous progress, the
scalable and rigorous testing and verification of safe automated and autonomous driving vehicles
remain challenging. Assuming that the specification is associated with a violation metric on
possible scenarios, this paper proposes a learning-based falsification framework for testing the
implementation of an automated or self-driving function in simulation. Prior knowledge is
incorporated to limit the scenario parameter variance and into a model-based falsifier to guide
and improve the learning process. For an exemplary adaptive cruise controller, the presented
framework yields non-trivial falsifying scenarios with higher reward, compared to scenarios
obtained by purely learning-based or purely model-based falsification approaches.

Keywords: Autonomous vehicles, Modeling and simulation of transportation systems, Learning
and adaptation in autonomous vehicles, Falsification and Testing

1. INTRODUCTION

A challenge for developing automated and autonomous
driving functions is the necessary rigorous testing for
achieving safety and law compliance (Aptiv et al. (2019)),
as well as a sufficient customer confidence level. Classical
test approaches do not scale well for self-driving vehi-
cles, as they require vast amounts of real-world driving
to cover possible traffic situations. A promising approach
for verification and validation of autonomous vehicles is
testing in a virtual environment (Kim et al. (2017)). In
addition to a sufficiently realistic simulation environment,
a multitude of requirements have to be fulfilled to obtain
a meaningful evaluation of a driving function from simula-
tion. First, the allowed behavior of the autonomous vehicle
must be defined in the form of an automatically verifiable
specification, e.g., as a linear or metric temporal logic
(LTL or MTL) formula (Alur and Henzinger (1992)) or an
unambiguously ordered set of rules (Censi et al. (2019))
akin to a violation metric on possible scenarios. Second,
the executed test scenarios must cover typical cases, as
well as rare but realistic driving situations. Data-driven
approaches provide a remedy to a certain extent (Eggers
et al. (2018)), but analyzing large amounts of collected real
data cannot guarantee that all relevant scenes have been
considered. Third, a systematic perturbation of sensor
data has to be performed, if machine learning components
are used, unless safety properties are embedded by design
(Nenchev (2019)). Forth, the System Under Test (SUT)
should be the actual implementation of the function, con-
sisting of as many of the involved software and hardware
components as possible. Many approaches exist that fulfill
subsets of these requirements, typically focusing on parts
of the overall system, comprising perception, planning
and control components. On one hand, simulation-based

Copyright lies with the authors

verification approaches have been proposed that perform
sampling-based testing for estimating accident probability
under standard traffic behavior (O’Kelly et al. (2018)), or
falsifying a formal specification for the closed-loop system
in the presence of environment uncertainty for perception
components (Dreossi et al. (2019)). In these approaches,
the simulator and the SUT are treated as a black-box,
such that generating meaningful falsifying scenarios might
require millions of computationally expensive simulations.
On the other hand, model-based approaches have been
successfully used for falsification, e.g., finite automata-
based abstractions for direct model checking (Volker et al.
(2019)), as well as simplified analytical models in local
optimization (Althoff and Lutz (2018)), sampling-based
search (Koschi et al. (2019)) or global optimization (Tun-
cali et al. (2017)) for falsifying, among others, Adaptive
Cruise Control (ACC) controllers. While these approaches
can be computationally advantageous or even offer com-
pleteness guarantees with respect to the employed model,
generalizing the results to the actual implementation of
driving function is not automatically given.

In this paper, we propose a learning-based framework for
falsifying the implementation of an automated or self-
driving function in simulation. Instead of only focusing
on safety properties, we aim at falsifying its complete
specification, given with an associated violation metric for
possible scenarios. Building upon the concept of adversar-
ial agents, falsification is addressed by an Adversarial Re-
inforcement Learning Agent (ARLA) that chooses scenario
parameters to maximize the specification violation metric.
Even though Reinforcement Learning (RL) approaches
may lead to a good performance when a traditional model
of the system is hard to obtain (Luong et al. (2019)), they
come at the cost of high variance in actions leading to

15331

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

slow learning. Despite the tremendous increase of available
computational power, simulations might be expensive to
perform, in particular, when realistic sensor inputs, e.g.
camera images, lidar point clouds etc., have to be gener-
ated. As a first measure, we utilize a model of the dynam-
ical behavior of the controlled vehicle in its environment
to limit the action variance to reasonable scenarios. Even
though this is shown to improve the learning progress
significantly in the provided case study of falsifying an
adaptive cruise controller, the scenario parameter state
space size becomes the main limiting factor for falsifying
more complex driving functions. Therefore, as a second
measure, ARLA is augmented by a model-based falsifier.
Using a controlled vehicle model, an estimate of the reward
for a scenario can be obtained. Thus, ARLA’s reward is
modified such that it is large only if the actual reward
is greater than the estimated reward. The overall sce-
nario parameter is obtained by combining the outputs of
the model-based falsifier and ARLA. The effectiveness of
the presented learning-based framework is demonstrated
for falsifying an exemplary adaptive cruise controller. A
comparison to a pure model-based and a pure learning-
based approach shows that the method yields non-trivial
falsifying scenarios with higher reward.

The remainder of the paper is organized as follows: In
Sec. 2, the problem formulation and the specification of
ACC as a running example are provided. Then, in Sec. 3,
we present the baseline ARLA, which is then extended
to the learning-based falsification framework with prior
knowledge. In Sec. 4, we provide empirical results, followed
by a discussion and conclusions in Sec. 5.

2. PROBLEM FORMULATION

Consider a host vehicle with state z;, € X; C R"»
moving in an environment with state x, € X, C R™. The
vehicle is equipped with sensors that provide measurement
data of the environment y, € Y}, denoted by a mapping
O : X, — Y},. Assuming that the vehicle is equipped
with an automated or autonomous driving function, its
dynamics over time ¢ € [0,T] are described by the system

Thyt1 = fo(@hot, Ynot)- (1)
We adopt an adversarial perspective of the environment,
i.e., the environment has complete knowledge of the host
vehicle state, and evolves according to

Tet+1 = fe(xe,tvmh,taue,t)v (2)
where u, € U, denotes a finite set of parameters. Both
mappings f and f. are assumed to be deterministic. Let
X = X}, x X, denote the overall state space of the system,
comprising the host vehicle and its environment, and z|g 7
a finite trace of the system over time t € [0, T]. Since our
goal is to falsify the automated or autonomous driving
function, the (adversarial) parameter space P contains all
environment parameters as well as the complete initial
state zg € X, ie., P=X x U,.

Consider a specification ¢ for the controlled host vehicle
given as a finite set of properties associated with a viola-
tion metric over possible scenarios. Let a finite time trace
x[o,1) of the system that satisfies the specification ¢ be
formally denoted by z[o 1) F .

Ezample 1. (Keep distance to a front vehicle). Consider an
ACC function. Introducing the time headway t;, defined
as the distance h over the velocity v, i.e., t, = h/v, the
ACC requirements are:

e possible modes: set speed mode and time gap mode;

e in set speed mode, a driver desired speed vg €
[Vd, ... s Vd,,..] eventually needs to be maintained;

e in time gap mode, a desired time headway t5, to
the front vehicle eventually needs to be maintained,
and the time headway ¢, needs to satisfy t;, €
[thyinsth,,..] at all times;

e The system is in set speed mode, if vg < h/ty,
otherwise it is in time gap mode;

e the acceleration ay, € [ap,,,, ,ah,,..] at all times.

The problem of falsifying the controlled host vehicle can
be stated as follows.

Problem 1. Given an automatically verifiable specification
 for the controlled host vehicle (1) in its environment (2),
find a parameter p € P yielding a finite trace o 1) 7 ¢.

From a formal methods perspective, the problem above
represents a counterexample search. Simplified versions
of this problem might be amenable for model checking
approaches, if analytical models for (1) and (2) exist
and the dimensionality of the parameter space P can
be reduced. However, we are interested in falsifying the
actual implementation of the automated driving function,
possibly even executed on the embedded electronic control
unit, to also take into account real-time behavior. For
that, we can only resort to simulation-based verification.
Further, we want a scalable approach that can easily adapt
during any development phase of the function and not
only at the end of a release cycle. Our main goal is to
obtain qualitatively interesting falsification scenarios that
go beyond the scope of typical human-experience-derived
test cases, and not complete verification of the function. To
fulfill all of these requirements, the problem is addressed
by an adversarial reinforcement learning agent.

3. LEARNING-BASED SOLUTION

The proposed solution is based on learning to falsify the
automated or self-driving function by generating driving
scenarios, in which the controlled host vehicle violates its
specification. The agent repeatedly runs simulations of the
controlled host vehicle (1) and its environment (2) to ob-
serve the state of the system, receive a reward, and improve
the scenario parameters for the next run. To improve the
learning behavior, we present how prior knowledge models
can be incorporated to limit the scenario parameter vari-
ance, or to augment the agent by a model-based falsifier.
We start with the (pure learning-based) baseline agent.

3.1 Baseline adversarial agent

To obtain the simulated system trace z[7}, the agent
takes an initial action ag € A, which is mapped to a
scenario parametrization p by foer : A — P, ie., p =
fact(ag). Given a time-invariant evaluation mapping over a
trace of the system feyar @ 2o, 7] — 5, we compute the state
sk € S that comprises relevant variables for checking if the
trace satisfies the specification. At every simulation run,

15332

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

~N

—V[SUT in simulation

J

action reward| state
ar Ry, Sk

ARLA :

Fig. 1. Baseline falsification with adversarial agent.

the agent receives a reward captured by R: S x A — R,.
Even though a trace x| 7] satisfying the specification ¢
is a binary property, under mild assumptions, we assume
the existence of a function p : xg) — R that provides a
violation metric of the specification on possible scenarios
for the system. Assuming an LTL or MTL specification,
a real-valued function p?(s,a) can be readily associated
with the quantitative semantics of the formula as shown in
Fainekos and Pappas (2009). When the simulated system
trace x[o,1) violates the specification, the violation metric
is p?(s,a) < 0, and p?(s,a) > 0 otherwise. Thus, to
facilitate learning, the reward function is chosen as

R(s,a) = exp(—p*(s,a))), (3)
such that the agent receives a high reward for a trace that
violates the specification. Using the collected rewards, the
agent performs re-training, and produces a new action that
triggers a new simulation, as shown in the scheme (Fig-
ure 1). If additional constraints for generating reasonable
scenario parameters of the form

950(87 a) = 07
hse(s,a) >0,)

exist, the reward function is additively augmented by
corresponding terms.

Example 2. For Ex.1, the action aj consists of the ini-
tial host vehicle velocity vy, initial distance to the front
vehicle dy and a traffic vehicle velocity profile, encoded
by a finite time series of piecewise-constant acceleration
segments ay, ,t, € to,t1,...,tn. The state s, contains the
minimal and maximal host acceleration api, and amax,
the minimum time headway tj, i and the minimum and
maximum velocities vy and vy over the trace zg .

Consider the state sets for the ACC specification (Ex. 1),
denoting the vehicle in set speed mode M; = {(xp,up) :
vg < h/tp,} with its safe set S; = X, x U, and target
set Tv = {(zp,un) : v < vy}, and the set denoting
time gap mode My = {(zp,up) : va > h/tn,}, its
safe set So = {(xp,up) : v < hfty,, } and target set
Ty = {(xp,up) : v < h/tp,}, as well as the overall safe
set Sy = {(xn,un) : an € [an,,,,,ahn,,,.]}- Then, the LTL
specification for ACC (Nilsson et al. (2016)) is given by
¢ =G(Su A (N (M; = S;) A(GM; = GFT))))),
()
where G and F denote the temporal operators “globally”
and “eventually”, respectively. The LTL formula is associ-
ated with quantitative semantics (Fainekos and Pappas
(2009)) to obtain (3). In addition, scenario constraints
(4) exist, requiring that the sum of all time segments of
the acceleration of the front vehicle must be equal to the
scenario duration tg,.., i.€., Zn tn, — tgur = 0.

While RL may lead to a good performance when a tra-
ditional model of the system is hard to obtain, complex
tasks might take millions of iterations until meaningful
actions are generated. High variance of the produced ac-
tion remains a significant hurdle for RL applications and
turn learning parameters tuning into a tedious task. To
mitigate these effects, in the following, we incorporate
prior knowledge of the automated driving vehicle in its
environment to focus learning.

8.2 Limiting action variation with prior knowledge

To improve learning performance, the action variation
is restricted to reasonable scenarios by prior knowledge.
Since our goal is to obtain qualitatively interesting falsifi-
cation scenarios, any scenario that violates the specifica-
tion in a foreseeable manner could be excluded. A trivial
specification violation emerges, e.g., when the scenario
starts in an initial state, where a collision of the con-
trolled host vehicle is unavoidable, assuming typical host
and environment dynamics. Another example for a trivial
specification violation is, when the scenario duration is
too short for the host vehicle to reach the driver desired
velocity vq. Consider an analytical model of the host and
the environment’s dynamics

Topr = f(2e, ar,), (6)
where 4; denotes the control input of the host vehicle.
Based on (6), a trivial specification violation can be
checked for a given host control input 4; and a given action
aj (mapping to a corresponding scenario parametrization
pr). Then, assuming that the initial state of the system
Zo is contained in pg, the host vehicle starting in a
specification non-violating (safe) state can be captured by
the inequality

glag, i) < 0. (7)
To reduce the action variance of ARLA, if the output of
the agent a,, violates (7), the action is projected to the
boundary of the inequality. This corresponds to solving
the optimization problem

ay = arg min ||a,, — all
acA

s.t. ii't+1 = fA(it, a7ﬁt),t € [O,T], (8)
9(Zp0,1),a) =0,

where an appropriate control input 4; has to be chosen for
the particular scenario class.

Ezxample 3. For the ACC example, consider only longitu-
dinal motion and, thus, assume a vehicle model with state
Tk = [s(_)’k,v(i)yk]T, sampling time ¢, and
S(),k+1 = S()k T sV k + 0.51‘,511(,)’;C ()
V() k+1 = V() ke T Ll ks
where (-) = {h, f} denotes the host and the front vehicle,
respectively. In this simple case, the overall model (6)
is given by one instance of (9) for the host and one for
the front vehicle. Given the ACC specification (Ex. 1), the
function should ensure collision-free motion of the vehicle
at all times. In this scenario class, the worst case occurs
when the front vehicle performs an emergency braking
with acceleration a ¢ min, i.€., Ufr = afmin. Thus, for the
host vehicle, we can also assume maximal braking with
acceleration ap iy, as an input, i.e., @4 = an,min. Then,

15333

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

the braking distances Sgiop,n and ssop,f can be computed
by substituting the corresponding values in (9). A collision
occurs, if the stopping distance of the host vehicle without
the desired distance dy, between the two vehicles is larger
than the stopping distance of the front vehicle, i.e.,

Sstop,h — dfh > Sstop,f-
Substituting the corresponding equations (9) for the host
and the front vehicle, for (7) we obtain

2 2
Uh,0 V%0

Sh,0 — —dsn >S50 —

Ap min af min ’
which can be used to ensure that the vehicle starts a
simulation run in a specification non-violating (safe) state.
Similarly, to check for reaching the driver desired velocity,
the maximum comfortable acceleration can be assumed for
deriving a corresponding inequality.

3.8 Combining model-based falsification and learning

Despite the substantial learning improvement by exclud-
ing trivially violating parametrizations as described in
Sec. 3.2, it may still take a large number of executions until
interesting scenarios are generated by ARLA. Thus, we
additionally introduce a model-based falsifier. In addition
to the host vehicle’s model (6), let a host controller model
be given by

ﬂt = h(i’t, ak). (10)
In the best case, (10) should be the actual algorithm used
in the SUT, but it can also be a simplified controller
that can be executed and evaluated quickly to avoid
computationally expensive environment simulations.

Ezample 4. For ACC, let the overall model (6) contain
vehicle models given by (9) for each of the host and front
vehicles, with corresponding variable subscripts h and f,

respectively. As a host controller model (10), we assume
the Intelligent Driver Model (Treiber et al. (2000)):

U4 (7 v @ d(s ,05 Un,t; Uf,
Ut(fhak) = a‘h,maz(l — (ﬂ) — (W)Q)
Vd Ih

Ont(Vn,t — Vgt)

2\/ Qh, maz@h,com ’
(11)

where dj, is the desired distance between the two vehicles,

ah,maz a0d ap com are the absolute values of the maximally

allowed and the comfortable accelerations, respectively,

and « is a tuning parameter.

d(8h,0, Vnt, Vft) = Sh,0 + Vn,ithy +

Based on the dynamical models (6), the host controller

(10), and the action variation constraints (7), the model-

based falsifier is formulated as the optimization problem:
4y, = arg max(3),

a€A,seS (12)

s.t. (4),(6),(7), (10),

for determining an estimate of the optimal falsifying action
ay, that corresponds to an estimate of the maximal reward
Ry, in the k-th iteration. As initial optimization states
Qinit, Sinit, We take the action and the state of the previous
run ag_1,Sk_1, respectively. Since the action a has only
an influence on the initial condition of the optimization
problem, we can compute the gradient dR(a,s)/da by
substituting (10) into (6), and then, substitute (6) into
the reward function (3), and compute the solution of the

optimization problem ay, e.g., by a gradient descent ap-
proach. Since the optimization problem is typically (heav-
ily) non-convex, we can resort to using global optimization
algorithms. Note that the approaches proposed in, e.g.,
Tuncali et al. (2017) or Koschi et al. (2019), are possible
realizations of the model-based falsifier (12).

The model-based falsifier (12) generates a counter-example
that represents the best guess under the assumed models
(6) and (10). Thus, the remaining goal for the adversarial
agent is to learn the behavioral difference between the
model and the SUT to generate better falsifying actions.
Figure 2 shows the scheme for combining the model-based
falsifier and the corresponding adversarial agent, which
will be denoted by 6-ARLA. Based on the models (6) and
(10), an estimate of the state §; and the reward Ry, can be
computed. Then, in parallel to the model-based falsifier,
the state of 6-ARLA is given by

K :sg,, (13)
Since the goal of §-ARLA is to learn the difference between
the model and the actual system, 6-ARLA’s reward is

chosen such that the Ry is high only when the actual
reward R(sg,ar) is high and greater than the estimated

Zsk—§/€.

reward Rk The reward can be written as

H : Ry, = R(sk,ar) +max(0, R(sg,ar) — Rg). (14)
Finally, we compute the combined action as ax = ax—1 +
(ag—1—ag,n)+(ar—1—ax). To focus learning, the combined
action aj, is limited as described in Section 3.2 to exclude
trivially violating scenarios, i.e., ax = G(ay).

8.4 Learning architecture

The proposed approach is amenable for any RL model,
capable of handling continuous variables. In particular,
we utilize a deep neural network as a prediction model
for ARLA and §-ARLA due to its empirically proven
beneficial modelling performance for complex systems and
large amounts of data. We employ Deep Deterministic
Policy Gradient (DDPG), because it has been shown to
handle continuous and high-dimensional action spaces well
and is particularly suitable for deterministic functions
(Lillicrap et al. (2016)).

4. SIMULATION RESULTS

We apply the proposed learning-based framework for fal-
sifying an implementation of the ACC controller (11) with
respect to the formal specification derived in Example 2.
In addition to comparing the learning-based schemes pre-
sented in Sec.3, we also assess their performance with
respect to a purely model-based falsifier.

A discrete-time version of (11) is considered as wp in
the SUT. For a more realistic simulation of the vehicle
behavior controlled by the SUT, we augment the host
vehicle dynamics (9) by a friction coefficient @ = —0.01,
ie, vpg+r1 = (1 — @)opk + tsupp, where t, = 0.1 s.
Note that as a prior knowledge model for computing
the cost and state estimates Rk and Sg, and in the
model-based falsifier (12), we assume the simpler dynamics
(9). The host vehicle is assumed to have the maximal
allowed acceleration and deceleration according to the
ISO 15622:2018 standard, i.e. ap = —3.5m/s? and

min

15334

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Ak SUT in
simulation | Ry

]

Sk

Model-
based

falsifier

»| Model | »

a S
“22 {5 ARLA [« o

Fig. 2. Combined scheme of model-based falsifier and j-ARLA.

an,... = 2m/s%. The front vehicle is assumed to have
the typical maximum acceleration and deceleration, i.e.
af,... = —0.8gm/s* and ay,, = 0.4gm/s® with the
gravitational constant g = 9.82m/s%. The behavior of the
front vehicle is given over n = 5 constant acceleration
segments ay,, as described in Example 2. The scenario
duration is fixed to t4y, = 30s. The reward for a simulated
trajectory is obtained based on the violation score of
the LTL properties obtained by the py-metric-temporal-
logic-package (Dreossi et al. (2019)). The optimization
problem corresponding to the model-based falsifier (12)
for the combined scheme (Figure 2) is solved by the
BFGS local optimizer in SciPy. For the purely model-
based falsifier, we employ the global optimization (SHGO)
solver in SciPy. For ARLA, a deep neural network is
used, where both the actor and the critic have two hidden
layers with corresponding sizes for the defined action
and state spaces. Simulating and evaluating a particular
scenario with the chosen parameters takes 0.3 s on an Intel
Core i7-8565U. Training the neural network with a batch
size of 128, a discount factor 0.99 and learning rates of
0.0003 for both the actor and the critic, takes 30 s for an
episode of the pure learning-based approach on an NVidia
GeForce Quadro M2000M GPU. Episode convergence time
decreases by a factor of 2 for the combined approach.

Figure 3 shows the learning progress of the purely learning-
based baseline approach (Section 3.1) compared to learn-
ing with limiting action variation (Section 3.2) over 350
episodes. Limiting the action with prior knowledge not
only helps to find scenarios with a higher reward, but
the learning progress is more gradual increasing over the
epochs, compared to the baseline case. A similar learning
and reward progress is also reached with the combined
approach. In the particular case, the reward deviation (14)
is small due to the small difference of the friction coefficient
in the actual reward. Figure 4 shows a simulation of the
scenario resulting from the learning-based framework with
prior knowledge. The scenario is a non-trivial falsification
of the ACC specification, since a collision happens around
16 s, even though the host vehicle starts in a safe state, i.e.,

250000 A

200000 A

150000 -

Average Reward

100000 -

50000 -

—— With prior knowledge
Baseline

T T T T T T
50 100 150 200 250 300 350
Episodes

o4

Fig. 3. Learning progress curve: comparison between base-
line and prior knowledge

a state where a collision can be physically prevented by an
appropriate control action. Interestingly, both the base-
line learning-based solution and the purely model-based
falsifier converge to an “expected” falsifying scenario, as
shown in Figure 5 — a collision occurs, when the front
vehicle immediately performs a full braking with maximal
allowed deceleration, while the host vehicle starts in a safe
state. Note that the corresponding reward is lower than the
reward found by our learning-based approach, even though
the same initial states were used for all schemes. This is a
consequence of the non-convexity of the reward function,
which makes finding the global maximum very hard. More
importantly, it shows that combining prior knowledge with
learning leads to an improved falsification outcome.

5. DISCUSSION AND CONCLUSIONS
We presented a learning-based approach for the automatic

generation of scenarios that falsify the implementation of
an automated or self-driving function in simulation. Our

15335

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

500 T

— 400 —
300 -~

200 1 -

Position [m
A

100 - -~ === Host vehicle
- Front vehicle

0 5 10 15 20 25 30

125 A
100 PSRN

75 .

50 S -

Velocity [km/h]
4
\
A

25 A S

Time [s]

Fig. 4. Simulation of the best falsifying scenario with
learning-based falsification with prior knowledge.

80 —
4
’f
— 60
E /
7
c
S 40 .r’
= I
a8 1
=8 1
209 —=- host vehicle
" front vehicle
01— T T T T T T
0 5 10 15 20 25 30
100
€ so{ %
£ N
= 60 \
> \
k4 \
5 40 s
[T Ay
> 20 AN
Ay
Y
o4 N
T T T T T T T
0 5 10 15 20 25 30

Time [s]

Fig. 5. Simulation of the best falsifying scenario with
purely learning- or purely model-based falsification.

approach relies on efficiently combining prior knowledge
models with reinforcement learning. This allows devel-
opers to detect flaws in the system at any stage of the
development progress. Our approach outperforms both
pure learning-based and pure model-based methods by
generating non-trivial scenarios that falsify the considered
controller. The method can be readily extended for falsify-
ing larger parts of (more complex) driving functions. While
it requires running many simulations (possibly executed in
parallel) initially, our experiments show that it provides
a critical situation that would otherwise require several
thousands of kilometers of real, or “randomized” scenario
driving in a simulator. Unfortunately, none of the existing
falsification approaches can guarantee completeness with
respect the actual implementation of the system, i.e., even
when no falsifying scenario is found, there is no guarantee
that such a scenario does not exist. This could be ad-
dressed by quantifying the quality of the obtained learned
model with respect to base distribution simulation models
for standard behavior of other traffic participants, weather
conditions etc., as a subject of future work.

REFERENCES

Althoff, M. and Lutz, S. (2018). Automatic generation
of safety-critical test scenarios for collision avoidance of
road vehicles. In IEEE Intelligent Vehicles Symposium.

Alur, R. and Henzinger, T. (1992). Logics and models of
real time: A survey. Real-Time: Theory in Practice.
Springer Berlin Heidelberg.

Aptiv, Audi, Baidu, BMW, Continental, Daimler, FCA,
HERE, Infineon, Intel, and Volkswagen (2019). Safety
first for automated driving (safad). White Paper.

Censi, A., Slutsky, K., Wongpiromsarn, T., Yershov, D.,
Pendleton, S., Fu, J., and Frazzoli, E. (2019). Liability,
ethics, and culture-aware behavior specification using
rulebooks. In Int. Conf. on Robotics and Automation.

Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Ravan-
bakhsh, H., Vazquez-Chanlatte, M., and Seshia, S.A.
(2019). Verifai: A toolkit for the formal design and
analysis of artificial intelligence-based systems. In CAV.

Eggers, A., Stasch, M., Teige, T., Bienmiiller, T., and
Brockmeyer, U. (2018). Constraint systems from traffic
scenarios for the validation of autonomous driving. In
3rd WS on Satisfiability Checking and Symb. Comp.

Fainekos, G.E. and Pappas, G.J. (2009). Robustness of
temporal logic specifications for continuous-time signals.
Theor. Comput. Sci., 410(42), 4262-4291.

ISO 15622:2018 (2018). Intelligent transport systems —
adaptive cruise control systems — performance require-
ments and test procedures. Standard, ISO.

Kim, B., Kashiba, Y., Dai, S., and Shiraishi, S. (2017).
Testing autonomous vehicle software in the virtual pro-
totyping environment. IEEE Emb. Syst. Letters, 9(1).

Koschi, M., Pek, C., Maierhofer, S., and Althoff, M. (2019).
Computationally efficient safety falsification of adaptive
cruise control systems. In IEEE ITSC.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning. In
Proc. of Int. Conf. on Learning Representations.

Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang,
P., Liang, Y., and Kim, D.I. (2019). Applications
of deep reinforcement learning in communications and
networking: A survey. IEEE Com. Surveys Tutorials.

Nenchev, V. (2019). Layer-stabilizing deep learning.
IFAC-PapersOnLine, 52(29), 286 — 291.

Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames, A.,
Grizzle, J., Ozay, N., Peng, H., and Tabuada, P. (2016).
Correct-by-construction adaptive cruise control: Two
approaches. IEEE Trans. on Control Syst. Technology.

O’Kelly, M., Sinha, A., Namkoong, H., Duchi, J., and
Tedrake, R. (2018). Scalable end-to-end autonomous
vehicle testing via rare-event simulation. In Proc. of
Advances in Neural Information Processing Systems.

Treiber, M., Hennecke, A., and Helbing, D. (2000). Con-
gested traffic states in empirical observations and mi-
croscopic simulations. Phys. Rev. E.

Tuncali, C.E., Yaghoubi, S., Pavlic, T.P., and Fainekos,
G. (2017). Functional gradient descent optimization for
automatic test case generation for vehicle controllers. In
Int. Conf. on Automation Science and Engineering.

Volker, M., Kloock, M., Rabanus, L., Alriface, B., and
Kowalewski, S. (2019). Verification of cooperative vehi-
cle behavior using temporal logic. IFAC-PapersOnLine,
52(8), 99-104.

15336

