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Abstract: This paper aims to propose a real-time suitable method to tackle the problem of energy and 

pollutant management of Hybrid Electric Vehicles. Methods proposed in the literature often limit the 

underlying optimal control problem to single-instant optimizations (Paganelli, 2002) due to the difficulty 

of taking future into account and to onboard limited computational resources. The point of the present 

paper is to propose an online oriented method based on a long-term vehicle speed prediction, using 

cartographic information such as speed limitation, road curvature, traffic and road signs. Pontryagin 

Maximum Principle applied on this speed prediction signal allows to convert the optimal control problem 

into a root-finding problem. This problem is solved using a Pegasus algorithm initialized by a black-box 

method trained offline, allowing high computational efficiency. The results are near-optimal and 

significantly better than classical methods: in the real-driving trip used in this paper, forecasting-ECMS 

showed a consumption 1.1% better and NOx emissions 4.4% better than a SOC-feedback adaptive-ECMS. 
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1. INTRODUCTION 

Global warming and air pollution problems led to challenging 

regulatory consequences for the automotive industry, through 

for example CAFE objectives in Europe. Hybrid Electric 

Vehicles (HEVs) are a promising solution proposed by car 

manufacturers in this context. HEVs have brought a new 

control layer, related to the relative use of the Electric Motor 

(EM) and the Internal Combustion Engine (ICE). The control 

signal is here the torque ratio of a parallel HEV, where both 

engines are mechanically connected to the road: 

 𝐮(𝐭) =
𝛕𝐞𝐥𝐞𝐜𝐭𝐫𝐢𝐜 𝐦𝐨𝐭𝐨𝐫(𝐭)

𝛕𝐝𝐫𝐢𝐯𝐞𝐫 𝐫𝐞𝐪𝐮𝐞𝐬𝐭(𝐭)
. ( 1 ) 

Methods proposed in the literature often try to minimize only 

fuel consumption (Beck, 2007; Hadj-Said, 2016 and 2017). 

This approach is tempting because fuel consumption can be 

expressed as a quadratic function of the ICE torque (Nüesch, 

2014), leading to a conveniently quadratic, convex 

optimization problem. Solving it using Quadratic 

Programming guarantees excellent computational 

performance. However, this approach may be considered 

incomplete because fuel consumption and pollutants emissions 

are antagonist problems, as it is illustrated on Fig. 1 and 2 

showing specific fuel consumption and NOx generation of a 

gasoline engine of PSA group: 

 

Fig.1: Normalized specific fuel consumption map 

 

Fig.2: Normalized specific NOx generation 

Since the best region for fuel is nearly the worst for NOx, 

minimizing fuel consumption will end up maximizing 

pollutant generation. We chose consequently to minimize a 

weighted compromise of NOx and fuel consumption (Michel, 

2012 and 2014a; Simon, 2015): 

  𝑱 =  ∫ (𝒎̇𝒇𝒖𝒆𝒍(𝒕) + 𝜶 ∙ 𝒎̇𝑵𝑶𝒙(𝒕)) ∙ 𝒅𝒕
𝑻

𝟎
 ( 2 ) 

Numerous methods are able to handle this problem of HEV 

supervision, as shown in the survey paper of Martínez (2016). 

A vast majority of the proposed methods for real-time 

application does not consider solving explicitly (2) due to 

computational time restriction onboard and to the difficulty to 

deal with future, therefore degrading the optimality of the 

solution. The point of this paper is to propose an online-meant 

solving of (2) expected to give near-optimal performances 

thanks to the prediction of the long-term future vehicle speed, 

and using real-time suitable methods.  

The most important state in the system is the battery State of 

Charge (SOC). Other states can be taken into account, 

particularly the catalyst converter temperature (Michel, 

2014b), in order to model its conversion efficiency. The 

catalyst converter is not taken into account in this work, but 

will be the focus of further studies. 
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There are three main ways to solve explicitly an optimal 

control problem of this nature: 

- Dynamic Programming (DP; Bellman, 1954), that 

explores all the possible state values. Its important 

computational resources and memory needs restrain it to 

offline applications, but it is commonly used to evaluate the 

potential of a system architecture or to provide a reference to 

be compared with actual online strategies. In this paper, the 

algorithm presented in Simon (2018) provides a benchmark. 

- Direct methods, where the minimization criterion is 

expressed as a cost function depending on the successive 

values of the time-discretized control signal. A numerical 

optimization algorithm reaches the minimum of the cost 

function and gives the optimal control values. The drawback 

of this approach is the large dimension that the optimization 

problem may attain if the sampling period of the control signal 

is short compared to the system dynamics. This is typically the 

case of the HEV torque-split signal and its battery SOC, and 

particularly in the large-battery case of a Plug-In HEV 

(PHEV), such as the vehicle taken as example in this paper. 

Many direct approaches handling the HEV supervision 

problem have already been tried (Kuchly, 2019; Di Cairano, 

2013).  

- Indirect methods, based on the Pontryagin Maximum 

Principle (PMP; Pontryagin, 1962). As developed in the next 

section, the PMP allows to sum up the whole optimal control 

of the HEV torque split to the determination of a single scalar 

constant 𝜆. This strong advantage led Paganelli (2002) to 

propose the current reference method for the HEV energy 

management: the Equivalent Consumption Minimization 

Strategy (ECMS), which is simply a realization of the PMP 

(Serrao, 2009). The method presented in this paper is a 

pollutant-including ECMS, an Equivalent Consumption and 

Pollutants Minimization Strategy (ECPMS; Simon, 2015). 

ECMS and ECPMS methods have proven very good 

performances in a real-time context, but have to face two major 

difficulties: on the one hand, the little computational time 

available discourages the use of too demanding optimization 

processes. On the other hand, it is necessary to know the future 

vehicle speed to solve the optimal control problem, and most 

methods avoid facing this problem by adapting continuously 

to the current situation only. The main contributions of this 

paper consist in two parts: first an algorithm intends to deal 

with the future by predicting roughly the vehicle speed using 

cartographic information (see section 3), allowing to obtain 

near-optimal control performances. Then the use of an 

efficient numerical process described in section 4 allows 

competitive computational performances.  

2. ECMS/ECPMS 

2.1  Principle 

A Hamiltonian is defined as the minimization criterion, taken 

only at the current time step, and augmented by the costate 𝜆, 

multiplied by the state variation 𝑆𝑂𝐶̇ : 

𝑯(𝐮(𝐭), 𝐭) = 𝐦̇𝐟𝐮𝐞𝐥(𝐭) + 𝛂 ∙ 𝐦̇𝐍𝐎𝐱(𝐭) + 𝛌(𝐭) ∙ 𝐒𝐎𝐂̇ (𝐭) ( 3 ) 

It follows the general formulation of the PMP, but it has also a 

physical meaning: it is a compromise between a thermic cost 

𝑚̇𝑓𝑢𝑒𝑙(𝑡) + 𝛼 ∙ 𝑚̇𝑁𝑂𝑥(𝑡) and an electric cost 𝜆 ∙ SOĊ (t). The 

co-state 𝜆 is a weighting factor, an equivalence factor between 

the prices of both energies. Thus, 𝜆 will be the key of the 

problem and its determination is the point of the various 

existing ECMS/ECPMS methods. The current optimal control 

value is obtained by minimizing the Hamiltonian: 

 𝒖∗(𝒕) = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒖

 (𝑯(𝒖(𝒕), 𝒕)). ( 4 ) 

The basic principle of ECMS is to minimize 𝐻 at each real 

time step. To be able to evaluate 𝐻, it is necessary to know the 

value of 𝜆. Its variation is given by the following canonical 

equation of Hamilton: 

 𝝀̇(𝒕) = −
𝝏𝑯(𝒖(𝒕),𝒕)

𝝏𝑺𝑶𝑪(𝒕)
 ( 5 ) 

The first term of 𝐻, including instantaneous fuel consumption 

and 𝑁𝑂𝑥 generation, is independent of the current SOC value. 

The second term 𝜆 ∙ 𝑆𝑂𝐶̇  is dependent on the open-circuit 

voltage and the internal resistance of the battery, that both 

depend on the SOC value. However the dependency is 

sufficiently small to be neglected, and 
𝜕𝐻(𝑢(𝑡),𝑡)

𝜕𝑆𝑂𝐶(𝑡)
≈ 0 is an 

often-made assumption (Michel, 2014). 𝜆 is hence considered 

constant. 

2.2  How to compute 𝜆 ? 

Say the vehicle speed and consequently the powertrain 

successive operating points (engine speed and torque) are 

known over the upcoming trip. One can arbitrarily choose a 

value for 𝜆 and simulate the trip: at each time step, the optimal 

control value 𝑢∗(𝑡) is computed by minimizing the current 

Hamiltonian (4). The SOC value is updated consequently by 

applying the control to the powertrain model, and the process 

is done successively until the end of the simulated trip. It is 

then possible to compute the final SOC value for a given value 

of 𝜆. This SOC evolution simulation will allow to compute a 𝜆 

leading to a desired SOC value. 

The final SOC is indeed constrained: in the charge-sustaining 

case of a non-plug-in HEV, it should end up around an average 

value, for example 50%. In the charge-depleting case of a 

PHEV, considering a recharge at the end of the trip, the final 

SOC should be the lowest acceptable value plus a safety 

margin in order to ensure all the energy available in the battery 

has been used. A function 𝑟(𝜆) is defined (6) and displayed in 

Fig.3, representing the difference between the final desired 

SOC percentage and the SOC value actually obtained for a 

given value of 𝜆: 

 𝒓(𝝀) = 𝑺𝑶𝑪𝒇𝒊𝒏𝒂𝒍(𝝀) − 𝑺𝑶𝑪𝒅𝒆𝒔𝒊𝒓𝒆𝒅 ( 6 ) 

Extreme values of 𝜆 will value too much the price of thermic 

or electric energies and drive the SOC to respectively the 

lowest or highest values achievable during the trip, leading to 

a sigmoid shape for 𝑟(𝜆). 𝑟 admits one root: it is the balanced 

value of 𝜆 allowing to reach the desired SOC value at the end 

of the trip. It is possible to find 𝜆 and then solve the optimal 

control problem thanks to a root-finding algorithm. 
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Fig.3: Shape of 𝑟(𝜆) 

This approach solves explicitly the PMP problem, but has two 

drawbacks. First, it is necessary to know or estimate a priori 

the vehicle speed over the considered trip. Moreover, solving 

the problem may require prohibitive computational time, 

regarding the real-time requirement and the low embedded 

computational resources in the automotive context. Hence, 

most methods do not rely directly on the PMP to compute 𝜆, 

but try instead to adapt its value depending on the current SOC 

or other information. Three main families of methods exist: 

- SOC-feedback methods, which update 𝜆 in order to 

regulate the SOC around a certain value (Onori, 2010). It relies 

only on the SOC value and rarely on cartographic information. 

- Pattern recognition methods, where past information are 

used in order to deduct the driving conditions and choose 

accordingly a relevant value for 𝜆 (Gu, 2006). 

- Vehicle speed prediction methods, like in Kazemi 

(2017), where a short-term 1-minute prediction is used. The 

present paper aims to estimate the future vehicle speed over a 

large 20-minutes horizon based on cartographic information, 

in order to solve explicitly the aforementioned PMP problem 

using a root-finding algorithm. By rebuilding an a priori 

knowledge of the future, it is hoped to approach closely 

optimal performances. The proposed method will be compared 

to both Dynamic Programming and a SOC-feedback method. 

3. MODELS 

3.1  Vehicle 

A PHEV model is obtained from the model structure presented 

in Simon (2018). The battery is modelled using only an ideal 

generator and an internal resistance (Guzzela, 2007). Both 

engines are modelled using maps of engine speed and torque: 

efficiency for the EM, and fuel consumption and NOx 

generation for the ICE. The present study does not consider yet 

other pollutants, nor the catalyst converter. The catalyst 

converter will be the focus of further studies (see section 6). 

3.2  Driver 

To predict the vehicle speed, it is necessary to model the driver 

behaviour in response to external elements: road curvature, 

traffic, speed limitations,… Road slopes are not yet taken into 

account. A speed reference is set to the current speed 

limitation. This reference will then be lowered by limiting 

factors. First, the maximum comfortable curve speed at a 

position 𝑥 depends on the curve radius 𝑟𝑐  (Polus, 2000): 

 𝑽𝐦𝐚𝐱 𝒄𝒖𝒓𝒗𝒆(𝒙) = 𝑲 −
𝟏

𝒂∙𝒓𝒄(𝒙)+𝒃
,  ( 7 ) 

The black-box parameters 𝐾, 𝑎, and 𝑏 are calibrated using real-

driving data. 

 

Fig.4: Maximum speed in curve against real data 

The modelled maximum speed is plotted against real driving 

data in Fig. 4. (7) aims to provide a superior bound imposed to 

the vehicle speed by the curve radius, and this bound will be 

lowered by other factors such as local traffic. Therefore, the 

points obtained in real-driving (blue in Fig. 4) should be 

inferior to the output of (7) (red in Fig. 4). It is the case, except 

for high-speed points measured in low-radius cases, that were 

voluntarily excluded of the calibration because they 

correspond to hardly-predictable behaviour of drivers in urban 

context, caused by the surrounding traffic. The new speed 

reference is then chosen by saturating the current speed limit 

𝐿 by the maximum comfortable curve speed obtained: 

𝑽𝒓𝒆𝒇(𝒙) = 𝐦𝐢𝐧(𝑽𝒎𝒂𝒙 𝒄𝒖𝒓𝒗𝒆(𝒙), 𝑳(𝒙))            ( 8 ) 

The local traffic level 𝐼𝑡𝑟  will be graded from 1 (fluid) to 4 

(blocked), levels 2 and 3 being intermediate levels in-between 

these extremes. The vehicle speed imposed by the traffic 

𝑉𝑟𝑒𝑓 𝑡𝑟 is obtained this way:  

𝑽𝒓𝒆𝒇 𝒕𝒓(𝒙) =  𝑽𝒓𝒆𝒇(𝒙) − 𝑲(𝑳(𝒙), 𝑰𝒕𝒓(𝑥))𝑅(𝑥)

− 𝐴(𝑳(𝒙), 𝑰𝒕𝒓(𝑥)), 
( 9 ) 

where 𝐾 and 𝐴 are parameters whose value is selected 

accordingly to the current speed limit and local traffic level. 

The different selectable values are calibrated using real-

driving data. 𝑅(𝑥) is a random, space-filtered value between 0 

and 1 attributed to each position of the longitudinally-

discretized vehicle path, once at the beginning of the trip. This 

value allows to take into account the stochastic impact of 

traffic on speed, without modelling other vehicles. 

Finally, at each time step the model compute the required 

distance to stop. If a road element forcing the vehicle to stop 

(traffic light, stop sign) is in range, the speed reference is put 

to 0. The vehicle will hence progressively slow down to stop 

at the required position. 

The driver is modelled by a proportional regulator acting 

directly on the speed value, and having a coefficient 𝑃𝐴 in 

accelerations and 𝑃𝐵 in decelerations. The maximum speed 

variation is saturated by two constants: the driver maximum 

comfortable acceleration 𝑎𝑚𝑥 and its equivalent in braking 

𝑏𝑚𝑥. By applying the whole process it is possible to obtain a 

very rough speed prediction. Fig. 5 show both real and 

predicted vehicle speeds for a 65 km trip between Plaisir and 
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Bussy Saint-Georges (France), including both highways and 

dense, urban driving. 

 

Fig.5: Modelled speed against real data 

The speed prediction is locally false but it is representative of 

the energy spent during the trip. There is indeed a difference 

of 10.5% only in the mechanical energy produced by the 

powertrain between prediction of real trip. The dynamics are 

close enough to reality to allow good optimization 

performance (see section 5). If necessary, driver dynamic can 

be improved by recursively updating the parameters of the 

model to adapt online to the actual driver behaviour.  

 

4. REAL-TIME OPTIMAL CONTROL 

The method proposed here considers a finite, receding horizon, 

over which the vehicle speed is predicted and the PMP solved. 

The method presented in section 2 to handle the PMP needs to 

solve two numerical problems. It must be able to minimize the 

successive Hamiltonians (4) and to find the root of 𝑟(𝜆) (6).  

4.1 Hamiltonian minimization: gradient algorithm 

For given values of 𝜆, engine speed and torque, the 

Hamiltonian depends only on the current value of 𝑢. A single 

dimension optimization problem has then to be solved, and a 

gradient algorithm using a polynomial interpolation line 

search is used (Wright, 1999). The Hamiltonian may present a 

local minimum at 𝑢 = 0; in order to handle this, the initial 

guess is chosen as follows: 

           {
 𝑖𝑓 𝐻 (𝑢 =

𝑢𝑚𝑎𝑥

2
) < 𝐻(0): 𝑢 =

𝑢𝑚𝑎𝑥

2

𝑒𝑙𝑠𝑒: 𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐻(0), 𝐻 (
𝑢𝑚𝑖𝑛

2
))

                ( 10 ) 

4.2 Root-finding: Pegasus algorithm 

𝑟(𝜆) admits only one root (Fig. 3). In order to find it, a Pegasus 

algorithm is implemented (King, 1973). As the dichotomy 

method for example, it is looking for the root between two 

bounds 𝜆𝑎 and 𝜆𝑏, 𝑟(𝜆𝑎) and 𝑟(𝜆𝑏) having opposite signs. The 

new candidate 𝜆𝑐 is chosen at the root of a linear 

approximation of 𝑟 between 𝑟(𝜆𝑎) and 𝑟(𝜆𝑏). If 𝑟(𝜆𝑐) is not 

close enough to 0, it replaces the same-sign bound and a new 

step is taken. If successive steps bring same-sign candidates, 

the value of the opposite bound (say 𝑟(𝜆𝑏)) is artificially 

reduced: 

 𝒓′(𝝀𝒃) =
𝒓(𝝀𝒃)∙𝒓(𝝀𝒂)

𝒓(𝝀𝒂)+𝒓(𝝀𝒄)
. ( 11 ) 

This update allows to deal with solution retention problems. 

Considering the general shape of 𝑟(𝜆) in Fig. 3, this situation 

may occur if one bound is close or in the linear part of 𝑟(𝜆), 

and the other far away in the flat part of 𝑟(𝜆). Pegasus 

algorithm appears as a relevant method in this context to solve 

the root-finding problem. 

4.3 Pegasus initial bounds  

Starting Pegasus with bounds close to the root allows to gain 

considerable computational time. Considering a horizon 

length large compared to the update period n, only small 

difference should occur between two successive speed 

predictions. Then, the previous 𝜆 computed at the last update 

is already a good approximation of the current solution.  

How to obtain a second bound ? The ideal would be to obtain 

a good approximation of the solution, computable fast enough 

to get quickly Pegasus started. This estimation of 𝜆 allows also 

to provide a guess at the initial instant, and to adapt to an 

important change detected in the trip prediction.  

A black-box method is used. N artificial roads are randomly 

generated offline, defined by randomized but realistic curves, 

speed limitations, local traffic, etc… Variable initial vehicle 

speed and initial SOC values are assigned to each road. The 

driver model is used to obtain the vehicle speed corresponding 

to each road. An input vector including the length of the trip, 

the mean speed, the initial speed and Δ𝑆𝑂𝐶 the variation 

between the initial and the desired final SOC is associated to 

each road. The optimal control problem is solved over the 

whole trip for each road, that can then be assigned a value of 

𝜆. A black-box method can now be used in order to link the 

input vectors to the corresponding values of 𝜆. 

Numerous methods could have been used to estimate 𝜆, but 

this paper does not aim to provide a detailed discussion about 

the choice of an optimal method. We chose to use the Neural 

Network Fitting Matlab Toolbox as a first approach, because 

it was easy and fast to use, and because the generated function 

gave decent accuracy and computational time. 

 

Fig.6: Neural network fitting performance 

The result of the training process are exposed in Fig. 6: the 

target data are the solutions 𝜆 of the optimal control problems 

corresponding to 𝑁 = 1000 randomly generated routes, and 

the output is the estimation provided by the neural network. 
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Validation data are used to ensure the network is generalizing 

and to stop training before overfitting, and test data are used to 

provide a final estimation of the neural network accuracy. Here 

the correlation between test data and estimation is above 90%, 

allowing to solve Pegasus algorithm in one step in a vast 

majority of cases and providing good results as presented in 

section 5. We did not investigate further the question of the 

estimation method, considering that the imperfection of the 

estimation is merely due to the incompleteness of the input 

variables. To improve the correlation, parameters representing 

the driving aggressiveness should be taken into account, such 

as the mean absolute vehicle acceleration for example.    

If the two bounds have the same sign, a straight line is 

extrapolated from the two points. A new 𝜆 value is taken at the 

root of the line, and the function 𝑟 is evaluated at this point. 

The curvature of the function (Fig. 3) ensures that the new 

point is of opposite sign, or at least closer to the root of 𝑟. 

Checks are performed: if the two bounds values are positive, 

the step must be done toward 𝜆 = 0, an eventual positive 𝜆 is 

pointless so it is brought back to zero, etc… 

4.4 SOC reference for PHEV 

Energy available in the battery has to be allocated over all the 

trip (Martinez, 2016). The final SOC desired at the end of the 

horizon is then linearly approximated this way: 

     𝑺𝑶𝑪𝒅𝒆𝒔𝒊𝒓𝒆𝒅 =
(𝒅𝒓−𝒅𝒉)∙(𝑺𝑶𝑪𝟎−𝑺𝑶𝑪𝒇𝒊𝒏𝒂𝒍)

𝒅𝒓
+ 𝑺𝑶𝑪𝒇𝒊𝒏𝒂𝒍,     (12) 

where 𝑑𝑟 is the remaining distance of the trip, 𝑑ℎ is the 

predicted distance completed at the end of the horizon, 𝑆𝑂𝐶0 

is the current SOC value, and 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙  is the desired SOC 

value at the end of the trip. 

At the beginning of the trip the tolerance used for Pegasus 

algorithm is set to 4.5% of SOC. After the range of the 

prediction becomes larger than the remaining part of the trip, 

accuracy is linearly decreasing to 0.5%. The idea is to quickly 

obtain a suitable 𝜆 in the beginning of the trip, and to refine 

progressively the result in the end of the trip. The upper limit 

of 4.5% is chosen so that it can be satisfied most of the time 

by the neural network of section 4.3, allowing good 

computational performance at the initial instant. 

The simplest way to improve performance is to ensure all the 

electric energy initially available has been used at the end of 

the trip. Hence, EM use is forced if the SOC is still above a 

user-defined threshold for a too short remaining distance. 

4.5 Real-time strategy 

The general algorithm functions as follows: 

Algorithm 1: Forecasting-ECPMS (F-ECPMS) 

Predictive phase: Every n seconds 

 Vehicle speed is predicted over a finite horizon 

 The desired SOC at the end of the horizon is 

computed 

 Pegasus algorithm is used to find the root of 𝑟(𝜆) on 

the predicted horizon 

 

 

 

ECPMS phase: Every second or less 

 The current Hamiltonian is minimized to obtain the 

optimal control value 𝑢∗(𝑡), using the value 𝜆 computed 

through root finding 

 

To sum up, the algorithm is functioning as a regular ECPMS, 

but the value of 𝜆 is regularly updated accordingly to the speed 

prediction. The value of the time period for the update of 𝜆 can 

be tuned accordingly to the embedded computational 

resources available. In the simulation presented in section 5 the 

time period for the torque split computation is set to 1 second, 

but it can be reduced in order to ensure that the powertrain is 

always able to provide the necessary torque, particularly in the 

case of a sudden and important variation in the torque request 

of the driver. Finally the consumption-pollutant compromise 

𝛼 is a parameter left to be set by the car manufacturers 

pollutant specialists in order to respect the considered 

standard. 

5.  RESULTS 

In order to assess the performances of the proposed method, a 

simulation is performed. The system considered is a Diesel 

PHEV and the trip is the one presented in Fig. 5, featuring both 

urban and highway driving. It is a 65 km trip, lasting 4100 

seconds. The initial SOC is 90%, and the final desired value is 

20%. On the first hand, a Dynamic Programming is applied 

offline, considering an exact and total knowledge of the future 

vehicle speed and operating points. This algorithm is 

discretized as follows: Δ𝑢 = 0.005, and Δ𝑆𝑂𝐶 = 0.005%. It 

provides results very close to the best performance achievable 

for this trip, that are used as a reference. On the other hand, the 

F-ECPMS algorithm described in this paper is used. It uses a 

20 minutes horizon length, and a 100 seconds time period 

between two 𝜆 updates. The current control signal is computed 

every second by minimizing the Hamiltonian.  

For comparison purpose, an Adaptive-ECPMS (A-ECPMS; 

Onori, 2011) is implemented using a SOC-feedback with a PI 

controller and a reference linearly decreasing with the 

remaining distance. A basic Charge Depleting – Charge 

Sustaining (CD-CS) method is also implemented: pure electric 

driving is forced until a low SOC threshold is attained. Then, 

the SOC is regulated around this threshold until the end of the 

trip, using A-ECPMS. 

 DP F-ECPMS A-ECPMS CD-CS 

𝑚𝑓𝑢𝑒𝑙  2072.6 g -0.1% +1% +3.4% 

𝑚𝑁𝑂𝑥 25.49 g +0.2% +4.6% +10% 

Table 1: Compared performances 
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Fig.7: SOC signals 

Fig.7 shows that DP, F-ECPMS and in a less remarkable way 

A-ECPMS generate similar SOC signals. F-ECPMS provides 

consumption and NOx performances really close to the best 

result achievable provided by DP (Tab. 1), and performs better 

than classical methods such as Adaptive ECPMS or CD-CS.  

Fig. 8 displays the computational time needed to predict the 

vehicle speed and solve the PMP over the 20-minute horizon. 

The computational time of the predictive phase is never above 

20 ms, and since it is done every 100 seconds it can be spread 

over a large period of time in the vehicle control unit. Besides, 

the ECPMS phase at each instant of the trip requires on 

average 25 µs. This computational performance has been 

obtained on a computer and using Matlab, but the order of 

magnitude of the computational time makes the proposed 

method relevant for a real-time context in a vehicle. It can also 

be compared to the order of magnitude of the 200 seconds 

needed in Michel (2015) to solve the PMP over a 30-minute 

WLTP cycle, or to the 13 minutes needed by the DP algorithm 

used in the present paper to optimize a 20-minute cycle. 

 

Fig.8: Computational time 

6. CONCLUSION 

F-ECPMS is quite demanding: it needs cartographic 

information over a large range. The system should also be able 

to predict the trip destination, eventually based on the driver 

habits for daily trips, or on big data information. However, it 

is able to provide near-optimal performances and is 

computationally efficient. Hence, F-ECPMS can be 

considered a relevant competitor in the context of energy and 

pollutants management of HEVs. 

An ECPMS strategy has to take into account the catalyst 

converter efficiency to be truly relevant. Oncoming work will 

then aim to include the conversion efficiency of the catalyst 

converter in the system, thanks to the estimation of its 

temperature (Simon, 2019). Two solutions may be considered: 

either the conversion efficiency is estimated from temperature 

and simply taken into account in the Hamiltonian used in this 

work, or the catalyst converter temperature could be added in 

the application of the PMP as a second state, leading to a 

second co-state 𝜆𝐶𝐴𝑇 . The root-finding problem would then be 

solved by searching the minimum of 𝑟(𝜆, 𝜆𝐶𝐴𝑇)².  

Other important objectives are to provide a better SOC 

reference taking into account road information, and to 

implement F-ECPMS in a vehicle in order to prove its real-

time ability. Further work will also aim to propose a classical 

A-ECPMS method taking into account cartographic 

information about the future through its SOC reference. 
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