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Abstract: The anti-skid control system in aircraft is confined to the landing-gear subsystem,
and, for safety reasons, it must rely on local signals only. Therefore, it can use only two
measurements: the wheel speed and the pilot braking pressure request. Therefore, the anti-
skid control logics are generally wheel deceleration-based, as the slip cannot be computed
since the aircraft speed is not available. The vehicle speed estimation is commonly done in
automotive systems, made possible also by the presence of additional sensors usually coming
from an Inertial Measurement Unit (IMU). This work explores how the aircraft speed can be
estimated using only the landing gear signals, and if the resulting estimate can be accurate
enough to be used in closed-loop with a slip-based anti-skid controller. To do so, two estimation
approaches are considered: a sliding-mode model-based one, and a black-box approach grounded
on recurrent neural networks. Experimental results are shown, witnessing the potential of black-
box approaches.
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1. INTRODUCTION

The longitudinal velocity is an essential information when
dealing with vehicle dynamics control such as braking,
traction and steering. Its main use is the computation
of the wheel longitudinal slip, which, in the automotive
context, is the main controlled variable in braking-related
control systems, such as ABS/anti-lock braking systems
and ESP (Savaresi and Tanelli, 2010). In general, the
longitudinal speed must be estimated from the available
on board sensors. In the automotive literature, different
vehicle speed estimation approaches have been presented,
ranging from fuzzy-logic Kobayashi et al. (1995); Semmler
et al. (2002) to extended Kalman Filter Ray (1997) and
non-linear observers Alvarez et al. (2002); Yi et al. (2003),
to recursive identification methods, Tanelli et al. (2009).
In the two-wheeled vehicles context, it is usually estimated
via sensor fusion such as Panzani et al. (2012), or ad-hoc
signal processing techniques, Savaresi and Tanelli (2010).

In the aeronautical community, safety and certification
issues have up to now prevented anti-lock braking sys-
tems to employ signals that are non-local to the landing-
gear subsystem, where the braking control unit and all
the related electronic equipment reside. Therefore, air-
craft anti-skid systems are in general deceleration-based,
as the only available measurements on the landing gear
are wheel speed and braking pressure. Nonetheless, could
the wheel slip be available, the aircraft braking systems

could experience the same performance development seen
in the automotive context, where mixed-slip deceleration
controllers, see e.g., Savaresi et al. (2006), have proved to
enjoy both performance and safety features that outper-
form traditional deceleration-based controllers and, under
some circumstances, also pure slip-based ones.

The crucial step in setting up a slip-based controller is
the longitudinal speed estimation, facing the challenges of
having only the wheel speed and the braking pressure to
employ for that purpose, and the highly varying landing
conditions were, for instance, the effect of the aerodynamic
forces makes the vertical load vary from nearly zero at
the landing instant to the static load at the end of
the maneuver. In this work we address this problem,
comparing a model-based with a black-box approach. More
specifically, we leverage the work presented in Tanelli
et al. (2012), where a Sliding Mode Observer (SMO) was
implemented and validated on experimental data. With
the proposed observer, road friction conditions can be
retrieved as well via non linear curve fitting. Such an
observer was later considered for use in the aircraft context
in D’Avico et al. (2017).

The structure of the paper is as follows. Section 2 states
the considered problem and presents the experimental
dataset used in this work. Further, Section 3 introduces
the landing-gear and aircraft braking dynamics, while
Sections 4 and 5 present the model-based and black-box
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approaches for the estimation of the longitudinal speed.
Finally, Section 6 compares the performance of the two
approaches on the experimental data.

2. PROBLEM STATEMENT

As mentioned in the Introduction, the goal is to estimate
the longitudinal aircraft velocity, using only the landing
gear measurement collected by the Brake Control Unit
(BCU), i.e., the applied braking pressure and the wheel
rotational speed. The aircraft serving as our case study
has two landing gears and a nose wheel on the front, and
the BCU has access to the two pressure measurements and
the rotational speed of both landing gears wheels. The
scheme of the estimation process is summarized in Fig.1.
It is worth pointing out that the two landing gears, and

L LAND. GEAR

R LAND. GEAR

𝑃𝑙

𝜔 𝑙

𝑃𝑟

𝜔 𝑟

𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡
𝑆𝑝𝑒𝑒𝑑

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

ො𝑣𝑎

Fig. 1. Conceptual scheme of the aircraft speed estimation
algorithm.

consequently the two wheels, experience different stresses
and forces during the braking maneuver. This is mainly
due to possibly unbalanced working conditions and to the
difference in the braking pressures requested by the pilot,
who acts on the braking system through a left and right
pedal.

We consider and compare two possible solutions to the ve-
locity estimation problem. The first one relies on a model-
based approach, and proposes a customized version of the
SMO defined in D’Avico et al. (2017), which first estimates
the tire-road longitudinal forces, and then retrieves the ve-
locity information from the aircraft longitudinal dynamic
model. The second solution explores the potential of black-
box approaches, and more specifically investigates the use
of a non linear identification method via Neural Networks
(NNs).

Notably, in both cases, the training, validation and testing
of the proposed methods are based on an experimental
data set, recorded on test planes from an industrial partner
(that is why, for confidentiality reasons, the y-axis scale
of plots is usually omitted). The dataset comprises nine
different maneuvers, each tagged either as Rejected Take
Off (RTO) or landing (LND). Two examples are provided,
respectively, in Fig. 2 and 3: the top plot shows the
aircraft and wheel speeds, while the bottom one the
wheel slips at left and right wheels. The two maneuvers
significantly differ, especially because of the load transfer
dynamics and thrust force. Indeed, in a RTO maneuver,
the aircraft velocity increases while on the ground, and
reaches high values in very short time, then for some
reasons the take-off is aborted and the aircraft quickly
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Fig. 2. An example of a RTO maneuver.

breaks in order to cope with the limited left runaway. The
commutation between the acceleration and deceleration
phases is particularly fast, and this causes large load
transfers. In the landing case, instead, the aircraft touches
the runway and starts braking until standstill. In this case,
the vertical force experiences a very large variation, due to
the speed dependent aerodynamic forces. The significant
differences in the maneuver motivate the inclusion of
instances of both types in the dataset.

0 2 4 6 8 10

Fig. 3. An example of a LND maneuver.

Moreover, due to the high variability of the aircraft oper-
ating conditions, it is important to have an heterogeneous
as possible dataset, with respect to aircraft configuration,
initial velocity, and road condition. The employed dataset
thus includes maneuvers with different aircraft mass and
brake-on speed (BOS), i.e., the aircraft speed as the
braking commences. The values are reported in Table 1
expressed as percentage variations with respect to their
nominal value.

3. LANDING GEAR MODELLING

In order to set up the model-based estimator, a model for
the landing gear dynamics is here discussed. It takes into
account the gear walk phenomenon (Krüger and Moran-
dini, 2008; Lernbeiss and Plöchl, 2007), an oscillatory mo-
tion of the wheel in the longitudinal direction, caused by
the elasticity of the landing gear and its peculiar geometry
(see Fig. 4). A simple yet expressive way to model this
effect is to add to the landing gear a rotational spring-
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Table 1. Data set maneuvers specifications:
type, mass, BOS.

Man Type Mass [kg] BOS [m/s]

1 RTO +20% −10%
2 RTO +14% −50%
3 RTO −8% −52%
4 RTO −8% −44%
5 LND −4% +14%
6 LND −4% +15%
7 LND −8% +10%
8 LND +14% +30%
9 RTO +14% +14%

damper component, connecting the aircraft chassis to the
vertical axle of the landing gear.

𝑣𝑎 𝑣𝑎 𝑣𝑎𝑐𝜃

𝑘𝜃

Fig. 4. Schematic representation of the gear walk phe-
nomenon.

The non-linear dynamic model of the landing gear can be
written as:

(ma +mv +mgv)v̇a = −Fx − Fdrag + Jθ θ̈ (1)

Jθ θ̈ − Jθv̇a + cθ θ̇ + kθθ = LgwFx (2)

Jwω̇ = rFx − Tb, (3)

where Jθ = (
Lgwmgw

2 + Lgwmw), Jθ θ̈ = (Jgw +
L2

gwmgw

4 + L2
gwmw)

and Fdrag = αv2a. Equation (1) describes the longitudinal
dynamic: the three components on the right hand side
Fx, Fdrag and Jθ θ̈ represent the longitudinal contact
force, the aerodynamic resistance force, and the inertial
component due to the gear walk axle rotation, respectively.
Equation (2) models the gear-walk induced rotational
dynamics, while Equation (3) accounts for the wheel
rotational dynamic, with Tb and rFx representing the
braking torque and the longitudinal tire-road contact
force, respectively. As depicted in Fig. 5, the main axle of
the landing gear is characterized by the parameters Lgw,
mgw, Jgw, which represent its length, mass and inertia,
respectively. The values of the rotational spring/damper,
i.e., cθ and kθ, can be experimentally tuned via a dedicated
test campaign.

4. MODEL-BASED VELOCITY ESTIMATION

Once the landing gear model is available, the model-based
speed estimation is presented. Its structure, depicted in
Fig. 6, consists of three interconnected blocks: the left
and right wheel observers – devoted to the estimate of
the left and right longitudinal forces – and a last block
which finalizes the computation of the estimated velocity.
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Fig. 5. Schematic representation of an aircraft landing
gear.
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Fig. 6. Block-diagram of the model-based speed estimation
algorithm.

The two wheel observers are structurally identical, fea-
turing as measured inputs the applied pressure and the
rotational speed of the corresponding wheel; moreover
the estimated aircraft velocity enters the observers via a
feedback loop from the speed estimation block. As detailed
in Tanelli et al. (2012) they are SM observers based on
the (non-true) assumption that the wheel speed cannot be
measured and using the wheel speed estimation error as
sliding variable:

sωi
= ωi − ω̂i,

where ω̂i represents the estimated rotational speed and
i = {l, r}, stands for left and right. The control signal of
the sliding mode observer is defined as

Ωi = Kisign(sωi
),

where Ki is the tunable observer gain. Within this setting,
the estimated wheel speed dynamics take the form

˙̂ωi =
1

Jw
(Ωi − Tbi)

where the braking torque Tbi is obtained from the mea-
sured pressure Pi through a static map that depends on
the brake actuator characteristics. To ensure finite time
reaching of the sliding manifold, that is

treachi
≤ |sωi

|
ε
,

it must hold that

sωi
ṡωi

<= −ε|sωi
|, (4)

where ε ∈ R+ and ṡωi
can be expressed as

ṡωi
= ω̇i − ˙̂ωi =

rFxi −Ksign(sωi)

Jw
.
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If Ki is chosen large enough to ensure that

Ki ≥ rmax
λ

Fxi = rmax
λ

Fziµ(λi)

then condition (4) holds. Given the first-order SM nature
of the observer, the control signal Ωi is subject to chatter-
ing, and thus cannot be used in practice as is. The signal
is thus low-pass filtered to yield the equivalent control
signal Ωeqi . Note that the equivalent control signal Ωeqi is
by construction capable of steering to zero the estimation
error, i.e.,

ṡωi =
rFxi

− Ωeqi
Jw

and therefore it can be used to estimate the value of the
i− th tire-road contact force as

F̂xi
=

Ωeqi
r
. (5)

The estimated velocity v̂a can then obtained from the
expression of the longitudinal aircraft dynamic, which can
be derived from from Equation (1), and has the form

ˆ̇va =
1

mtot

(
Jθ

ˆ̈
θr + Jθ

ˆ̈
θl − F̂xl

− F̂xr
− αdv̂2a

)
. (6)

In Equation (1) F̂xl
, F̂xr

represent the estimated left
and right longitudinal contact forces obtained by (5),

respectively, while θ̈l, θ̈r represent the gear walk angular
acceleration and are computed from Equation (2) as

ˆ̈
θi =

1

Jθ̈i
− J2

θi
mtot

[
(Lgw −

Jθi
mtot

)F̂xi − cθ
ˆ̇
θi − kθ θ̂i −

Jθi
mtot

αdv̂
2
a

]
,

with i = {i, r} indicate the left and right wheel, respec-
tively.

As a matter of fact, the model-based approach requires
reliable values of the aircraft physical parameters, and its
performance also depends on the tuning of the observer
gain. Recalling that, as shown in Table 1, the working
conditions of the aircraft in the different braking maneu-
vers vary a lot – especially in terms of mass and vertical
load variations – the observer (constant) parameter values
are tuned with so to minimize the RMSE on the final
estimated speed over all available maneuvers.

An example of the estimation performance in a landing
case is shown in Fig. 7 where the real and the estimated
velocity are compared; the speed and slip estimation errors
are also detailed. The obtained performance are quite
satisfactory, validating the idea of using of the estimated
wheel slip in a closed-loop anti-skid controller.

A concluding remark is that the estimated vehicle speed
is retrieved from (6) by integrating its right-hand side.
Despite the native signals – wheel encoders and braking
pressures – are not so prone to biases as accelerometer-
based ones, yet the long duration of the braking maneuver
in aircraft makes integration error accumulate, potentially
degrading the overall estimation.

5. BLACK-BOX VELOCITY ESTIMATION

A different approach to the velocity estimation problem
is the purely data-driven one. Such solution may help in
compensating the variations of the unmeasurable param-
eters, which cannot be trivially extracted from the data,
possibly yielding a more accurate estimate.
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Fig. 7. Speed estimation performance of the model-based
approach in landing maneuver.
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Fig. 8. Block-diagram of the black-box speed estimation
algorithm.

Among the several possibilities, the artificial Neural Net-
works (NNs) were chosen. In the light of a fair comparison
between the approaches, the same I/O configuration of
model-based estimator has been used (see Fig. 8). Con-
sidering the dynamic nature of the problem at hand, we
decided to use a nonlinear auto-regressive network with
exogenous inputs (NARX) (Jain and Medsker, 1999). The
defining equation of such model is

y(k) = f(y(k − 1), .., y(k − ny), u(k − 1), .., u(k − nu)),

where the value of the output signal at time k ∈ N, i.e.,
y(k) is regressed on its past values along with present and
past values of the exogenous input u(k).

In the present case, the input signal u(k) is defined as

u(k) = [ωl(k), ωr(k), Pl(k), Pr(k)]T

with ωl(k), ωr(k), Pl(k) and Pr(k) being the left and right
rotational speeds and the left and right pressures samples
at time k, respectively.

The selected NARX structure features two layers. The
hidden one has N neurons, each fed by the components
of the input vector u(k) and the estimated velocity ŷ(k) =
v̂a(k), delayed by d samples. All the resulting signals enter
the j − th neuron in a ridge construction mechanism:

xj(k) = w1,ju1(k)+· · ·+wd,ju1(k−d)+· · ·+wdŷ(k−d)+bj
where wi,j , i = 1, . . . , d and bj represent the weights and
the bias of the j − th neuron. The output layer shares the
same construction mechanism applied to the output of the
neurons of the hidden layer and, through the activation
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function computes the velocity estimate ŷ(k). The log-
sigmoid activation function (f(x) = logsig(x)) has been
used both for the hidden and the output layer.

The training phase was carried out using the series-parallel
architecture, (Narendra and Parthasarathy, 1991), and the
Bayesian regularization back-propagation method, see e.g.
Rumelhart et al. (1988) and MacKay (1992).

The NN is completely defined once the amount of delay d
and the number of neurons N in the hidden layer are fixed.
To find the best NN structure, different delay/neurons
combinations have been considered. In particular, given
the limited number of experiments and after some pre-
liminary testing, a [3 × 3] grid has been explored with
d ∈ [2, 3, 4] and N ∈ [4, 5, 6], for a total of 9 possible
NN structures. To find the best one, a leave-one-out cross-
validation on the available maneuvers has been performed:
the overall MSE is depicted in Fig. 9, leading to the
selection of the 3D−5D configuration as the optimal one.

2D-4N 2D-5N 2D-6N 3D-4N 3D-5N 3D-6N 4D-4N 4D-5N 4D-6N

Fig. 9. Mean Square Error for the tested NN configura-
tions.

Once defined the NN structure, among the 9 trained NNs
the one providing the smallest validation error has been
selected: the time domain results of the selected NN on
its validation maneuver (a landing one) is depicted in
Fig. 10. Also in this case the obtained performance is quite
satisfactory, and again we can state that it is such as to
allow the use of the estimated wheel slip in a closed-loop
anti-skid controller.

6. COMPARED PERFORMANCE ANALYSIS

The performance comparison between the model-based
and the black-box approach is here addressed. To do this
the SM observer configuration which provides the best
average performance on the whole data set is tested against
the best NN model previously discussed. Fig 11 shows the
estimated velocities obtained with the two approaches,
along with the speed estimation errors. As can be seen,
both methods result in a similar velocity profile, even
though the black-box one shows more accurate estimation
results especially in the last part of the maneuver (it’s
worth recalling how the SM approach suffers from the
accumulation of integration errors).

Fig. 12 shows a quantitative comparison of the RMSE
obtained by both methods on the entire data set. It clearly
shows that the performance of the black-box algorithm
does not significantly vary with the considered maneuver,
and the RMSE is within [0.9, 2.1]m/s in the whole set. As
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Fig. 10. Speed estimation performance of the black-box
approach in landing maneuver.
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Fig. 11. Comparison of the speed estimation performance
of the two estimation approaches in landing maneu-
ver.
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Fig. 12. RMSE of the two approaches computed over the
whole data-set.

a matter of fact, the model-based solution suffers from
the very high variability in the working conditions. In
particular, maneuvers 3, 5, 6, 7 result to be critical for the
SM observer: these are the cases where the real mass of
the aircraft is considerably different from that used for
the estimation. Mass, in fact, resulted to be the most
critical parameter as far as the model-based performance
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is concerned. This being said, when the mass parameter
used in the SM observer is close to the real one, the
estimation error of the model-based approach results to
be comparable or even lower than the one obtained with
the black-box approach.

To further appreciate such fact, Fig 13 shows the speed
estimates obtained on landing maneuvers with different
mass values. The results confirm that when the mass value
used in the observer is plausible the velocity estimation
is very precise, while performance gradually degrades as
the knowledge of the mass parameter worsens. On the
one hand this encourages us to work on mass-estimation
algorithms to improve the SM observer performance, but
also witnesses an intrinsic larger robustness yielded by the
black-box methods, which of course needs to be investi-
gated over a larger experimental data set.
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Fig. 13. Mass sensitivity of the model-based approach on
a landing maneuvre.

7. CONCLUDING REMARKS

In this work the aircraft speed estimation is tackled, using
the wheel speeds and the braking pressures, which are
the sole signals available on the landing gear where the
braking control unit is located. A comparison between
model-based and black-box approaches for the estimation
of aircraft speed is presented. Specifically, the model-based
approach relies on a sliding-mode observer and the black-
box approach, instead, on recurrent NNs. The analysis –
performed on real aircraft data measured in landings and
rejected take-off maneuvers – show that the model-based
approach, while being preferable due to the possible formal
analysis of the estimation properties, suffers from a very
large set of operating conditions which cause significant
parameters variations. Opposite, the black-box one seems
inherently more robust in coping with the uncertainties,
but requires to be paired with additional methods to test
its integrity over the life cycle of the aircraft. Ongoing
work is being devoted to evaluate the estimate for use in
a slip-based anti-skid controller.
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