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Abstract: Converse passivity theorems are established for finite-dimensional (FD) linear time-
invariant (LTI) systems. Consider an FD LTI system G1 interconnected in positive feedback with
another FD LTI system G2. It is demonstrated that when the closed-loop system is (robustly)
stable (in the sense of finite L2 gain) for arbitrary strictly passive G2, then −G1 must necessarily
be passive. It is also demonstrated that when the closed-loop system is uniformly stable across
the set of arbitrary passive G2, then −G1 must necessarily be strictly passive. The proofs are
constructive; i.e., we show how to find a de-stabilizing FD LTI G2 when G1 violates the necessity
condition of stability.
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1. INTRODUCTION

Passivity is pervasive in the field of systems and con-
trol [Willems 1972, Lozano et al. 2013, van der Schaft
2017]. It is a vitally important notion in the study of
electronic circuits [Anderson and Vongpanitlerd 1973] and
process control [Bao and Lee 2007]. The chief rationale
behind its importance is that passivity is deep-rooted in
physical systems modelling through the use of generalized
energy and power, as is commonly witnessed in chemical
processes and electromechanical systems. The mathemat-
ics underpinning passivity has found generalizations to the
broad area of control, ranging from linear robust control
to nonlinear system stabilization.

Passivity has also enjoyed great success when applied to
the study of large-scale network systems. Its compositional
property is particularly attractive in this regards — a
negative feedback configuration is passive if both the sub-
systems are passive. This is often utilized in the derivation
of distributed and scalable performance certifications for
large-scale systems [Moylan and Hill 1978, Vidyasagar
1981, Arcak et al. 2016].

Despite the ubiquity of passivity in systems theory, con-
verse results on passivity have rarely been investigated.
One version of converse passivity result takes the following
form: a negative feedback configuration is passive only
if both the subsystems are passive. This is established
in [Kerber and van der Schaft 2011] using state-space
methods and subsequently in [Khong and van der Schaft
2017] from the input-output perspective. By contrast, this
paper is concerned with the converse of passivity-based
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robust stability results. We prove in the multi-input-multi-
output (MIMO), finite-dimensional (FD), linear time-
invariant (LTI) setting that if a closed-loop system is stable
for arbitrary strictly passive subsystem, then the other
subsystem must be passive. Likewise, if the closed-loop
system is uniformly stable for an arbitrary passive subsys-
tem, then the other subsystem must be strictly passive.
This kind of result has only been established for single-
input single-output LTI systems in [Colgate and Hogan
1988], based on the Nyquist stability criterion. In contrast,
we derive our results based on the equivalence between the
small-gain property and passivity [Anderson 1972] via the
chain-scattering formalism [Kimura 1997], which proves
useful in many topics ranging from H∞-synthesis [Green
et al. 1990] to ν-gap metric characterization [Cantoni 2006,
Khong and Cantoni 2013]. We also make use of the con-
struction of a destabilizing controller in the proof of the
necessity of the small-gain theorem [Doyle 1982]. Our main
results consist of multiple versions of converse passivity
theorems involving input/output strict passivity, and are
summarized in Tables 1 and 2 in Section 4.

Converse passivity results admit fundamental importance
in various applications. For instance, if a controlled robot is
required to be stable when interacting with a passive but
otherwise unknown environment, then the converse pas-
sivity result dictates that the robot must itself be strictly
passive systems as seen from its interaction port. For a
more detailed elaboration on such robotics motivations,
the interested reader is referred to [Colgate and Hogan
1988, Stramigioli 2015].

While converse passivity theorems have been studied in
the nonlinear time-varying setting in [Khong and van der
Schaft 2018], the results therein cannot recover the LTI
results in this paper. In particular, unlike the necessity
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proofs in [Khong and van der Schaft 2018], which rely
on the S-procedure lossless theorem [Megretski and Treil
1993], the ones in this paper are based on the small-
gain theorem and hence constructive. Furthermore, the
uncertainty set against which the feedback system is
robust is much larger (specifically, nonlinear and time-
varying) in [Khong and van der Schaft 2018] than that
considered in this paper, which plays a significant role
in affecting the conservatism of the necessity directions
of the results. Finally, we also want to emphasize that,
although the converse passivity results we present are de-
rived via well-known techniques and facts (i.e., the chain-
scattering formalism and equivalence between “small gain”
and “passivity”) in the robust control community, they
are not (clearly) documented in the existing literature to
the best of our knowledge, and some, if not all, of the
converse statements in Tables 1 and 2 do not appear to
be straightforwardly obvious. This is precisely the reason
that motivates our research in this matter.

The rest of the paper is organized as follows. The next
section defines the notation to be used throughout the pa-
per and reviews the definitions of passivity. Preliminaries
on the small-gain theorem and its relation with passivity
are presented in Section 3. The main converse passivity
theorems are derived in Section 4. Section 5 concludes the
paper and discusses future research directions.

2. NOTATION

R (C), Rn (Cn), Rp×m (Cp×m) denote the sets of real (com-
plex) numbers, n-dimensional real (complex) vectors, and
p×m real (complex) matrices, respectively. The extended
real set is denoted as R̄ := R ∪ {±∞}. Given a matrix
M , the transpose and conjugate transpose are denoted by
MT and M∗, respectively. The maximum singular value
of M is denoted by σ̄(M). The notation M > 0 (M ≥ 0)
means that the matrix M is positive definite (positive
semi-definite). The n-dimensional identity matrix and n×
m zero matrix are denoted by In and 0n×m, respectively.
The subscripts of these matrices are dropped when the
their dimensions are clear from the context.

Ln
2 denotes the space of Rn-valued, square integrable func-

tions on the non-negative reals, with the usual norm and
inner product denoted by ∥ · ∥L2 and ⟨·, ·⟩L2 , respectively.
The superscripts are dropped when the dimension is evi-
dent from the context. The extended Ln

2 space is denoted
as Ln

2e. This consists of functions f that satisfy PT f ∈ Ln
2 ,

for all T > 0, where PT denotes the truncation operator,
defined as:

(PT f)(t) =

{
f(t) for t ≤ T

0 otherwise
.

Let G : L2 → L2 be a linear operator. G is said to be
causal if PTGPT − PTG = 0 for all T > 0. The induced
norm of G is defined as

∥G∥ = sup
u∈L2,u ̸=0

∥Gu∥L2

∥u∥L2

.

G is said to be bounded if ∥G∥ ≤ γ for some γ > 0. A
causal and bounded G is said to be stable.

When a stable G commutes with the forward shift opera-
tor, it can be represented as multiplication in the frequency

domain by a transfer function matrix in the H∞ space,
which consists of functions that are analytic and uniformly
bounded in the right-half of the complex plane. In this
case, G is said to be linear-time-invariant (LTI) and the

transfer function matrix of G is denoted by Ĝ. It is well-
known that for such a G,

∥G∥ = sup
ℜ(s)>0

σ̄(Ĝ(s)) = ess sup
ω∈R̄

σ̄(Ĝ(jω)).

It is also well-known that when G is finite-dimensional
LTI with a real state space realization (A,B,C,D), then

Ĝ(s) = C(sI−A)−1B+D and belongs to the real rational
subspace ofH∞, denoted byRH∞. When the dimension of
G is of some significance, we use the notation Ĝ ∈ RHn×m

∞
to emphasize that G has m inputs and n outputs.

A stable LTI system G is called passive if ⟨u,Gu⟩L2 ≥ 0
for any u ∈ L2. It is called input strictly passive if there
exists ϵ > 0 such that ⟨u,Gu⟩L2 ≥ ϵ∥u∥2L2

for any u ∈ L2,
and output strictly passive if there exists ϵ > 0 such that
⟨u,Gu⟩L2 ≥ ϵ∥Gu∥2L2

for any u ∈ L2. It is well-known
that G is passive if and only if (iff)

Ĝ(jω) + Ĝ(jω)∗ ≥ 0 for all ω ∈ R̄,
G is input strictly passive iff there exists ϵ > 0 such that

Ĝ(jω) + Ĝ(jω)∗ ≥ ϵI for all ω ∈ R̄,
and G is output strictly passive iff there exists ϵ > 0 such
that

Ĝ(jω) + Ĝ(jω)∗ ≥ ϵĜ(jω)∗Ĝ(jω) for all ω ∈ R̄.
Note that input strict passivity implies output strict
passivity, since

∃ε > 0 s.t. Ĝ(jω) + Ĝ(jω)∗ ≥ εI, ∀ω ∈ R̄

=⇒ Ĝ(jω) + Ĝ(jω)∗ ≥ ε

∥G∥2
Ĝ(jω)∗Ĝ(jω), ∀ω ∈ R̄.

In the sequel, the set of all stable, finite-dimensional (FD),
linear time-invariant (LTI), input strictly passive systems,
output strictly passive systems, and passive systems are
denoted by PI , PO, and P, respectively. Clearly, it holds
that

PI ⊂ PO ⊂ P . (1)

Note that both the inclusions are strict.

3. PRELIMINARY RESULTS

+

+
d2

d1

u1

u2
y2

y1

G1

G2

Fig. 1. Positive feedback interconnection of G1 and G2.

Consider the feedback interconnection of FD LTI causal
systems G1 and G2 mapping L2e to L2e, as illustrated in
Figure 1. Algebraically, we have{

u1 = y2 + d1
u2 = y1 + d2

{
y2 = G2u2

y1 = G1u1
. (2)
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Definition 1. The feedback system shown in Figure 1 is
said to be well-posed if the map ([ u1

u2
] , [ y2

y1 ]) 7→
[
d1

d2

]
defined by (2) has a causal inverse on L2e. It is stable
if it is well-posed and the inverse is bounded.

Remark 1. Note that when the feedback system is well-
posed, the closed-loop map

[
d1

d2

]
7→ [ u1

u2
] can be expressed

as [
I −G2

−G1 I

]−1

=

[
(I −G2G1)

−1 (I −G2G1)
−1G2

G1(I −G2G1)
−1 I +G1(I −G2G1)

−1G2

]
.

Suppose G1 and G2 are both stable. In this case, the above
identity leads to the following conclusion: [G1, G2] is stable

if and only if (I − Ĝ2Ĝ1)
−1 ∈ RH∞. Furthermore, it

can be shown that (I − Ĝ2Ĝ1)
−1 ∈ RH∞ if and only if

det(I − Ĝ2(s)Ĝ1(s)) ̸= 0 for all s in the closed right-side
complex plane. Moreover, it can be readily verified that the
map

[
d1

d2

]
7→ [ u1

u2 ] and the map
[
d1

d2

]
7→ [ y2

y1 ] are summed to

the identity operator. Thus, the map
[
d1

d2

]
7→ ([ u1

u2 ] , [
y2
y1 ])

is well-defined and of a finite gain if and only if the map[
d1

d2

]
7→ [ u1

u2 ] is of the same properties. Henceforth, we use

[G1, G2] to denote the closed-loop map
[
d1

d2

]
7→ [ u1

u2 ] and
to represent the feedback system shown in Figure 1.

Suppose one of the sub-systems, say G2, is taken from a set
U . We have the following definition regarding robustness
and uniformity in stability.

Definition 2. Consider a set U and suppose G2 ∈ U . Then
[G1, G2] is said to be robustly stable over U if [G1, G2] is
stable for all G2 ∈ U . Moreover, [G1, G2] is said to be
uniformly stable over U if [G1, G2] is stable for all G2 ∈ U ,
and there exists γ > 0 such that sup

G2∈U
∥[G1, G2]∥ ≤ γ.

The following result on the relation between passivity and
small gain can be found in [Anderson 1972] and [Green
and Limebeer 1995, Section 3.5.3]. A simple proof is given
here for completeness.

Lemma 1. Consider a stable FD LTI system G. It holds
that G is passive if and only if (I + G)−1 is stable and
∥(I +G)−1(I −G)∥L2

≤ 1.

Proof. Since G is passive, it is well-known that [G,−I] is

stable and therefore (I + Ĝ)−1 ∈ RH∞. Furthermore, we

have Ĝ(jω) + Ĝ(jω)∗ ≥ 0 for all ω ∈ R̄. Note that

(I + Ĝ(jω))−1(I − Ĝ(jω))(I − Ĝ(jω))∗(I + Ĝ(jω))−∗ − I

= (I + Ĝ(jω))−1
(
(I − Ĝ(jω))(I − Ĝ(jω))∗

−(I + Ĝ(jω))(I + Ĝ(jω))∗
)
(I + Ĝ(jω))−∗

= −2(I + Ĝ(jω))−1(Ĝ(jω) + Ĝ(jω)∗)(I + Ĝ(jω))−∗.

Thus,

(I + Ĝ(jω))−1(I − Ĝ(jω))(I − Ĝ(jω))∗(I + Ĝ(jω))−∗ ≤ I.

if and only if Ĝ(jω) + Ĝ(jω)∗ ≥ 0. That is,

sup
ω∈R̄

σ̄((I + Ĝ(jω))−1(I − Ĝ(jω))) ≤ 1

if and only if Ĝ(jω)+Ĝ(jω)∗ ≥ 0 for all ω ∈ R̄. The former
inequality is equivalent to ∥(I+G)−1(I−G)∥L2 ≤ 1. This
concludes the proof. 2

Remark 2. Clearly, the lemma also holds when the in-
equalities are strict; i.e. G is input strictly passive if and
only if ∥(I+G)−1(I−G)∥L2 < 1. This immediately leads to
the following equivalent relationships: PI = G and P = Ḡ,
where

G := {G : G is FD LTI, stable, (I +G)−1 is stable, and

∥(I +G)−1(I −G)∥L2 < 1}
and

Ḡ := {G : G is FD LTI, stable, (I +G)−1 is stable, and

∥(I +G)−1(I −G)∥L2 ≤ 1}.

Lemma 1 establishes that any passive system induces a
system whose gain is smaller than one. The next lemma
shows that the opposite is also true.

Lemma 2. Consider a stable FD LTI system G. It holds
that ∥G∥ ≤ 1 (< 1) and (I +G)−1 is stable if and only if
(I −G)(I +G)−1 is (input strictly) passive.

Proof. The proof follows from Lemma 1 and Remark 1
by observing that H = (I − G)(I + G)−1 if and only if
G = (I +H)−1(I −H). 2

The next lemma is the FD LTI version of the well-known
small gain theorem. It is included here for the sake of
completeness.

Lemma 3. Consider the feedback interconnected system
[G1, G2] as shown in Fig. 1, where G1 and G2 are FD LTI
and stable. Let γ > 0. Then [G1, G2] is

(a) stable for all G2 satisfying ∥G2∥ < 1/γ if and only if
∥G1∥ ≤ γ.

(b) uniformly stable over all G2 satisfying ∥G2∥ ≤ 1/γ if
and only if ∥G1∥ < γ.

(c) uniformly stable over all G2 satisfying ∥G2∥ < 1/γ if
and only if ∥G1∥ < γ.

Proof. The proof of the necessity of (a) and (b) can be
found in [Zhou et al. 1996, Theorem 9.1], where an explicit
construction of a destabilizing G2 is provided when the
conditions are violated. For the necessity of (c), one can
use the same construction ofG2 in (b), and then let {αi} be
a sequence of positive numbers that converges to 1 from
below. It then follows that ∥αiG2∥ < 1/γ for all i and
∥[G1, αiG2]∥ → ∞ as i → ∞, which means [G1, G2] is not
uniformly stable over all G2 satisfying ∥G2∥ < 1/γ.

The sufficiency proof of (a) can be found in [Zhou et al.
1996, Theorem 9.1]. We note that even though the unifor-
mity stated in (b) and (c) is not discussed in Theorem
9.1 of [Zhou et al. 1996], the proof clearly shows that
the small gain condition stated in (b) or (c) implies that
∥(I − G2G1)

−1∥ is bounded by γ/(γ − ∥G1∥) < ∞. This
in turn implies that ∥[G1, G2]∥ is upper bounded by some
positive constant for all G2 satisfying ∥G2∥ ≤ 1/γ. 2

4. MAIN RESULTS: CONVERSE PASSIVITY
THEOREMS

In this section, we derive the main results of this
manuscript. First we show that passivity is necessary for
robust stability over the set of input strictly passive sys-
tems.

Theorem 1. Consider the feedback interconnected system
[G1, G2] shown in Figure 1, where Ĝ1, Ĝ2 ∈ RH∞. The
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system [G1, G2] is robustly stable for all input strictly
passive G2 if and only if −G1 is passive.

Proof. Sufficiency is well-known in the literature; see
[Green and Limebeer 1995, van der Schaft 2017]. For
necessity, suppose −G1 is not passive and thus for some
ω̃,

−(Ĝ1(jω̃) + Ĝ1(jω̃)
∗) ̸≥ 0.

We consider two possible scenarios. First, if I − Ĝ1(jω̃)
is not invertible, by Remark 1 we see that [G1, I] is not
stable. Note that the identity system is input strictly
passive; therefore, we have found a strictly passive system
G2 such that [G1, G2] is not stable.

If I − Ĝ1(jω̃) is invertible, let

M = −(I − Ĝ1(jω̃))
−1(I + Ĝ1(jω̃)).

By Lemma 1, σ̄(M) > 1. By the construction described
in the proof of Theorem 9.1 of [Zhou et al. 1996], one can

find a ∆̂ ∈ RH∞ such that ∥∆∥ < 1 and I −M∆̂(jω̃) is

not invertible. Observe that since ∥∆∥ < 1, I + ∆̂(jω) is
invertible for all ω ∈ R̄. Also observe that (for notational
simplicity, we omit the ω̃-dependency in the following
derivation)

I −M∆̂ = (I − Ĝ1)
−1(I − Ĝ1 + (I + Ĝ1)∆̂)

= (I − Ĝ1)
−1(I + ∆̂− Ĝ1(I − ∆̂))

= (I − Ĝ1)
−1(I − Ĝ1(I − ∆̂)(I + ∆̂)−1)(I + ∆̂).

Thus

det(I −M∆̂) = 0 ⇔ det(I − Ĝ1(I − ∆̂)(I + ∆̂)−1) = 0.

Let G2 = (I − ∆)(I + ∆)−1. Note that G2 is stable, as
∥∆∥ < 1. Moreover, by Lemma 2, G2 is input strictly
passive. Hence, we have found an input strictly passive G2

such that [G1, G2] is not stable. 2

The same conclusion holds when G2 is output strictly
passive, as opposed to input strictly passive, which requires
a nonzero feedthrough term in the system.

Theorem 2. Consider the feedback interconnected system
[G1, G2] shown in Figure 1, where Ĝ1, Ĝ2 ∈ RH∞. The
system [G1, G2] is robustly stable for all output strictly
passive G2 if and only if −G1 is passive.

Proof. Sufficiency is well known in the literature; see [Bao
and Lee 2007, Green and Limebeer 1995, van der Schaft
2017]. Necessity follows from Theorem 1, since PI ⊂ PO

as noted in (1). 2

Moreover, the following sufficient condition can also be
established, by similar arguments via Theorems 1 and 2.

Theorem 3. Consider the feedback interconnected system
[G1, G2] shown in Figure 1, where Ĝ1, Ĝ2 ∈ RH∞. The
system [G1, G2] is robustly stable for all passive G2 if −G1

is output strictly passive.

Proof. For sufficiency, note that the stability of [G1, G2]

is equivalent to (I − Ĝ2Ĝ1)
−1 ∈ RH∞, which is in turn

equivalent to (I − Ĝ1Ĝ2)
−1 ∈ RH∞. Therefore, if −G1 is

passive and G2 is output strictly passive implies [G1, G2]
is stable as in Theorem 2, then [G1, G2] must be stable
when −G1 is output strictly passive and G2 is passive.

Remark 3. Given the premise that G1 and G2 are stable,
it is not yet clear whether the necessity direction of
Theorem 3 is true. That is, we do not know whether
[G1, G2] is robustly stable for all (FD, LTI, stable) passive
G2 implies that −G1 is output strictly passive. The
statement can be proven true if G1 and G2 are single-
input-single-output (SISO). To see this, note that [G1, G2]
is robustly stable for all passive G2 implies it is robustly
stable for all output strictly passive G2. It follows from
Theorem 2 that −G1 must be passive. Now suppose −G1

is not output strictly passive but is only passive. Then
−Ĝ1(jω̃) − Ĝ1(jω̃)

∗ = 0 for some ω̃. One can readily

verify that setting G2 = −G1/∥Ĝ1(jω̃)∥2 would destabilize

[G1, G2], as 1− Ĝ2(jω)Ĝ1(jω) is equal to 0 at ω = ω̃.

In the multiple-input-multiple-output setting, the state-
ment can also be proven true if we allow G2 to have
poles on the imaginary axis. In this case, the proof
of necessity is almost identical to that of Theorem 1, and
we note that the corresponding ∆ satisfies ∥∆∥ ≤ 1 and
G2 := (I − ∆)(I + ∆)−1 is passive but might have poles
on the imaginary axis.

The inclusion relationship PI ⊂ PO ⊂ P gives rise to the
following necessary or sufficient conditions, which follow
immediately from Theorems 1 to 3.

Corollary 1. If system [G1, G2] is robustly stable for all
passive G2, then −G1 is passive.

Corollary 2. If−G1 is output strictly passive, then [G1, G2]
is robustly stable for all output strictly passive, or input
strictly passive G2.

Corollary 3. If −G1 is input strictly passive, then [G1, G2]
is robustly stable for all passive, output strictly passive, or
input strictly passive G2.

On the other hand, we note that

• −G1 being output strictly passive is not necessary for
[G1, G2] to be robustly stable for all output strictly
passive G2.

• −G1 being output strictly passive is not necessary
for [G1, G2] to be robustly stable for all input strictly
passive G2.

• −G1 being input strictly passive is not necessary for
[G1, G2] to be robustly stable for all output strictly
passive G2.

• −G1 being input strictly passive is not necessary for
[G1, G2] to be robustly stable for all input strictly
passive G2.

• −G1 being input strictly passive is not necessary for
[G1, G2] to be robustly stable for all passive G2.

These statements simply follow from Theorems 1 and 2
and the fact that PI and PO are strictly contained in P;
for example, the zero system is output strictly passive but
not input strictly passive, and hence the statement of the
last three bullet points are true.

Lastly, we note that −G1 being passive is not sufficient
for [G1, G2] to be robustly stable over the set of all passive
G2. To see this, take

G1 =

[
0 I
−I 0

]
and G2 =

[
0 −I
I 0

]
.
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G2−G1

[

I I

−I I

]

M1 = (I −G1)
−1(I +G1)

M2 = −(I +G2)
−1(I −G2)

[

I I

−I I

]

−1

Fig. 2. Chain-scattering transformation on G1 and G2.

One can readily verify that bothG1 andG2 are passive and
I − G1G2 = 0. Therefore [G1, G2] is not even well-posed,
let alone stable.

Tables 1 summarizes all the robust stability conditions
discovered.

−G1 ∈ P −G1 ∈ PO −G1 ∈ PI

∀G2 ∈ P N�S (N)S �NS

∀G2 ∈ PO NS �NS �NS

∀G2 ∈ PI NS �NS �NS

Table 1. Conditions on robust stability of
[G1, G2] over a set of G2.

N /�N: the condition in the top row is (necessary / not necessary)
for feedback stability over the set in the first column.
S / �S: the condition in the top row is (sufficient / not sufficient) for
feedback stability over the set in the first column.
(N): See Remark 3.

By imposing uniformity on stability, one can derive the fol-
lowing necessary and sufficient condition using arguments
similar to those in the proof of Theorem 1 .

Theorem 4. Consider the feedback interconnected system
[G1, G2] shown in Figure 1, where Ĝ1, Ĝ2 ∈ RH∞. The
system [G1, G2] is uniformly stable for all passive G2 if and
only if −G1 is input strictly passive.

Proof. Again, it is well-known that when G2 is pas-
sive and −G1 is input strictly passive, the feedback sys-
tem [G1, G2] is stable. To see that [G1, G2] is uniformly
stable for all G2 with passivity, we note by the chain-
scattering transformation [Kimura 1997] the feedback sys-
tem [G1, G2] is equivalent to [M1,M2], where M1 = (I −
G1)

−1(I+G1) andM2 = −(I+G2)
−1(I−G2); see Figure 2

for an illustration. By Lemma 1 and Remark 2, we see that
∥M1∥ < 1. Thus by Lemma 3, we have that [M1,M2] is
uniformly stable for all M2 with ∥M2∥ ≤ 1, which is the
case because G2 is passive.

For necessity, suppose −G1 is not input strictly passive,
which leads to two possibilities: either −G1 is not passive
or −G1 is passive but not input strictly passive. If −G1 is
not passive, the proof of Theorem 1 has shown that there
exists an input strictly passive G2 such that [G1, G2] is
unstable. Suppose −G1 is passive but not input strictly
passive. Then again the stability of [G1, G2] with passive
G2 is equivalent to that of [M1,M2], where M1 = (I −
G1)

−1(I + G1) and M2 = −(I + G2)
−1(I − G2). By

the proof of Lemma 1, we see that ∥M1∥ = 1. Thus by
Lemma 3, [M1,M2] cannot be uniformly stable for all M2

with ∥M2∥ ≤ 1, which in turn implies [G1, G2] is not
uniformly stable for all passive G2. This completes the
proof. 2

Theorem 5. Consider the feedback interconnected system
[G1, G2] shown in Figure 1, where Ĝ1, Ĝ2 ∈ RH∞. The
system [G1, G2] is uniformly stable for all input strictly
passive G2 if and only if −G1 is input strictly passive.

Proof. Sufficiency follows from Theorem 4, since PI ⊂ P.
For necessity, suppose −G1 is not input strictly passive,
which leads to two possibilities: either −G1 is not passive
or −G1 is passive but not input strictly passive. If −G1 is
not passive, the proof of Theorem 1 has shown that there
exists an input strictly passive G2 such that [G1, G2] is
unstable. Suppose −G1 is passive but not input strictly
passive. Then again the stability of [G1, G2] with passive
G2 is equivalent to that of [M1,M2], where M1 = (I −
G1)

−1(I + G1) and M2 = −(I + G2)
−1(I − G2). By

the proof of Lemma 1, we see that ∥M1∥ = 1. Thus by
Lemma 3, [M1,M2] cannot be uniformly stable for all M2

with ∥M2∥ < 1, which in turn implies [G1, G2] is not
uniformly stable for all input strictly passive G2. 2

Again by the strict inclusion relationship PI ⊂ PO ⊂
P, the following necessary or sufficient conditions are
immediate consequences of Theorems 4 and 5.

Corollary 4. If −G1 is input strictly passive, then system
[G1, G2] is uniformly stable for all output strictly passive
G2.

Corollary 5. If system [G1, G2] is uniformly stable for all
passiveG2, then−G1 is passive, and in fact, output strictly
passive and input strictly passive.

Corollary 6. If system [G1, G2] is uniformly stable for all
output strictly passive G2, then −G1 is passive, and in
fact, output strictly passive and input strictly passive.

Corollary 7. If system [G1, G2] is uniformly stable for all
input strictly passive G2, then −G1 is passive, and in fact,
output strictly passive and input strictly passive.

To see Corollaries 5 to 7, note that [G1, G2] uniformly
stable for all passive G2 or for all output strictly passive
G2 implies that for all input strictly passive G2, as PI is
strictly contained in PO and P. Then by Theorem 5, −G1

must be input strictly passive, and hence it must be output
strictly passive and passive, again due to PI ⊂ PO ⊂ P .

Even although −G1 being output strictly passive is suffi-
cient for [G1, G2] to be robustly stable over the set of all
input strictly passive G2 (cf. Corollary 2), the condition
is not sufficient if we require uniform stability. To see
this, note that the zero system is output strictly passive,
and [0, G2] is not uniformly stable for all input strictly
passive G2. This is because [0, G2] is equal to G2, and G2

can be input strictly passive while having an arbitrarily
large gain. Moreover, this observation and the inclusion
relationship PI ⊂ PO ⊂ P immediately leads to the
following conclusions:

• −G1 being output strictly passive is not sufficient for
[G1, G2] to be uniformly stable for all passive, output
strictly passive, or even, input strictly passive G2.

• −G1 being passive is not sufficient for [G1, G2] to
be uniformly stable for all passive, output strictly
passive, or even, input strictly passive G2.

Tables 2 in the next page summarizes all the uniform
stability conditions discovered.
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−G1 ∈ P −G1 ∈ PO −G1 ∈ PI

∀G2 ∈ P N�S N�S NS

∀G2 ∈ PO N�S N�S NS

∀G2 ∈ PI N�S N�S NS

Table 2. Conditions on uniform stability of
[G1, G2] over a set of G2.

N /�N: the condition in the top row is (necessary / not necessary)
for uniform feedback stability over the set in the first column.
S / �S: the condition in the top row is (sufficient / not sufficient) for
uniform feedback stability over the set in the first column.

5. CONCLUSIONS

We derived several versions of converse passivity theorems
in this paper. The proofs are based on the renowned small-
gain theorem and thus constructive. Roughly speaking,
our main results state that if a feedback interconnection
is stable when one of the open-loop systems is an ar-
bitrary passive system, then the other open-loop system
must also exhibit the passivity property. The results have
implications on the field of robotics, where the stability of
a robot’s interaction with a passive but otherwise unknown
environment is of crucial significance.

The work of generalizing the converse results described in
this paper to the unifying framework of integral quadratic
constraints [Megretski and Rantzer 1997, Megretski et al.
2010] is currently ongoing and will be reported else-
where [Khong and Kao 2019]. It admits the potentials of
producing a useful list of converse robustness results, such
as those involving ‘mixed’ frequency-weighted small-gain
and passivity, as well as passivity indices [Kottenstette
et al. 2014] commonly employed to characterizing passivity
surplus/deficit and their tradeoff in ensuring robust closed-
loop stability.
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