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Abstract: The paper develops new results on the stability analysis of differential linear
repetitive processes. These processes are a distinct class of two-dimensional systems that arise
in the modelling of physical processes and also the existing systems theory for them can be used
to effect in solving control problems for other classes of systems, including iterative learning
control design. This paper uses a version of the Kalman-Yakubovich-Popov Lemma to develop
relaxed conditions for the stability property in terms of linear matrix inequalities. The main
result is reduced conservatism in applying tests for the stability property with an extension to
control law design. A numerical example to illustrate the application of the new results is also
given.
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1. INTRODUCTION

Linear repetitive processes repeat the same finite dura-
tion operation over and over again, where each repeti-
tion is termed a pass and the finite duration the pass
length Rogers et al. (2007). A physical example is metal
rolling operations see, e.g, Rogers et al. (2015) which, in
turn, cites the original work, where in essence deformation
of the workpiece takes place between two rolls, multiple
times until the desired shape of the workpiece is obtained
(or to within an acceptable tolerance). The notation for
variables in this paper is of the form yk(t), 0 ≤ t ≤ α
where y is the vector or scalar-valued variable under con-
sideration, α <∞ is the pass length and k ≥ 0 is the pass
number.

Let {yk}k denote the sequence of pass profiles generated
by a repetitive process, where the profile on each pass,
e.g., yi(t), acts as a forcing function on the dynamics
of yi+1(t) and so on. The result can be oscillations that
increase in amplitude with k. Moreover, this behaviour
cannot be regulated by applying feedback control action
on the current pass. Instead, recognising their 2D systems
structure, i.e., along the passes (t) and from pass-to-pass
(k), a control law must augment feedback control on the
current pass with feedforward control action from the
previous pass.

? This work is partially supported by National Science Centre in
Poland, grant No. 2017/27/B/ST7/01874.

A stability theory for linear repetitive processes has been
developed Rogers et al. (2007) using a setting that in-
cludes all linear time-invariant processes as special cases.
Given the unique control problem this theory requires
that a bounded initial pass profile y0 produces a bounded
sequence of pass profiles {yk}k, where the boundedness
property is defined in terms of the norm on the underlying
function space. This stability theory enforces the bounded-
input bounded-output property either over the finite and
fixed pass length or uniformly with respect to α, where the
former property is known as asymptotic stability and the
latter stability along the pass.

Stability along the pass, which can be analyzed mathe-
matically by considering α→∞, is the stronger property.
Moreover, asymptotic stability is a necessary condition
for stability along the pass. This stability theory has
been applied to problems in other areas of control the-
ory, e.g., iterative learning control (ILC) law design, see,
e.g. Paszke et al. (2016) and iterative algorithms for solving
nonlinear dynamic optimal control problems based on the
maximum principle Roberts (2002). Applications include
differential processes, where the along the pass dynamics
are governed by a linear ordinary differential equation and
also discrete dynamics where the along the pass dynamics
are governed by an ordinary difference equation. The finite
pass length and the structure of the boundary conditions
are the main differences with other classes of 2D linear
systems. See Rogers et al. (2007) for a full treatment of
this aspect, including repetitive process dynamics to which
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the existing theory for other classes of 2D linear systems
is not applicable even at the stability testing stage.

In the case of differential (and discrete) linear repetitive
processes, testing for stability can be problematic compu-
tational wise due to the need to determine the locations
of the eigenvalues of a frequency response matrix relative
to the unit circle in the complex plane and also makes
control law design less transparent. This paper develops
new stability tests by dividing the entire frequency domain
into several sub-intervals and then applying the Kalman-
Yakubovich-Popov (KYP) Lemma to each frequency sub-
interval and builds on preliminary research on this ap-
proach in Rogers et al. (2016); Boski et al. (2018). The
major outcome is reduced conservatism by the introduc-
tion of additional decision variables in the final linear
matrix inequality (LMI) forms. Also the new conditions
are extended to allow control law design and two numerical
examples are given to demonstrate the effectiveness of the
new results.

Throughout this paper the null and identity matrices,
respectively, with compatible dimensions are denoted by
0 and I. For a square matrix M , sym(M) denotes M +
MT and ρ(·) the spectral radius of its matrix argument.
Furthermore, M � 0 (M ≺ 0) means that the symmetric
matrix M is positive definite (negative definite). Finally,
(?) denotes a block entry in a symmetric matrix and the
superscript ∗ denotes the complex conjugate transpose of
a matrix. Finally, ⊗ denotes the Kronecker product.

The new results in this paper are formulated in terms of
LMIs and hence the following lemmas are useful in trans-
forming non-LMI formulations into LMI form, where the
first is the KYP lemma, the second the Projection Lemma
and the third is a version of the bounding inequality.

Lemma 1. Iwasaki and Hara (2005) Let A, B0 and Θ be
given. Then if det(jωI−A) 6= 0 for all ω ∈ [0,∞) the
following conditions are equivalent:

i) The frequency domain inequality[
(jωI−A)−1B0

I

]∗
Θ

[
(jωI−A)−1B0

I

]
≺0 (1)

holds ∀ω ∈ Ω where Ω is the frequency range, i.e. ω
belongs to a subset of real numbers denoted by Ω and
specified as in Table 1.

ii) There exist symmetric matrices Q � 0 and P such
that [

A B0

I 0

]∗
(Ψ⊗Q+ Φ⊗ P )

[
A B0

I 0

]
+Θ≺0, (2)

where

Ψ =

[
τ υ
υ∗ ς

]
, Φ =

[
0 1
1 0

]
. (3)

The values of τ , υ and ς for specified choices of ω ∈ Ω are
shown in Table 1 and LF, MF and HF denote, respectively,
the low, middle and high frequency ranges.

Table 1. Frequency ranges of interest

LF MF HF

Ω |ω| < ωl ω1 ≤ ω ≤ ω2 |ω| > ωh

τ −1 −1 1

υ 0 jω1+ω2
2

0

ς ω2
l −ω1ω2 −ω2

h

Lemma 2. Gahinet and Apkarian (1994) Given matrices
Γ = ΓT ∈ Rp×p and two matrices Λ, Σ of column
dimension p, there exists an unstructured matrix W that
satisfies

Γ + sym{ΛTWΣ} ≺ 0, (4)

if, and only if

Λ⊥
T ΓΛ⊥ ≺ 0, and Σ⊥

T ΓΣ⊥ ≺ 0, (5)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns
form, respectively, a basis of the nullspaces of Λ and Σ.
Hence ΛΛ⊥ = 0 and ΣΣ⊥ = 0.

2. STABILITY OF DIFFERENTIAL LINEAR
REPETITIVE PROCESSES

The differential linear repetitive processes considered in
this paper are described by the following state-space model
over 0 ≤ t ≤ α, k ≥ 0,

ẋk+1(t) =Axk+1(t) +B0yk(t) +Buk+1(t),

yk+1(t) =Cxk+1(t) +D0yk(t) +Duk+1(t),
(6)

where xk(t) ∈ Rn, uk(t) ∈ Rm and yk(t) ∈ Rp, respec-
tively, denote the process state, input and pass profile
(output) vectors at time instant t on pass k. The boundary
conditions for these processes are the state initial vector
on each pass and the initial pass profile. In the analysis of
this paper, no loss of generality arises from assuming that
xk+1(0) = 0, ∀k ≥ 0, and y0(t) = f(t), 0 ≤ t ≤ α, where
the entries in the vector f(t) ∈ Rp are known functions
of t and no further explicit mention of the boundary
conditions is made in the rest of this paper. See Rogers
et al. (2007) for other forms of boundary conditions for
repetitive processes that cannot be represented by 2D
systems models of the Roesser (Roesser, 1975) or Fornasini
Marchesini (Fornasini and Marchesini, 1978) forms.

The following result is the starting point for the analysis
in this paper.

Lemma 3. Rogers et al. (2007) A differential linear repet-
itive process described by (6) is stable along the pass if
and only if

i) ρ(D0) < 1,
ii) all eigenvalues of the matrix A lie in the open left-half

of the complex plane, and
iii) all eigenvalues of G(s) = C(sI − A)−1B0+D0, s =

jω, ∀ω ≥ 0, have modulus strictly less than unity.

The first two conditions in Lemma 3 pose no computa-
tional difficulties, where the first is the necessary and suf-
ficient condition for asymptotic stability. Also ρ(D0) < 1
describes the direct feedthrough from the previous pass
profile to the next. Moreover, asymptotic stability is in-
dependent of the current pass state dynamics and this
is a direct consequence of the finite pass length, over
which duration even an unstable example can only produce
a bounded output. In this respect, the second condition is
to be expected but, see Rogers et al. (2007), examples exist
that demonstrate this condition is also only necessary for
stability along the pass and the third condition is also
required. This condition requires frequency attenuation
of the previous pass profile dynamics over the complete
frequency range and condition i) enforces this property at
the start of each pass. Hence this stability theory has a well
defined physical basis.
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The key difficulty for stability testing and control law
design is condition iii), which is equivalent to

ρ (G(jω)) < 1, ∀ω ∈ [0,∞). (7)

Alternatively, the this last result requires, for each ω ∈
[0,∞), the existence of a R(jω) � 0 such that the following
Lyapunov inequality holds

G(jω)∗R(jω)G(jω)−R(jω) ≺ 0, ∀ω ∈ [0,∞).

but stability along the pass is then characterized by
a convex feasibility test over an infinite-dimensional space.
Furthermore, the function R(jω) depends on ω and hence
this inequality cannot be easily solved. However, simple
multipliers, e.g., R(jω) = R or R(jω) = I can be used
to avoid computational problems when multipliers with
direct dependence on ω are considered.

These simple multipliers allow application of the results
of Lemma 1 and this converts the problem to a finite-
dimensional convex optimization problem over constraints
in terms of LMIs that are comparatively easier to solve and
directly lead to the control law design algorithms. In the
remainder of this section, the results of Lemmas 1 and 2
are used to develop conditions for stability along the pass
of differential linear repetitive processes in the form of LMI
conditions. The starting point is to divide the complete
frequency range into N intervals such that

[0,∞) =

N⋃
i=1

[ωi−1, ωi), (8)

where ω0 = 0 and ωN =∞ and then the result of Lemma 1
is applied to each interval. Furthermore, this allows the
use of piecewise constant multipliers over a priori chosen
frequency ranges and the following new result can be
established.

Theorem 4. Suppose that the entire frequency range is
arbitrarily divided into N different frequency intervals as
given in (8). Then, a differential linear repetitive process
described by (6) is stable along the pass if there exist
matrices S � 0, P2i � 0, Qi � 0 and a symmetric P1i

such that the following LMIs

[I A](Φ⊗ S)[I A]T ≺ 0, (9)[
A B0

I 0
0 I

]TΥ1i

[
0

CTP2iD0

]
(?) DT

0 P2iD0−P2i

[A B0

I 0
0 I

]
≺0, (10)

where

Υ1i =(Ψi ⊗Qi+Φ⊗ P1i)+

[
0 0
0 CTP2iC

]
are feasible for all i = 1, . . . , N where τi, υi and ςi are
specified in Table 2

Table 2. Values of τi, υi and ςi

i 1 1 < i < N N

τi −1 −1 1

υi 0 j
ωi−1+ωi

2
0

ςi ω2
0 −ωi−1ωi −ωN−1

Remark 1. The entries in Table 2 are those in Table 1 but
in this case they also depend on the interval number i,
which takes values from 0 to N as in (8).

Proof. Suppose that there exist matrices S � 0, P2i � 0,
Qi � 0 and P1i for all i = 1, . . . , N, such that the LMIs (9)-
(10) are feasible. Also, feasibility of (9)-(10) implies that

DT
0 P2iD0−P2i≺0, AS+SAT ≺0.

Equivalently, conditions i) and ii), respectively, of Lemma 3
hold. Next, by routine manipulations each LMI in (10) can
be rewritten as[

A B0

I 0

]T
(Ψ⊗ P1i+Φi ⊗Qi)

[
A B0

I 0

]
+

[
C D0

0 I

]T
(Π⊗P2i)

[
C D0

0 I

]
≺0,

(11)

where Φ is given in (3), Π = diag{1,−1} and Ψi is of the
form (3), where τ , υ and ς, respectively, are replaced by
τi, υi and ςi. Direct application of the result of Lemma 1
to each frequency interval with the choice of piecewise
constant matrices P1i, P2i � 0, Qi � 0 ∀i = 1, . . . , N
gives [

G(jω)
I

]∗
(Π⊗ P2i)

[
G(jω)
I

]
≺ 0, (12)

where G is defined by iii) in Lemma 3. Moreover, (12) can
be written as

G(jω)∗P2iG(jω)− P2i ≺ 0,

where the existence of P2i � 0 directly implies that
ρ(G(jω)) < 1, ∀ω ≥ 0, i.e., feasibility of (10) guarantees
that condition iii) of Lemma 3 holds and the proof is
complete.

In the case of i = 0 (the low frequency range starting
from ω = 0, i.e. ω0 = 0) then, following the development
in Iwasaki and Hara (2005), the matrix Ψi in (11) has to
be chosen from the second column (i = 1) in Table 2. Also,
for i = N (the high frequency range ending with ω = ∞,
i.e. ωN =∞) the matrix Ψi in (11) has to be chosen from
last column in Table 2.

Application of this last result requires a systematic method
to specify the number of frequency ranges and also the
range of frequencies each contains. Moreover, increasing
the number of ranges makes the condition less conservative
and as N → ∞ the necessary and sufficient condition is
approached.

Remark 2. Setting Ψ = 0 recovers the standard LMI-
based stability along the pass result given in Rogers et al.
(2007).

3. NOVEL LMI-BASED CONDITIONS FOR
STABILITY ALONG THE PASS

The conditions of Theorem 4 can be improved, i.e., less
conservativeness, by introducing additional slack matrix
variables. To proceed, introduce the notation

A=

[
A B0

C D0

]
, Γ11i =

[
τiQi 0

0 0

]
, Γ22i =

[
ςiQi 0

0 −P2i

]
.

Then the theorem established next reformulates the re-
sults of Theorem 4 to give new LMI-based conditions for
stability along the pass.

Theorem 5. Suppose that the entire frequency range is
arbitrarily divided into N possible different frequency
intervals as in (8). Then, a differential linear repetitive
process described by (6) is stable along the pass if there
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exist matrices P2i � 0, Qi � 0, S � 0, F1i, F2i, F3i, W1,
W2, W3 and a symmetric P1i such that the LMIs (9) and Γ11i−sym{W1} (?) (?)

Γ21i+ATWT
1 −W2 Γ22i+sym {W2A} (?)

F30i−W3 −FT
12i+W3A P2i−sym{F3i}

≺0,

(13)

where

Γ21i =

[
P1i+υ

∗
iQi F1i

0 F2i

]
, F12i =

[
F1i

F2i

]
, F30i =[0 F3i]

are feasible for all i = 1, . . . , N − 1.

Proof. Assume that the LMIs defined in (9) and (13) are
feasible for all i = 1, . . . , N . Then it is immediate that the
feasibility of (9) ensures the stability of the state matrix
A. Next, the LMIs in (13) can be rewritten as

Γi+sym

{[
I 0 0
0 I 0
0 0 I

][
W1

W2

W3

]
[−I A 0]

}
≺0, (14)

where

Γi =

Γ11i ΓT
21i FT

30i
Γ21i Γ22i −F12i

F30i −FT
12i P2i − sym{F3i}

 .
Introduce the matrices

Λ =

[
I 0 0
0 I 0
0 0 I

]
,W =

[
W1

W2

W3

]
, Σ = [−I A 0]

and then (14) can be reformulated by application of
Lemma 2 as the second inequality in (5), i.e.

Σ⊥
T ΓΣ⊥ ≺ 0, (15)

where by construction the matrix Σ⊥ is

Σ⊥ =

[A 0
I 0
0 I

]
.

Since Λ = I then Λ⊥ = 0 and hence the first inequality
in (5) holds. Furthermore, after some routine matrix
manipulations the inequality (15) can be rewritten as

Γ1i +sym

{[
I 0 0
0 I 0
0 0 I

][
F1i

F2i

F3i

]
[C D0 −I]

}
≺0, (16)

where

Γ1i =

τiATQiA+ςiQi+sym {P1iA+υ∗iQiA}
τiB

T
0 QiA+υiB

T
0 Qi+BT

0 P1i

0

τiA
TQiB0+υ∗iQiB0+P1iB0 0
τiB

T
0 QiB0 − P2i 0

0 P2i

 ≺0

and by Lemma 2, feasibility of (16) implies that the
inequality

ΣT
1⊥

Γ1Σ1⊥ ≺ 0

must hold where

Σ1⊥ =

[
I 0
0 I
C D0

]
.

Finally, this last inequality is equivalent to (10) and by
Theorem 4 stability along the pass is ensured.

4. CONTROL LAW DESIGN

In this section, the stability results of the previous section
are extended to the design of a control law with the
structure

uk+1(t) = K1xk+1(t) +K2yk(t), (17)

where K1 and K2 are the control law matrices to be found.
Application of this control law results in the controlled
process state-space model

ẋk+1(t)=(A+BK1)xk+1(t)+(B0+BK2)yk(t),

yk+1(t) =(C+DK1)xk+1(t)+(D0+DK2)yk(t).
(18)

In addition to stability, the control law should also satisfy
some specifications on the transient behaviour along the
passes, e.g., fast and well-damped transient response and
reasonable (implementable) control law gains, where the
former requirement is closely related to the locations of
the eigenvalues of A+BK1. In this section, the problem
solved is how to place the eigenvalues of this matrix to a
subregion of the open left-half of the complex plane, where
the choice of this region is a matter for judgement based
on knowledge of the particular application considered.

Suppose that the region of interest is the interior of the
circle of radius r > 0 with center at c denoted by C(c, r),
i.e.,

C(c, r) := {x+ jy ∈ C : |x+ jy − c| < r} .
To guarantee that the interior of this circle is located in
open the left-half of the complex plane requires c < 0 and
|c| > r. Let λ = −ζωn ± jωd be a pair of eigenvalues of
A+BK1, where 0 < ζ < 1 is the damping ratio, ωn is the

undamped natural frequency, and ωd := ωn

√
1− ζ2 is the

damped natural frequency. Further, suppose that each λ
is placed in C(c, r). Then

ζ >

√
1−

(r
c

)2
, ωd < r, −c− r < ωn < −c+ r.

The LMI formulation for the poles of A+BK1 to lie in the
region C(c, r) is characterized as the following inequality,
which is an extension of the LMI (9).[

(A+BK1)T I
]([ 1 −c
−c |c|2−r2

]
⊗ S

)[
A+BK1

I

]
≺0, (19)

where S � 0 is a matrix variable, see again LMI (9).

Summarizing, the aim is to develop LMI-based results that
enable the computation of the control law matrices of (17)
for chosen frequency partitioning and all eigenvalues of
A + BK1 placed in the circle of radius r with center at
(−c, 0). To proceed, introduce the following notation

B =

[
B
D

]
, K = [K1 K2]

and then the results of the previous section can be directly
used to develop control law design algorithms.

Theorem 6. Suppose that a control law of the form (17) is
applied to a differential linear repetitive process described
by (6). Suppose also that the entire frequency range is
arbitrarily divided into N different frequency intervals as
in (8). Then the resulting controlled process (18) is stable
along the pass and all eigenvalues of A+BK1 are located
in the circle of radius r with center at (−c, 0) if there exist

matrices P̂2i � 0, Q̂i � 0, Ŝ � 0, F̂1i, F̂2i, F̂3i, Ŵ1, Ŵ2,
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N1, N2, a symmetric P̂1i and real scalars p and q such that
the following LMIs[

Ŝ −cŜ
(?) (|c|2−r2)Ŝ

]
+sym

{[
−ŴT

1

(AŴ1+BY1)T

][
qI −pI

]}
≺0, (20) Γ̂11i−sym{Ŵ} (?)

Γ̂21i+(AŴ+BN−Ŵ )T Γ̂22i+sym
{
AŴ+BN

}
F̂30i−Ŵ3 −F̂T

12i+[0 I]A
(?)
(?)

P̂2i−F̂3i−F̂T
3i

≺0,

(21)

where the pair of scalars p and q satisfies p2 − 2cpq +
q2(|c|2−r2) < 0 and

Ŵ =diag{Ŵ1, Ŵ2}, Ŵ3 =[0 Ŵ2], N=[N1 N2],

Γ21i =

[
P̂1i+υ

∗
i Q̂i F̂1i

0 F̂2i

]
, Γ̂11i =

[
τiQ̂i 0

0 0

]
, Γ̂22i =

[
ςiQ̂i 0

0 −P̂2i

]
are feasible for all i = 1, . . . , N − 1. Also, if these LMIs
are feasible, the required control law matrices K1 and K2

of (17) can be calculated as

[K1 K2] = NŴ−1. (22)

Proof. Suppose that the LMIs in (20) and (21) hold.
Then a feasible solution of these inequalities implies that
P̂2i � 0, Q̂i � 0, Ŝ � 0 and the matrices Ŵ1 and Ŵ2 are

nonsingular. Next, let W1 = diag
{
Ŵ−11 , Ŵ−11

}
; then pre-

and post-multiplying (20) by WT
1 and W1, respectively,

results in a version of the first inequality of Lemma 2 where

Γ=

[
S −cS
−cS (|c|2−r2)S

]
,Λ=

[
−I (A+BK1)T

]
,Σ=[qI −pI]

and K1 = N1Ŵ1, S = Ŵ−T1 ŜŴ−11 . Since ΣT
⊥ΓΣ⊥ ≺ 0

holds for any p, q satisfying p2 − 2cpq + q2(|c|2−r2) < 0
then the equivalence between (20) and (19) follows from
Lemma 2.

Next, apply the congruence transformation specified by

diag
{
Ŵ−1, Ŵ−1, Ŵ−12

}
to (21). Setting W1 = W2 =

Ŵ−1, Qi = Ŵ−T1 Q̂iŴ
−1
1 , P1i = Ŵ−T1 P̂1iŴ

−1
1 , P2i =

Ŵ−T2 P̂2iŴ
−1
2 , F1i = Ŵ−T1 F̂1iŴ

−1
2 , F2i = Ŵ−T2 F̂2iŴ

−1
2

and F3i = Ŵ−T2 F̂3iŴ
−1
2 transforms the LMI (21) into

a version of (13) for the process given by (18). Finally, by
employing the same steps used as those in proving (21),
it follows that feasibility of (20) implies feasibility of (9).
Therefore the controlled process is stable along the pass
and the proof is complete.

Remark 3. Comparing Theorems 5 and 6, it is immediate
that slack matrix variables W1 and W2 must be the same,
i.e. W1 = W2 in control law design. Moreover, these matrix
variables must be block diagonal and this may introduce
a level of conservatism into the design.

Remark 4. The design conditions (21) are LMIs that can
be easily and effectively solved via numerical software. In
addition, optimal values of the scalar parameters p and q
can be sought to reduce the conservatism of the solutions.

5. SIMULATION BASED CASE STUDY

As an illustrative example of the new results in this paper,
the design of the control law (17) for a metal rolling

process is considered. Following Rogers et al. (2007), the
(simplified) state space model of the metal rolling process
written in the form of (6) is

A =

[
0 1
−a0 0

]
, B0 =

[
0

−b0 + a0b2

]
, B =

[
0
c0

]
,

C = [1 0] , D0 = −b2, D = 0

and

a0 =
α1α2

M(α1+α2)
, b0 =

−α1α2

M(α1+α2)
,

b2 =
−α2

α1+α2
, c0 =

−α1

M(α1+α2)
,

where α1 = 600N/m is the stiffness of the adjust-
ment mechanism spring, α2 = 2000N/m is the hardness
of the metal strip and M = 100kg denotes the lumped
mass of the roll-gap adjusting mechanism. By choosing
the above parameter values the state-space model matrices
of (6) are[

A B B0

C D D0

]
=

 0 1 0 0
−4.6154 0 −0.0023 1.0651

1 0 0 0.7692

 .
This repetitive process is unstable along the pass since
condition iii) of Lemma 3 is not satisfied and hence the
LMIs in (13) are not feasible for any frequency partition-
ing. The plot of |ρ(G(jω))| is given in Fig. 1 confirms that
|ρ(G(jω))| > 1 for some frequencies.

10-1 100 101

Frequency (rad/s)

-150

-100

-50

0

50

100

150

(G
(j

))
 (

dB
)
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Fig. 1. Plot of |ρ(G(jω))| for the nominal model.

Assume now that the entire frequency range [0,∞) is
arbitrarily divided into 4 frequency intervals, which are
depicted with dashed lines in Figures 1 and 2

[0, 1.5) ∪ [1.5, 2.3) ∪ [2.3, 4) ∪ [4,∞) = [0,∞).

Hence, ω0 = 0rad, ω1 = 1.5rad, ω2 = 2.3rad, ω3 = 4rad
and ω4 = ∞. Then executing the design procedure given
in Theorem 6 for p = −11, q = 5 and assuming all
eigenvalues of A+BK1 to be located in the circle of radius
3 with center at (−4, 0) gives a controlled process that is
stable along the pass. Moreover, based on the solution of
the LMIs (20), (21) and using (22) the following control
law matrices are obtained

K1 = 103 × [−0.0606 1.7996],K2 = 483.6303

and the eigenvalues of A+BK1 are {−2.0765 ± 0.4047j},
which lie within the region C(−4, 3). The stability along
the pass property is confirmed in Fig. 2 where it is seen
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that spectral radius of the controlled process is less than 1
in all frequency ranges, i.e., |ρ(GC(jω))|, ω ∈ [0,∞) where

GC(jω)=(C+DK1)(jωI−(A+BK1))−1(B0+BK2)+D0+DK2

and hence the design specifications are met. Note that
the design procedure developed in Boski et al. (2018)
fails to generate a feasible solution. This means that the
previous methods for computing the control law matrices
of (17) over finite frequency ranges fail but the new design
developed in this paper allows this computation. The
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dB
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Fig. 2. Spectral radius associated with the controlled
dynamics.

controlled dynamics were simulated over 20 passes where
the initial pass profile (k = 0) is chosen as

y0(t) = sin(2πt/10) + 0.5 sin(4πt/10), for 0 ≤ t ≤ 20.

Fig. 3 shows the pass profile values as a function of t and k
and confirms that the controlled dynamics are stable along
the pass.

Fig. 3. Response of the controlled process.

6. CONCLUSIONS

This paper has developed novel conditions for stability
along the pass and stabilization of differential linear repeti-
tive processes. These conditions are given in terms of LMIs
and therefore they are numerically trackable. The major

benefit of the new results in this paper is that stability
tests extend in a direct manner to give control law design
algorithms. The advantage over current results in this last
aspect is the avoidance of product terms between the state-
space model matrices and some Lyapunov/LMI decision
matrices. This decoupling has been achieved through the
use of slack matrix variables and therefore a reduction in
the conservatism of the stability tests is possible. More-
over, differential repetitive processes are of major interest
in terms of eventual application since there will be cases
where control law design in the analog domain, e.g., in
the iterative learning control area, is the preferred or only
possible setting. All of the new results in this paper are the
subject of ongoing research with the eventual aim of devel-
oping control laws for the case when there is uncertainty
associated with repetitive process models and/or control
law design in the presence of constraints on, e.g., the input
and/or output signals.
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