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Abstract: We propose a shared autonomy approach for implementing human operator decisions
onto an automated system during multi-objective missions, while guaranteeing safety and
mission completion. A mission is specified as a set of linear temporal logic (LTL) formulae.
Then, using a novel correspondence between LTL and reachability analysis, we synthesize a
set of controllers for assisting the human operator to complete the mission, while guaranteeing
that the system maintains specified spatial and temporal properties. We assume the human
operator’s exact preference of how to complete the mission is unknown. Instead, we use a data-
driven approach to infer and update the automated system’s internal belief of which specified
objective the human intends to complete. If, while the human is operating the system, she
provides inputs that violate any of the invariances prescribed by the LTL formula, our verified
controller will use its internal belief of the human operator’s intended objective to guide the
operator back on track. Moreover, we show that as long as the specifications are initially feasible,
our controller will stay feasible and can guide the human to complete the mission despite some
unexpected human errors. We illustrate our approach with a simple, but practical, experimental
setup where a remote operator is parking a vehicle in a parking lot with multiple parking options.
In these experiments, we show that our approach is able to infer the human operator’s preference

over parking spots in real-time and guarantee that the human will park in the spot safely.

Keywords: shared autonomy, linear temporal logic, reachability analysis, robotic missions,

safety, automated vehicles

1. INTRODUCTION

With the rapid advancement of automation technology,
there is an increasing interest in the trade-off between
consistent performance of automated systems and the hu-
man situational awareness. In particular, researchers have
proposed approaches for designing control systems that
appropriately respect both the automated control inputs
and decision-making of human operators, e.g., McRuer
(1980); Cao et al. (2008); Li et al. (2014).

In this paper, we propose a solution to this problem, which
we illustrate by the block diagram in Fig. 1. Namely, we
design a control approach that allows a human operator
(H) to make decisions and provide inputs to a verification
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system corresponding to a guiding controller (GC) that
infers the human’s intended task and computes a verified
input to implement on the plant (P). We break down
the presentation of our solution into two main parts: (1)
the synthesis of control sets that guarantee the mission is
completed, and (2) the development of a guiding controller
based on the control sets that allows a human operator
to freely make decisions while the system maintains the
specified invariances.

To synthesize our control sets, first, we use linear temporal
logic (LTL) to specify missions. As shown by Huth and
Ryan (2004) and Fainekos et al. (2005), using LTL formula
allows us to conveniently express time-related invariances
for automated systems. Furthermore, the work presented
in Guo et al. (2018) exemplifies the advantage of us-
ing temporal tasks for human-in-the-loop mixed-initiative
control. However, with LTL specified missions, Tabuada
and Pappas (2006); Tabuada (2009); Belta et al. (2017);
Kloetzer and Belta (2008) show that synthesizing controls
that guarantee that some specification is met is nontrivial.
Chen et al. (2018b) details a correspondence between
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reachable sets and signal temporal logic (STL) that allows
for control synthesis directly from STL specifications with
guarantees that the controller will satisfy the invariances
given by the STL formula. We propose a similar approach
for synthesizing control sets from LTL specifications.

There are several proposals for how to design guiding
controllers. In Alshiekh et al. (2018), the authors propose
an approach to learn optimal policies via reinforcement
learning while enforcing LTL specifications. They utilize
a shield, a similar notion to the guiding controller in our
paper, to monitor the actions from the learner and corrects
them only if the chosen action causes a violation of the
specification. We remark that the systems studied in Al-
shiekh et al. (2018) are finite-transition systems, whereas
in our work we consider discrete-time dynamical systems,
leading to different control synthesis approaches. Another
notable approach is given in Inoue and Gupta (2018),
which proposes one of the first frameworks where humans
are given a higher priority than the automated system
in the decision making process whereas the human’s di-
rect control of the automated system is “weakened”. The
designed controller provides a set of admissible control
inputs with enough degrees of freedom to allow the human
operator to easily complete her task. We take inspiration
from this approach for the design of our guiding controller.

The main contribution of this paper is to propose a guiding
controller that allows a human operator to provide control
inputs to a verification system that infers an LTL specified
objective the human intends to complete. To compute
the verified control input, we provide a result similar to
Chen et al. (2018b), but introduce an equivalent transition
system for LTL formulae that allows us to do control
synthesis using reachability analysis, giving us guarantees
that the system will follow the LTL specifications. Using
these equivalent transition systems, we are able to define
verified control sets that tell us what a human operator
is allowed and not allowed to do. Then, with the verified
control sets, we improve the approach in Guo et al. (2018)
by allowing the human to freely make decisions as long
as they do not violate invariances specified by the LTL
formula.

The remainder of the paper is organized as follows. In Sec-
tion 2, we outline our plant model and provide some pre-
liminaries on LTL. In Section 3, we introduce a motivating
example that we refer to throughout the paper and provide
the problem statement. In Section 4, we describe a control
set synthesis approach for LTL formula. In Section 5, we
formulate the guiding controller. In Section 6, we illustrate
the effectiveness of our approach with an experiment. In
Section 7, we conclude the paper with a discussion about
our work and future directions.

Notation. Let N denote the set of nonnegative integers
and R denote the set of real numbers. For some ¢,s € N
and ¢ < s, let N>, and N, denote the sets {r € N|r >
g} and {r € N | ¢ < r < s}, respectively. When <, >, <,
and > are applied to vectors, they are interpreted element-
wise. The indicator function of a set X is denoted by 1x(z),
ie, if z € X, 1x(z) = 1 and otherwise, 1x(z) = 0.
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Fig. 1. Guiding control framework. H: human decision-maker;
P: plant; GC: guiding controller; Z: inferring; CS: control set
synthesis; VS: verification synthesis.

2. PRELIMINARIES
2.1 Plant model

Consider a discrete-time dynamic control system

Te4+1 = f(l'ka ukvwk)a (1)
where z € R™, up € R™, w € R and f : R? x
R"™ x R™ — R" ., At each time instant k, the control
input wuy is constrained by a set U C R™ and the
disturbance wy belongs to a compact set W C R™>.An
infinite path s starting from zq is a sequence of states s =
XX ... TETp41 - - . such that VE € N, 21 = f(ag, ug, wi)
for some uy € U and wy, € W.

For a path s, the k-th state is denoted by s[k], i.e.,
s[k] = xp, the k-th prefix is denoted by s[..k], i.e.,
s[..k] = zq ...z, and the k-th suffix is denoted by s[k..],
ie., sk.] =xpxryr ...

Each atomic proposition p; is defined as a linear inequality
in R™:

[pi] £ {x eR™ | Cfx +d; < 0},C; € R d; € R™,
where n; is the number of inequalities in the ith atomic
proposition. AP is a finite set of atomic propositions, i.e.,

AP = {Pz‘}ﬁ\g}-

Given a path s = zox1 ... k241 . - ., a trace is a sequence
of sets P = Py Py, ... Py Py, ,, ..., where each set P, C
AP is defined as Py, = {p; € AP | z € [pi]}.

2.2 Linear temporal logic

An LTL formula is defined over a finite set of atomic
propositions AP and both logic and temporal operators.
The syntax of LTL can be described as:

pu=true|p € AP [ —¢ | o1 Apa | Op | p1Up2,
where () and U denote the “next” and “until” operators,
respectively. By using the negation operator and the
conjunction operator, we can define disjunction, @1V @9 =
—(—p1 A —3). And by employing the until operator, we
can define: (1) eventually, $¢ = true U ¢ and (2) always,
\:\gp = ﬂ<>ﬂ%0,
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Definition 2.1. (LTL semantics) For an LTL formula ¢
and a path s, the satisfaction relation s E ¢ is defined
as

sEpe AP pe Py,
sSEp& sk,

SE 1 Nps & sE 1 AsE g,
SEp1Vps & skE @ VsE s,
sEQp e s[l.]F g,

sF p1Upy & Jj € Nosit. {S[J"] =2

Vi € N[O,j_l],s[i..] = @1,
sEQp < 3JjeN, st s[j..] F o,
sEOp & VjeN, st. s[j.]F o,

where Py, is the first element in the trace of the path s.

Definition 2.2. (Robust feasibility) Consider the system
(1). An LTL formula ¢ is robustly feasible from the initial
state xo if there exists a feedback control law wu(zy,k)
mapping the pairs (zg,k) into U such that the path
s = xox1 ... generated from the closed-loop system

1 = f(xg, ulzy, k), wy)
satisfies ¢ for all possible disturbances w, € W, k € N.

3. PROBLEM AND MOTIVATING EXAMPLE
3.1 Problem statement

Let us recall the shared autonomy scenario in Fig. 1, where
the plant P is described by the dynamics (1). We consider
a specification group consisting of a finite number of LTL
specifications, denoted by {goi}f\isl, for the plant P. Here,
Ny denotes the number of specifications, which are defined
a priori as a description of the tasks at hand. We assume
that the human’s preference over the specification group
is uncertain, e.g., time-varying or random. In Fig. 1, we
distinguish the state zj that is measured by the sensor
and transmitted to the guiding controller with the state xz‘
that the human operator perceives by herself. According
to the state ;zz?f at time instant k, the human operator H
can make decisions and provide inputs u?j to a guiding
controller, denoted by GC. This guiding controller filters
the human’s decision uz[ to a verified control command wuy
and send it for implementation at the plant P.

The main objective of this paper is to design the guiding
controller GC. More specifically, we will design three sub-
modules for GC as shown in Fig. 1: (1) a control set synthe-
sis module CS which provides a group of control sets, i.e.,
{UA}N=15 (2) an inferring module Z which updates the au-
tomated system’s belief by of which specified objective the
human intends to complete; and (3) a verification synthesis
module VS which provides a verified control command wuy,
for satisfying the LTL specified task whenever the human’s
decision does not satisfy the specification. The problem to
be solved is stated as follows.

Problem 3.1. Consider a plant P with dynamics (1) and
a group of LTL specifications {(pl}fvzl Design a guiding
controller GC in which
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Fig. 2. A parking situation where a remote human operator would
like to drive a vehicle to a narrow parking space P; or a broad
parking space Pa.

(i) if ¢; is robustly feasible from zj, the control set
synthesis module CS can design a nonempty control
set Uf}g C U such that ¢; is robustly feasible from
Tet1 = f(xp, ug, wg), Yuy € Uf}c and Ywg € W; and

(ii) the inferring module Z and the verification synthesis
module VS can guarantee recursive feasibility regard-
less of the human’s decisions.

3.2 Remote parking example

In this subsection, we will present an example that moti-
vates our work and allows us to illustrate the approach.
We consider a remote human operator parking example as
shown in Fig. 2, where a human operator would like to
drive a vehicle to a narrow parking space Py or a broad
parking space P2 in a parking lot. This remote human
operator and the vehicle correspond to H and P in Fig. 1,
respectively.

The vehicle is modeled as a two-dimensional double-
integrator affected by a bounded disturbance. After dis-
cretizing the model with a sampling period of 0.2 second,
it follows that

Tpy1 = Axy + Bug + wy,
where z, = [pﬁ,pZ]T7 Uk = [vZ,vZ]T, pi and py, vf
and v} denote the longitudinal and lateral position and
velocity, respectively. The control input w; is bounded
by U = {u € R? | [-0.3,-0.3]" < u < [0.3,0.3]"}
and the disturbance wy is bounded by W = {w € R? |
[<0.01,—0.01]" < w < [0.01,0.01]"}. We consider the
following atomic propositions, where we have written the
expressions in an implicit form based on the notation in
Fig. 2:

[p1] = {x €< ParkingLot >}, [p2] = {x € 01}, [p3] =
{z € 02}, [pa] = {z € O3}, [ps] = {z € 04}, [ps] = {z €
P1}, [pr] = {z € P2}, [ps] = {= € T1}, [po] = {x € Ta}.

We consider two specifications, which can be defined by
LTL formulae:

1 = Opy AO(=p2 A —=p3 A —=pg A —ps) A $Ope A Ops,

P2 = Op1 AO(=p2 A =p3 A =pa A =ps) A $Opr A Opy.
The specification @71 (or ¢2) requires that the vehicle
always stays within the set [p;] without colliding into
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any obstacles and eventually enters the set [pg] (or [p7]).
After entering [pg] (or [pr]), the vehicle stays there and
eventually enters the set [psg] (or [pg]). The set {p1, 2} is
the specification group.

The objective in this example is to design a guiding
controller GC to online assist the human operator H to
complete @1 or ps. More specifically, we will design (1)
a control synthesis module CS which can synthesize a
control set [U;.‘}C such that the vehicle can be eventually
parked to P; if ¢, is robustly feasible; (2) an inferring
module Z which infers the parking space the human
operator prefers; and (3) a verification synthesis module
CS which corrects the human’s decision u;g‘, if u;g‘ makes
both parking specifications ¢; and ¢ infeasible.

4. CONTROL SET SYNTHESIS

This section focuses on handling part (i) of Problem 3.1.
We first review some basic results of reachability analysis
and then provide a correspondence between temporal
operators and reachability analysis. Based on this, we
finally present control set synthesis under an LTL formula.

4.1 Reachability analysis

This subsection recalls the computation of backward
reachable sets and robust controlled invariant set for the
control system (1).

Definition 4.1. Consider two sets Q1,05 C R™ and the
system (1). The reachable set from ; to Qs in N steps is
defined as

R(Q1, Qo, N) = {xo €R"™ | 3uy, € U,Vk € N y_1], S-t.,

2 € o € 02,y € W, VK € N,y 1) |-

The reachable set from 1 to 25 is defined as

R(Q1, Q) = | R(Q1, 2, N).
NeN

For a set X C R"=, define the map BR : 28"" — 2R"*:

BR(X) = {x eR™ | Ju e, st. flz,u, W) C X},

where f(z,u, W) = {f(z,u,w) | w € W}. The set BR(X)
collects all states from which the set X is reachable for
any disturbance w € W. As shown in Bertsekas (1972),
the reachable set from 7 to Qs evolves as

R(Q21,Q, N) = BR(R(Q1,Q9, N — 1)) N Qy,
R(Q1,22,0) = Q.
Definition 4.2. A set 0y C R" is said to be a robust
controlled invariant set (RCIS) of the system (1) if for
any x € {2y, there exists a control input v € U such that
flz,u,w) € Qp, Yw € W.
Definition 4.3. For a set X C R a set RZ(X) C X is
said to be the maximal RCIS in X if each RCIS Qy C X
satisfies Q; C RZ(X).

For a set X C R"=, define

Qr+1 = BR(Qx) N Qk, Qo =X.

Then, it is shown in Blanchini and Miani (2007) that
RI(X) = ﬂkeN Qk-

Remark 4.1. There are many methods for computing
reachable sets, e.g., Chen et al. (2018a); Rakovi¢ et al.
(2006), or inner approximations of reachable sets, e.g.,
Althoff and Krogh (2014); Mitchell (2011). We remark that
inner approximations are also applicable for the algorithms
in this paper.

Next we propose a correspondence between temporal op-
erators and reachability analysis. Given an LTL formula
©, let us denote by S, C R"= the set of the initial states
from which ¢ is robustly feasible.

Proposition 4.1. Consider the LTL formulae ¢, ¢, and
2. The following statements hold: (i) “next”: S, =
BR(S,); (ii) “until”: Sy up, € R(Sy,,Sy,); (iil) “even-
tually”: S¢p, = R(R"*,S,); (iv) “always”: Sg, = RZ(S,).

The proof of the above proposition follows the definitions
of reachability analysis and temporal operators, see Chen
et al. (2018b) for similar derivations. Due to limitation of
space, we omit them here.

4.2 Control set synthesis under LTL

Before providing the procedure of control set synthesis,
let us recall the correspondence between Boolean oper-
ators and set operators: (i) “negation”: S, C Sg; (ii)
“conjunction”: Sy ap, € Sy, NSy, (ili) “disjunction”:
S%h\/tpz C Ssﬂl U Stp2'

Definition 4.4. A temporal labeled transition (TLT) of the
system (1) is a quadruple (X,7,—, N) with

Wz;

e a sequence of sets: X = Xp...X;...Xy with X; C
R™ VI € N[O,N]§
e a sequence of temporal operators T = 7g9...7;. ..
with T € {07 U7 <>7 D}7
e a sequence of transitions X; SN Xig1:
1)n = QO if Vg € X, Jup € U, such that
f(wo,up, wo) € Xiy1, Ywg € W;
(2) m = U if Voo € X;, 35 € N, such that Vk €
N[O,j—1]7 Jur € U, x, € X, and T € Xl-i—l,
Ywg € W,
(3) m = ¢ if Vap € X;, 35 € N, such that Vk €
N[O,j—1]7 Juy € U, Tj € X[.H, Yw, € W;
(4) =01 X; = X417 and Yz € X;, Jug € U, such
that f(xo,ug, wo) € Xj41, Vwy € W.

TN—-1

We show how to employ the reachability analysis to
construct an equivalent TLT for an LTL formula with finite
length through an example.

FEzxample 4.1. Let us continue the remote parking example
in Section 3.2. The specification ¢ can be transformed as
an equivalent TLT, denoted instead as (X%, T¥1, N¥1) =
(XF X XP, OO, —, 2), where

X" = [ps, XT" = R(RL([pe)), X5),

X§" = Rllpu] \ (U=a[pa), XT).

Similarly, 9 can also be transformed as an equivalent TLT
(Xez, TPz N¥2) = (X$2XT2X52, OO, —, 2), where
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X% = [pol, X{* = R(RZ([p7]), X5?),

X§? = R([pi] \ (U[pi]), X7?).
Lemma 4.1. Consider the control system (1). Assume that
a finite-length LTTL formula ¢ and a TLT (X%, T¥,—, N¥)
are equivalent in the sense of Definition 4.4. Given an
initial state xg, the formula ¢ is robustly feasible from
xo if and only if zo € X§.

Proof. This result follows from the definitions of reach-
able sets and RCISs, the correspondence between reacha-
bility analysis and temporal operators, and the correspon-
dence between Boolean operators and set operators, as
described above.

Remark 4.2. Note that with reachability analysis, we can
find the equivalent TLT for a class of LTL formulae. This
equivalence does not hold for all LTL formulae due to
limitations with the Boolean operations.

Assumption 4.1. Each LTL specification ¢; from the spec-
ification group has an equivalent TLT (X%, T¥i, — N¥i),
Vi=1,...,Ns.

At time instant k, the measured state path is s[..k] =
Zg...x. For the specification ¢;, we use l;; to denote

the position of s[..k] in the sequence X¥i. With the
initialization [;o = 0, l; evolves as
li,k—l -+ 1, if T € Xifk71+1,
lik = ¢ —1, if zy, ¢ X;pi,Vl or lj p—1 = —1,
lik—1 otherwise.
If l;; = —1, it means that the specification ¢; becomes

infeasible based on the current measured state xj,. We
can understand the dynamics of [;; as follows: if the
measured state x; moves forward along the sequence X%¢,
the position /;; is updated to l; ,—1 + 1; if x; no longer
belongs to any set of X¥i, [;; becomes —1; if xjp still
belongs to the same set as xj_1, then l;; equals to l; ;1.

We implement Algorithm 1 to synthesize the control
set Uz for each specification ;. If ¢; is infeasible, the
synthesized control set is empty (line 2). We use l;; = N#i
to determine if ¢; is completed or not. If [;; = N¥i, we
have two cases: if xj, is driven from the temporal operator
O, we set Ut = {u € U | f(xr,u, W) C X7} (line 6);
otherwise, we set U7 = U (line 8). If l;z # N¥i, we also
have two cases: if xy is driven by the temporal operator
O, we set U7} = {u € U | f(zg,u, W) C X7} (line 14);
otherwise, we set Uzt = {u € U | f(xg,u, W) C X7} (line
12). In practice, the computation of the control set U;‘,‘C is
manageable. The set Ug‘,ﬁ can be expressed in an implicit
form if the system is nonlinear or in an explicit form if the
system is linear, where the constraint sets are expressed
by polyhedra.

5. GUIDING CONTROLLER

This section will address the second part (ii) of Prob-
lem 3.1 based on the synthesized control sets. We do not
detail how a human actually performs a decision-making
process, but only assume that the human can synthesize
a control input uz‘ at each time instant k. Next, we

will show how to design the inferring module Z and the

Algorithm 1 Control Set Synthesis
Input: xy, lix, @i, and its corresponding TLT
(X‘Pi,T@i’g)’Nﬁoi)
Output: [U;‘}C
1: if l;; = —1 then

2: [Uf}c = Q);

3: else

4: if l;x = N¥' then

5. if 7,1 # O then

6: Uf}e =0

7 else

8 U;‘]‘C:{uEU|f($kaU7W)gXﬁ};
9: end if

10: else

11: if 7, # O then

12: Ut = {u e U| f(zg,u, W) CXF' };
13: else

14: Ut ={ueU| fzr,u, W) CXF 1
15: end if

16: end if

17: end if

verification synthesis VS, and then outline the algorithm
for our guiding controller GC.

5.1 Inferring module T

As mentioned before, we assume that the human’s pref-
erence is unknown for the guiding controller GC. We in-
troduce a specification belief by, which is a probability
distribution vector over the specification group. Each ele-
ment by (i) quantifies the preference of the human on the
specification ¢;. The inferring module Z is to update this
belief by in a data-driven manner. If the decision of the
human uz‘ satisfies the specification ¢;, i.e., u?f € U;‘}C,
we justify that the human has preference to choose this
specification at time instant k. We denote by a 0—1 vector
or € RY: the observation vector: if ult € Uz}, ox(i) = 1;
otherwise, oy (i) = 0. According to the Bayesian rule, the
specification belief is updated as

ok(i)bk(i)(VOI(U;‘}g) +€) .
SN 0 (i)bie (i) (VOL(U) + €)

Here, vol(:) denotes the set volume. We define vol(f)) =
—o0 and 0 X (—oo) = 0. In addition, e is a positive
constant to avoid the singular case when vol(Us;) < 0,
Vi. Intuitively, the larger the volume of Uﬁc is, the easier
for the operator to complete the specification ¢;, which in
turn means that the more likely the human chooses ;.

brya (i) = (2)

5.2 Verification synthesis module VS

After synthesizing the control sets {IU;‘}C i\il for all the
specifications, we use a verification synthesis scheme to
filter the human decision. If the decision of the human
satisfies some specification, the decision will be respected.
Otherwise, it will be corrected based on the specification
belief by, and the control sets {U7}~®,. Mathematically,
the control input wuy after verification synthesis is derived
as
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ult, if 3i s.t. ult € Ug,
H
= u—u
Uk argmin I k H, otherwise, (3)
u€UA i=1,...,N, br.(7)
where u}! is the original human decision. In (3), the belief

by (i) plays the role of weighing the distance between u}t

and Uﬁ« Larger by (i)’s increase the possibility of choosing
the projected control input of u? on the set Ug‘}g.

5.8 Guiding controller GC

Next we develop the algorithm for the guiding controller
gc.

Definition 5.1. The terminal conditions are a set of states
that are consistent with the specification group, i.e., each
state satisfies at least one specification ¢; and each spec-
ification has at least one state in this set. We denote the
terminal conditions by h(x) < 0, where h : R"% — RN
and V; denotes the number of terminal conditions.

Ezxample 5.1. For the remote parking example in Sec-
tion 3.2, the terminal condition corresponds to that the
state of the vehicle reaches [pg] or [pg], because then the
parking task is completed. Thus, we can write h(z) =1 —

l[Ps]U[PQ] (I)

Due to the presence of disturbances wyg, we implement
the robust guiding controller in a closed-loop manner.
As shown in Algorithm 2, at each time instant k, if
all the synthesized control sets Uf/‘c are empty, i.e., all
specifications are infeasible, the algorithm ends up with
output Infeasible (lines 11-13). Otherwise, the guiding
controller will mix the decision of the human u?j and the
synthesized control sets U;‘}g to synthesize the control input
ug (lines 8, 9, and 15). Meanwhile, the specification belief
by, is updated (line 16). If the terminal conditions h(zy) <
0 hold, the algorithm ends up with output Successful (lines
4-7).

Algorithm 2 Guiding Controller Algorithm

1: Initialization: Set k = 0 and TerInd = 1;
2: while TerInd do
3: Measure zg;
4: if h(zx) <0 then > Terminal conditions
5: TerInd = 0;
6: Output: Successful;
7 else
8: Human makes a decision u?;
9: Update [;; and synthesize U;‘}f for each ¢;;
10: > Algorithm 1
11: if Uy, =0, Vi € N v,] then
12: TerInd = 0;
13: Output: Infeasible;
14: else
15: Synthesize controller uy by (3);
16: Update specification belief b by (2);
17: > Guiding controller
18: Implement uy;
19: Update k =k + 1;
20: end if
21: end if
22: end while
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Fig. 3. The teleoperation station where a human operator can
control a remotely connected vehicle

The following theorem shows that Algorithm 2 stays
feasible.

Theorem 5.1. Consider the control system (1) and an
initial state xg. Suppose Assumption 4.1 holds and z( €
Xgi, Vi€ Nji, n,- Then, Algorithm 2 is feasible for all
k e N.

Proof. Algorithm 2 is feasible for all ¥ € N if and
only if there exists at least one feasible specification at
each time instant k. Let us define a sequence of sets
{Fi}ren, of which each set Fj collects the indexes of
feasible specifications at time instant k. If zo € X{7,
Vi € Ny n,j, Fo = {1,2,..., Ns}. From Algorithm 2, the
sets Fy, satisfy Fr11 C Fg, i.e., the sequence of sets {Fy, }ren
is nonincreasing. Furthermore, if the cardinality of Fy is 1
at some time instant k, it follows from Algorithm 1 that
the cardinality of IF; is 1 for all j > k. Thus, each set of
the sequence {Fy}ren is nonempty, by which we complete
the proof.

6. EXPERIMENTS

In this section, we detail our experimental setup and report
experimental results based on the remote parking example
described in Section 3.2.

6.1 Ezperimental setup

The experimental setup consists of three components: the
ego vehicle, a human operator interface, and the parking
lot environment, see Fig. 2.

The ego vehicle is represented by the Small-Vehicles-for-
Autonomy (SVEA) platform, which is a small robotic car
platform designed to evaluate automated vehicle-related
software stacks. For our experiment, we equip the SVEA
car with an ELP fish-eye camera to provide a wide-angle

1.2

0.7 /

-0.8

yL 03

—-1.3 L
-3 -2 -1 2.5

Fig. 4. Position trajectory when the human drives the vehicle to
the parking region Ps.
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Fig. 5. An example where a human remotely drives the vehicle to the parking region Py of Fig. 4. We highlight the position of the vehicle
by the red box and show in the bottom right corner of each snapshot the view of the human operator.

view for the human operator and a TP-Link 4G LTI
modem for streaming both the camera data to the huma

operator and the control from the human operator bac
to the SVEA car.

For the human operator interface, we place a human a

a teleoperation desk built to support the management ¢

remotely connected vehicles, see Fig. 3. A computer a

the teleoperation desk is connected to the internet an

is running a WebRTC-based app that handles the dat

transmission between the teleoperation station and th

SVEA car over a peer-to-peer connection. The human ca

provide input to the control system with a Logitech G2.
steering wheel and pedals. This interface subsumes the GC
block in Fig. 1.

The parking lot environment corresponds to the environ-
ment defined in Section 3.2, see Fig. 4. The free parking
spots and obstacles are all in the coordinate frame of our
Qualisys motion capture system.

6.2 Experimental results

The human operator is parking the vehicle in parking
region Ps, corresponding to specification @y derived as
a TLT in Example 4.1. The video of the experiment is
available at https://youtu.be/WhFNleym0J8.

We show snapshots of the vehicle’s position in Fig. 5 and
the corresponding trajectories in Fig. 4. We can see that
during the parking process, there is no collision between
the vehicle and the obstacles. Fig. 6 shows the control
inputs, where the dashed lines denote the control bounds.
The red and cyan regions represent the synthesized control
sets for ¢ and g, respectively. The blue lines are the
decision trajectories of the human driver while the black
lines are the implemented control trajectories under Algo-
rithm 1.

Note that at some time instants, the human’s decision
cannot satisfy any specification, thus the input is corrected

04 —— i “ 04 " ——u
i

Fig. 6. Velocity trajectory when the human drives the vehicle to
the parking region 2.
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02r

0 0.5 1 1.5 2 25 3 35 4 45
Time (s)

Fig. 7. Belief update when the human drives the vehicle to the
parking region 2.

according to the synthesized control sets. After 4.6 seconds
(at which p7 is about 1 m), the synthesized control set
for ¢y is empty since this specification becomes infeasible.
This can also be observed from Fig. 7, which shows the
belief update. Note that the beliefs in ¢; and @9 oscillate
from 1.2 seconds to 2.6 seconds since the volume of the
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control sets changes significantly during this time interval.
After that, the belief in o increases since the vehicle
passes the parking region P; and approaches the parking
region Py, which then becomes more likely.

In this example, we can observe the capabilities of our ap-
proach. Even though the system’s initial belief is neutral,
as the human operates the vehicle, the system updates its
belief appropriately. The guiding controller works together
with the human operator to complete the parking maneu-
ver.

7. CONCLUSION

In this paper, we presented a solution for robust human-
in-the-loop learning and control under uncertain temporal
specifications. With our framework, we give priority to
the human operator’s decision, allowing her to complete
one of several possible tasks. Our framework makes no as-
sumptions about the operator’s preference over the tasks.
Our system updates a data-driven belief of the operator’s
intent. We proposed a new method for synthesizing the
control sets for LTL formulae based on a correspondence
between LTL and reachability analysis. We proved recur-
sive feasibility of the method, showing that the controller
is always feasible and able to guarantee that the human
will not be able to drive the system to violate invariances,
despite her freedom to control the system. We illustrated
the effectiveness of the proposed method on a remote
parking example.

Future work includes the extension of TLTs to handle
general LTL formulae and more detailed experimental
evaluation of our approach.
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