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Abstract: We propose a shared autonomy approach for implementing human operator decisions
onto an automated system during multi-objective missions, while guaranteeing safety and
mission completion. A mission is specified as a set of linear temporal logic (LTL) formulae.
Then, using a novel correspondence between LTL and reachability analysis, we synthesize a
set of controllers for assisting the human operator to complete the mission, while guaranteeing
that the system maintains specified spatial and temporal properties. We assume the human
operator’s exact preference of how to complete the mission is unknown. Instead, we use a data-
driven approach to infer and update the automated system’s internal belief of which specified
objective the human intends to complete. If, while the human is operating the system, she
provides inputs that violate any of the invariances prescribed by the LTL formula, our verified
controller will use its internal belief of the human operator’s intended objective to guide the
operator back on track. Moreover, we show that as long as the specifications are initially feasible,
our controller will stay feasible and can guide the human to complete the mission despite some
unexpected human errors. We illustrate our approach with a simple, but practical, experimental
setup where a remote operator is parking a vehicle in a parking lot with multiple parking options.
In these experiments, we show that our approach is able to infer the human operator’s preference
over parking spots in real-time and guarantee that the human will park in the spot safely.

Keywords: shared autonomy, linear temporal logic, reachability analysis, robotic missions,
safety, automated vehicles

1. INTRODUCTION

With the rapid advancement of automation technology,
there is an increasing interest in the trade-off between
consistent performance of automated systems and the hu-
man situational awareness. In particular, researchers have
proposed approaches for designing control systems that
appropriately respect both the automated control inputs
and decision-making of human operators, e.g., McRuer
(1980); Cao et al. (2008); Li et al. (2014).

In this paper, we propose a solution to this problem, which
we illustrate by the block diagram in Fig. 1. Namely, we
design a control approach that allows a human operator
(H) to make decisions and provide inputs to a verification
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system corresponding to a guiding controller (GC) that
infers the human’s intended task and computes a verified
input to implement on the plant (P). We break down
the presentation of our solution into two main parts: (1)
the synthesis of control sets that guarantee the mission is
completed, and (2) the development of a guiding controller
based on the control sets that allows a human operator
to freely make decisions while the system maintains the
specified invariances.

To synthesize our control sets, first, we use linear temporal
logic (LTL) to specify missions. As shown by Huth and
Ryan (2004) and Fainekos et al. (2005), using LTL formula
allows us to conveniently express time-related invariances
for automated systems. Furthermore, the work presented
in Guo et al. (2018) exemplifies the advantage of us-
ing temporal tasks for human-in-the-loop mixed-initiative
control. However, with LTL specified missions, Tabuada
and Pappas (2006); Tabuada (2009); Belta et al. (2017);
Kloetzer and Belta (2008) show that synthesizing controls
that guarantee that some specification is met is nontrivial.
Chen et al. (2018b) details a correspondence between
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reachable sets and signal temporal logic (STL) that allows
for control synthesis directly from STL specifications with
guarantees that the controller will satisfy the invariances
given by the STL formula. We propose a similar approach
for synthesizing control sets from LTL specifications.

There are several proposals for how to design guiding
controllers. In Alshiekh et al. (2018), the authors propose
an approach to learn optimal policies via reinforcement
learning while enforcing LTL specifications. They utilize
a shield, a similar notion to the guiding controller in our
paper, to monitor the actions from the learner and corrects
them only if the chosen action causes a violation of the
specification. We remark that the systems studied in Al-
shiekh et al. (2018) are finite-transition systems, whereas
in our work we consider discrete-time dynamical systems,
leading to different control synthesis approaches. Another
notable approach is given in Inoue and Gupta (2018),
which proposes one of the first frameworks where humans
are given a higher priority than the automated system
in the decision making process whereas the human’s di-
rect control of the automated system is “weakened”. The
designed controller provides a set of admissible control
inputs with enough degrees of freedom to allow the human
operator to easily complete her task. We take inspiration
from this approach for the design of our guiding controller.

The main contribution of this paper is to propose a guiding
controller that allows a human operator to provide control
inputs to a verification system that infers an LTL specified
objective the human intends to complete. To compute
the verified control input, we provide a result similar to
Chen et al. (2018b), but introduce an equivalent transition
system for LTL formulae that allows us to do control
synthesis using reachability analysis, giving us guarantees
that the system will follow the LTL specifications. Using
these equivalent transition systems, we are able to define
verified control sets that tell us what a human operator
is allowed and not allowed to do. Then, with the verified
control sets, we improve the approach in Guo et al. (2018)
by allowing the human to freely make decisions as long
as they do not violate invariances specified by the LTL
formula.

The remainder of the paper is organized as follows. In Sec-
tion 2, we outline our plant model and provide some pre-
liminaries on LTL. In Section 3, we introduce a motivating
example that we refer to throughout the paper and provide
the problem statement. In Section 4, we describe a control
set synthesis approach for LTL formula. In Section 5, we
formulate the guiding controller. In Section 6, we illustrate
the effectiveness of our approach with an experiment. In
Section 7, we conclude the paper with a discussion about
our work and future directions.

Notation. Let N denote the set of nonnegative integers
and R denote the set of real numbers. For some q, s ∈ N
and q < s, let N≥q and N[q,s] denote the sets {r ∈ N | r ≥
q} and {r ∈ N | q ≤ r ≤ s}, respectively. When ≤, ≥, <,
and > are applied to vectors, they are interpreted element-
wise. The indicator function of a set X is denoted by 1X(x),
i.e., if x ∈ X, 1X(x) = 1 and otherwise, 1X(x) = 0.
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Fig. 1. Guiding control framework. H: human decision-maker;
P: plant; GC: guiding controller; I: inferring; CS: control set
synthesis; VS: verification synthesis.

2. PRELIMINARIES

2.1 Plant model

Consider a discrete-time dynamic control system

xk+1 = f(xk, uk, wk), (1)

where xk ∈ Rnx , uk ∈ Rnu , wk ∈ Rnw , and f : Rnx ×
Rnu × Rnw → Rnx . At each time instant k, the control
input uk is constrained by a set U ⊂ Rnu and the
disturbance wk belongs to a compact set W ⊂ Rnw .An
infinite path s starting from x0 is a sequence of states s =
x0x1 . . . xkxk+1 . . . such that ∀k ∈ N, xk+1 = f(xk, uk, wk)
for some uk ∈ U and wk ∈W.

For a path s, the k-th state is denoted by s[k], i.e.,
s[k] = xk, the k-th prefix is denoted by s[..k], i.e.,
s[..k] = x0 . . . xk, and the k-th suffix is denoted by s[k..],
i.e., s[k..] = xkxk+1 . . ..

Each atomic proposition pi is defined as a linear inequality
in Rnx :

[pi] , {x ∈ Rnx | CTi x+ di ≤ 0}, Ci ∈ Rnx×ni , di ∈ Rni ,

where ni is the number of inequalities in the ith atomic
proposition. AP is a finite set of atomic propositions, i.e.,
AP = {pi}NAi=1.

Given a path s = x0x1 . . . xkxk+1 . . ., a trace is a sequence
of sets P = Px0Px1 . . . Pxk

Pxk+1
. . ., where each set Pxk

⊆
AP is defined as Pxk

= {pi ∈ AP | xk ∈ [pi]}.

2.2 Linear temporal logic

An LTL formula is defined over a finite set of atomic
propositions AP and both logic and temporal operators.
The syntax of LTL can be described as:

ϕ ::= true | p ∈ AP | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2,

where © and U denote the “next” and “until” operators,
respectively. By using the negation operator and the
conjunction operator, we can define disjunction, ϕ1∨ϕ2 =
¬(¬ϕ1 ∧ ¬ϕ2). And by employing the until operator, we
can define: (1) eventually, ♦ϕ = true ∪ ϕ and (2) always,
2ϕ = ¬♦¬ϕ.
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Definition 2.1. (LTL semantics) For an LTL formula ϕ
and a path s, the satisfaction relation s � ϕ is defined
as

s � p ∈ AP ⇔ p ∈ Px0
,

s � ¬ϕ⇔ s 2 ϕ,
s � ϕ1 ∧ ϕ2 ⇔ s � ϕ1 ∧ s � ϕ2,

s � ϕ1 ∨ ϕ2 ⇔ s � ϕ1 ∨ s � ϕ2,

s �©ϕ⇔ s[1..] � ϕ,

s � ϕ1Uϕ2 ⇔ ∃j ∈ N s.t.

{
s[j..] � ϕ2,

∀i ∈ N[0,j−1], s[i..] � ϕ1,

s � ♦ϕ⇔ ∃j ∈ N, s.t. s[j..] � ϕ,

s � 2ϕ⇔ ∀j ∈ N, s.t. s[j..] � ϕ,

where Px0
is the first element in the trace of the path s.

Definition 2.2. (Robust feasibility) Consider the system
(1). An LTL formula ϕ is robustly feasible from the initial
state x0 if there exists a feedback control law u(xk, k)
mapping the pairs (xk, k) into U such that the path
s = x0x1 . . . generated from the closed-loop system

xk+1 = f(xk, u(xk, k), wk)

satisfies ϕ for all possible disturbances wk ∈W, k ∈ N.

3. PROBLEM AND MOTIVATING EXAMPLE

3.1 Problem statement

Let us recall the shared autonomy scenario in Fig. 1, where
the plant P is described by the dynamics (1). We consider
a specification group consisting of a finite number of LTL
specifications, denoted by {ϕi}Ns

i=1, for the plant P. Here,
Ns denotes the number of specifications, which are defined
a priori as a description of the tasks at hand. We assume
that the human’s preference over the specification group
is uncertain, e.g., time-varying or random. In Fig. 1, we
distinguish the state xk that is measured by the sensor
and transmitted to the guiding controller with the state xHk
that the human operator perceives by herself. According
to the state xHk at time instant k, the human operator H
can make decisions and provide inputs uHk to a guiding
controller, denoted by GC. This guiding controller filters
the human’s decision uHk to a verified control command uk
and send it for implementation at the plant P.

The main objective of this paper is to design the guiding
controller GC. More specifically, we will design three sub-
modules for GC as shown in Fig. 1: (1) a control set synthe-
sis module CS which provides a group of control sets, i.e.,
{UAik}Ns

i=1; (2) an inferring module I which updates the au-
tomated system’s belief bk of which specified objective the
human intends to complete; and (3) a verification synthesis
module VS which provides a verified control command uk
for satisfying the LTL specified task whenever the human’s
decision does not satisfy the specification. The problem to
be solved is stated as follows.

Problem 3.1. Consider a plant P with dynamics (1) and

a group of LTL specifications {ϕi}Ns
i=1. Design a guiding

controller GC in which

−3
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Fig. 2. A parking situation where a remote human operator would
like to drive a vehicle to a narrow parking space P1 or a broad
parking space P2.

(i) if ϕi is robustly feasible from xk, the control set
synthesis module CS can design a nonempty control
set UAik ⊆ U such that ϕi is robustly feasible from
xk+1 = f(xk, uk, wk), ∀uk ∈ UAik and ∀wk ∈W; and

(ii) the inferring module I and the verification synthesis
module VS can guarantee recursive feasibility regard-
less of the human’s decisions.

3.2 Remote parking example

In this subsection, we will present an example that moti-
vates our work and allows us to illustrate the approach.
We consider a remote human operator parking example as
shown in Fig. 2, where a human operator would like to
drive a vehicle to a narrow parking space P1 or a broad
parking space P2 in a parking lot. This remote human
operator and the vehicle correspond to H and P in Fig. 1,
respectively.

The vehicle is modeled as a two-dimensional double-
integrator affected by a bounded disturbance. After dis-
cretizing the model with a sampling period of 0.2 second,
it follows that

xk+1 = Axk +Buk + wk,

where xk = [pxk, p
y
k]
T

, uk = [vxk , v
y
k ]
T

, pxk and pyk, vxk
and vyk denote the longitudinal and lateral position and
velocity, respectively. The control input uk is bounded

by U = {u ∈ R2 | [−0.3,−0.3]
T ≤ u ≤ [0.3, 0.3]

T }
and the disturbance wk is bounded by W = {w ∈ R2 |
[−0.01,−0.01]

T ≤ w ≤ [0.01, 0.01]
T }. We consider the

following atomic propositions, where we have written the
expressions in an implicit form based on the notation in
Fig. 2:

[p1] = {x ∈< ParkingLot >}, [p2] = {x ∈ O1}, [p3] =
{x ∈ O2}, [p4] = {x ∈ O3}, [p5] = {x ∈ O4}, [p6] = {x ∈
P1}, [p7] = {x ∈ P2}, [p8] = {x ∈ T1}, [p9] = {x ∈ T2}.
We consider two specifications, which can be defined by
LTL formulae:

ϕ1 = 2p1 ∧2(¬p2 ∧ ¬p3 ∧ ¬p4 ∧ ¬p5) ∧ ♦2p6 ∧ ♦p8,
ϕ2 = 2p1 ∧2(¬p2 ∧ ¬p3 ∧ ¬p4 ∧ ¬p5) ∧ ♦2p7 ∧ ♦p9.

The specification ϕ1 (or ϕ2) requires that the vehicle
always stays within the set [p1] without colliding into
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any obstacles and eventually enters the set [p6] (or [p7]).
After entering [p6] (or [p7]), the vehicle stays there and
eventually enters the set [p8] (or [p9]). The set {ϕ1, ϕ2} is
the specification group.

The objective in this example is to design a guiding
controller GC to online assist the human operator H to
complete ϕ1 or ϕ2. More specifically, we will design (1)
a control synthesis module CS which can synthesize a
control set UAik such that the vehicle can be eventually
parked to Pi if ϕi is robustly feasible; (2) an inferring
module I which infers the parking space the human
operator prefers; and (3) a verification synthesis module
CS which corrects the human’s decision uHk , if uHk makes
both parking specifications ϕ1 and ϕ2 infeasible.

4. CONTROL SET SYNTHESIS

This section focuses on handling part (i) of Problem 3.1.
We first review some basic results of reachability analysis
and then provide a correspondence between temporal
operators and reachability analysis. Based on this, we
finally present control set synthesis under an LTL formula.

4.1 Reachability analysis

This subsection recalls the computation of backward
reachable sets and robust controlled invariant set for the
control system (1).

Definition 4.1. Consider two sets Ω1,Ω2 ⊆ Rnx and the
system (1). The reachable set from Ω1 to Ω2 in N steps is
defined as

R(Ω1,Ω2, N) =
{
x0 ∈ Rnx | ∃uk ∈ U,∀k ∈ N[0,N−1], s.t.,

xk ∈ Ω1, xN ∈ Ω2,∀wk ∈W,∀k ∈ N[0,N−1]

}
.

The reachable set from Ω1 to Ω2 is defined as

R(Ω1,Ω2) =
⋃
N∈N
R(Ω1,Ω2, N).

For a set X ⊆ Rnx , define the map BR : 2R
nx → 2R

nx
:

BR(X) =
{
x ∈ Rnx | ∃u ∈ U, s.t. f(x, u,W) ⊆ X

}
,

where f(x, u,W) = {f(x, u, w) | w ∈ W}. The set BR(X)
collects all states from which the set X is reachable for
any disturbance w ∈ W. As shown in Bertsekas (1972),
the reachable set from Ω1 to Ω2 evolves as

R(Ω1,Ω2, N) = BR(R(Ω1,Ω2, N − 1)) ∩ Ω1,

R(Ω1,Ω2, 0) = Ω2.

Definition 4.2. A set Ωf ⊆ Rnx is said to be a robust
controlled invariant set (RCIS) of the system (1) if for
any x ∈ Ωf , there exists a control input u ∈ U such that
f(x, u, w) ∈ Ωf , ∀w ∈W.

Definition 4.3. For a set X ⊆ Rnx , a set RI(X) ⊆ X is
said to be the maximal RCIS in X if each RCIS Ωf ⊆ X
satisfies Ωf ⊆ RI(X).

For a set X ⊆ Rnx , define

Qk+1 = BR(Qk) ∩Qk, Q0 = X.
Then, it is shown in Blanchini and Miani (2007) that
RI(X) =

⋂
k∈N Qk.

Remark 4.1. There are many methods for computing
reachable sets, e.g., Chen et al. (2018a); Raković et al.
(2006), or inner approximations of reachable sets, e.g.,
Althoff and Krogh (2014); Mitchell (2011). We remark that
inner approximations are also applicable for the algorithms
in this paper.

Next we propose a correspondence between temporal op-
erators and reachability analysis. Given an LTL formula
ϕ, let us denote by Sϕ ⊆ Rnx the set of the initial states
from which ϕ is robustly feasible.

Proposition 4.1. Consider the LTL formulae ϕ, ϕ1, and
ϕ2. The following statements hold: (i) “next”: S©ϕ =
BR(Sϕ); (ii) “until”: Sϕ1Uϕ2 ⊆ R(Sϕ1 ,Sϕ2); (iii) “even-
tually”: S♦ϕ = R(Rnx ,Sϕ); (iv) “always”: S2ϕ = RI(Sϕ).

The proof of the above proposition follows the definitions
of reachability analysis and temporal operators, see Chen
et al. (2018b) for similar derivations. Due to limitation of
space, we omit them here.

4.2 Control set synthesis under LTL

Before providing the procedure of control set synthesis,
let us recall the correspondence between Boolean oper-
ators and set operators: (i) “negation”: S¬ϕ ⊆ S̄ϕ; (ii)
“conjunction”: Sϕ1∧ϕ2

⊆ Sϕ1
∩ Sϕ2

; (iii) “disjunction”:
Sϕ1∨ϕ2

⊆ Sϕ1
∪ Sϕ2

.

Definition 4.4. A temporal labeled transition (TLT) of the
system (1) is a quadruple (X , T ,→, N) with

• a sequence of sets: X = X0 . . .Xl . . .XN with Xl ⊆
Rnx ,∀l ∈ N[0,N ];
• a sequence of temporal operators T = τ0 . . . τl . . . τN−1

with τl ∈ {©,U,♦,2};
• a sequence of transitions Xl

τl−→ Xl+1:
(1) τl = © if ∀x0 ∈ Xl, ∃u0 ∈ U, such that

f(x0, u0, w0) ∈ Xl+1, ∀w0 ∈W;
(2) τl = U if ∀x0 ∈ Xl, ∃j ∈ N, such that ∀k ∈

N[0,j−1], ∃uk ∈ U, xk ∈ Xl, and xj ∈ Xl+1,
∀wk ∈W;

(3) τl = ♦ if ∀x0 ∈ Xl, ∃j ∈ N, such that ∀k ∈
N[0,j−1], ∃uk ∈ U, xj ∈ Xl+1, ∀wk ∈W;

(4) τl = 2 if Xl = Xl+1 and ∀x0 ∈ Xl, ∃u0 ∈ U, such
that f(x0, u0, w0) ∈ Xl+1, ∀w0 ∈W.

We show how to employ the reachability analysis to
construct an equivalent TLT for an LTL formula with finite
length through an example.

Example 4.1. Let us continue the remote parking example
in Section 3.2. The specification ϕ1 can be transformed as
an equivalent TLT, denoted instead as (Xϕ1 , T ϕ1 , Nϕ1) =
(Xϕ1

0 Xϕ1

1 Xϕ1

2 ,♦♦,→, 2), where

Xϕ1

2 = [p8],Xϕ1

1 = R(RI([p6]),Xϕ1

2 ),

Xϕ1

0 = R([p1] \ (∪5i=2[pi]),Xϕ1

1 ).

Similarly, ϕ2 can also be transformed as an equivalent TLT
(Xϕ2 , T ϕ2 , Nϕ2) = (Xϕ2

0 Xϕ2

1 Xϕ2

2 ,♦♦,→, 2), where
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Xϕ2

2 = [p9],Xϕ2

1 = R(RI([p7]),Xϕ2

2 ),

Xϕ2

0 = R([p1] \ (∪5i=2[pi]),Xϕ2

1 ).

Lemma 4.1. Consider the control system (1). Assume that
a finite-length LTL formula ϕ and a TLT (Xϕ, T ϕ,→, Nϕ)
are equivalent in the sense of Definition 4.4. Given an
initial state x0, the formula ϕ is robustly feasible from
x0 if and only if x0 ∈ Xϕ0 .

Proof. This result follows from the definitions of reach-
able sets and RCISs, the correspondence between reacha-
bility analysis and temporal operators, and the correspon-
dence between Boolean operators and set operators, as
described above.

Remark 4.2. Note that with reachability analysis, we can
find the equivalent TLT for a class of LTL formulae. This
equivalence does not hold for all LTL formulae due to
limitations with the Boolean operations.

Assumption 4.1. Each LTL specification ϕi from the spec-
ification group has an equivalent TLT (Xϕi , T ϕi ,→, Nϕi),
∀i = 1, . . . , Ns.

At time instant k, the measured state path is s[..k] =
x0 . . . xk. For the specification ϕi, we use lik to denote
the position of s[..k] in the sequence Xϕi . With the
initialization li0 = 0, lik evolves as

lik =


li,k−1 + 1, if xk ∈ Xϕi

li,k−1+1,

−1, if xk /∈ Xϕi

l ,∀l or li,k−1 = −1,

li,k−1 otherwise.

If lik = −1, it means that the specification ϕi becomes
infeasible based on the current measured state xk. We
can understand the dynamics of lik as follows: if the
measured state xk moves forward along the sequence Xϕi ,
the position lik is updated to li,k−1 + 1; if xk no longer
belongs to any set of Xϕi , lik becomes −1; if xk still
belongs to the same set as xk−1, then lik equals to li,k−1.

We implement Algorithm 1 to synthesize the control
set UAik for each specification ϕi. If ϕi is infeasible, the
synthesized control set is empty (line 2). We use lik = Nϕi

to determine if ϕi is completed or not. If lik = Nϕi , we
have two cases: if xk is driven from the temporal operator
2, we set UAik = {u ∈ U | f(xk, u,W) ⊆ Xϕi

lik
} (line 6);

otherwise, we set UAik = U (line 8). If lik 6= Nϕi , we also
have two cases: if xk is driven by the temporal operator
©, we set UAik = {u ∈ U | f(xk, u,W) ⊆ Xϕi

lik+1} (line 14);

otherwise, we set UAik = {u ∈ U | f(xk, u,W) ⊆ Xϕi

lik
} (line

12). In practice, the computation of the control set UAik is
manageable. The set UAik can be expressed in an implicit
form if the system is nonlinear or in an explicit form if the
system is linear, where the constraint sets are expressed
by polyhedra.

5. GUIDING CONTROLLER

This section will address the second part (ii) of Prob-
lem 3.1 based on the synthesized control sets. We do not
detail how a human actually performs a decision-making
process, but only assume that the human can synthesize
a control input uHk at each time instant k. Next, we
will show how to design the inferring module I and the

Algorithm 1 Control Set Synthesis

Input: xk, lik, ϕi, and its corresponding TLT
(Xϕi , T ϕi ,→, Nϕi)

Output: UAik
1: if lik = −1 then
2: UAik = ∅;
3: else
4: if lik = Nϕi then
5: if τlik−1 6= 2 then
6: UAik = U;
7: else
8: UAik = {u ∈ U | f(xk, u,W) ⊆ Xϕi

lik
};

9: end if
10: else
11: if τlik 6=© then
12: UAik = {u ∈ U | f(xk, u,W) ⊆ Xϕi

lik
};

13: else
14: UAik = {u ∈ U | f(xk, u,W) ⊆ Xϕi

lik+1};
15: end if
16: end if
17: end if

verification synthesis VS, and then outline the algorithm
for our guiding controller GC.

5.1 Inferring module I

As mentioned before, we assume that the human’s pref-
erence is unknown for the guiding controller GC. We in-
troduce a specification belief bk, which is a probability
distribution vector over the specification group. Each ele-
ment bk(i) quantifies the preference of the human on the
specification ϕi. The inferring module I is to update this
belief bk in a data-driven manner. If the decision of the
human uHk satisfies the specification ϕi, i.e., uHk ∈ UAik,
we justify that the human has preference to choose this
specification at time instant k. We denote by a 0−1 vector
ok ∈ RNs the observation vector: if uHk ∈ UAik, ok(i) = 1;
otherwise, ok(i) = 0. According to the Bayesian rule, the
specification belief is updated as

bk+1(i) =
ok(i)bk(i)(vol(UAik) + ε)∑Ns

i=1 ok(i)bk(i)(vol(UAik) + ε)
. (2)

Here, vol(·) denotes the set volume. We define vol(∅) =
−∞ and 0 × (−∞) = 0. In addition, ε is a positive
constant to avoid the singular case when vol(UAik) ≤ 0,
∀i. Intuitively, the larger the volume of UAik is, the easier
for the operator to complete the specification ϕi, which in
turn means that the more likely the human chooses ϕi.

5.2 Verification synthesis module VS

After synthesizing the control sets {UAik}Ns
i=1 for all the

specifications, we use a verification synthesis scheme to
filter the human decision. If the decision of the human
satisfies some specification, the decision will be respected.
Otherwise, it will be corrected based on the specification
belief bk and the control sets {UAik}Ns

i=1. Mathematically,
the control input uk after verification synthesis is derived
as
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uk =


uHk , if ∃i s.t. uHk ∈ UAik,

argmin
u∈UA

ik
,i=1,...,Ns

‖u− uHk ‖
bk(i)

, otherwise,
(3)

where uHk is the original human decision. In (3), the belief
bk(i) plays the role of weighing the distance between uHk
and UAik. Larger bk(i)’s increase the possibility of choosing
the projected control input of uHk on the set UAik.

5.3 Guiding controller GC

Next we develop the algorithm for the guiding controller
GC.
Definition 5.1. The terminal conditions are a set of states
that are consistent with the specification group, i.e., each
state satisfies at least one specification ϕi and each spec-
ification has at least one state in this set. We denote the
terminal conditions by h(x) ≤ 0, where h : Rnx → RNt

and Nt denotes the number of terminal conditions.

Example 5.1. For the remote parking example in Sec-
tion 3.2, the terminal condition corresponds to that the
state of the vehicle reaches [p8] or [p9], because then the
parking task is completed. Thus, we can write h(x) = 1−
1[p8]∪[p9](x).

Due to the presence of disturbances wk, we implement
the robust guiding controller in a closed-loop manner.
As shown in Algorithm 2, at each time instant k, if
all the synthesized control sets UAik are empty, i.e., all
specifications are infeasible, the algorithm ends up with
output Infeasible (lines 11–13). Otherwise, the guiding
controller will mix the decision of the human uHk and the
synthesized control sets UAik to synthesize the control input
uk (lines 8, 9, and 15). Meanwhile, the specification belief
bk is updated (line 16). If the terminal conditions h(xk) ≤
0 hold, the algorithm ends up with output Successful (lines
4–7).

Algorithm 2 Guiding Controller Algorithm

1: Initialization: Set k = 0 and TerInd = 1;
2: while TerInd do
3: Measure xk;
4: if h(xk) ≤ 0 then � Terminal conditions
5: TerInd = 0;
6: Output: Successful;
7: else
8: Human makes a decision uHk ;
9: Update lik and synthesize UAik for each ϕi;

10: � Algorithm 1
11: if UAik = ∅, ∀i ∈ N[1,Ns] then
12: TerInd = 0;
13: Output: Infeasible;
14: else
15: Synthesize controller uk by (3);
16: Update specification belief bk by (2);
17: � Guiding controller
18: Implement uk;
19: Update k = k + 1;
20: end if
21: end if
22: end while

Fig. 3. The teleoperation station where a human operator can
control a remotely connected vehicle

The following theorem shows that Algorithm 2 stays
feasible.

Theorem 5.1. Consider the control system (1) and an
initial state x0. Suppose Assumption 4.1 holds and x0 ∈
Xϕi

0 , ∀i ∈ N[1,Ns]. Then, Algorithm 2 is feasible for all
k ∈ N.

Proof. Algorithm 2 is feasible for all k ∈ N if and
only if there exists at least one feasible specification at
each time instant k. Let us define a sequence of sets
{Fk}k∈N, of which each set Fk collects the indexes of
feasible specifications at time instant k. If x0 ∈ Xϕi

0 ,
∀i ∈ N[1,Ns], F0 = {1, 2, . . . , Ns}. From Algorithm 2, the
sets Fk satisfy Fk+1 ⊆ Fk, i.e., the sequence of sets {Fk}k∈N
is nonincreasing. Furthermore, if the cardinality of Fk is 1
at some time instant k, it follows from Algorithm 1 that
the cardinality of Fj is 1 for all j ≥ k. Thus, each set of
the sequence {Fk}k∈N is nonempty, by which we complete
the proof.

6. EXPERIMENTS

In this section, we detail our experimental setup and report
experimental results based on the remote parking example
described in Section 3.2.

6.1 Experimental setup

The experimental setup consists of three components: the
ego vehicle, a human operator interface, and the parking
lot environment, see Fig. 2.

The ego vehicle is represented by the Small-Vehicles-for-
Autonomy (SVEA) platform, which is a small robotic car
platform designed to evaluate automated vehicle-related
software stacks. For our experiment, we equip the SVEA
car with an ELP fish-eye camera to provide a wide-angle
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x

y
O3 O4

O1 O2

T1

T2
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P2

−1.3
−2 −1 2.5

Fig. 4. Position trajectory when the human drives the vehicle to
the parking region P2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1911



(a) (b) (c)

(d) (e) (f)

Fig. 5. An example where a human remotely drives the vehicle to the parking region P2 of Fig. 4. We highlight the position of the vehicle
by the red box and show in the bottom right corner of each snapshot the view of the human operator.

view for the human operator and a TP-Link 4G LTE
modem for streaming both the camera data to the human
operator and the control from the human operator back
to the SVEA car.

For the human operator interface, we place a human at
a teleoperation desk built to support the management of
remotely connected vehicles, see Fig. 3. A computer at
the teleoperation desk is connected to the internet and
is running a WebRTC-based app that handles the data
transmission between the teleoperation station and the
SVEA car over a peer-to-peer connection. The human can
provide input to the control system with a Logitech G29
steering wheel and pedals. This interface subsumes the GC
block in Fig. 1.

The parking lot environment corresponds to the environ-
ment defined in Section 3.2, see Fig. 4. The free parking
spots and obstacles are all in the coordinate frame of our
Qualisys motion capture system.

6.2 Experimental results

The human operator is parking the vehicle in parking
region P2, corresponding to specification ϕ2 derived as
a TLT in Example 4.1. The video of the experiment is
available at https://youtu.be/WhFNleymOJ8.

We show snapshots of the vehicle’s position in Fig. 5 and
the corresponding trajectories in Fig. 4. We can see that
during the parking process, there is no collision between
the vehicle and the obstacles. Fig. 6 shows the control
inputs, where the dashed lines denote the control bounds.
The red and cyan regions represent the synthesized control
sets for ϕ1 and ϕ2, respectively. The blue lines are the
decision trajectories of the human driver while the black
lines are the implemented control trajectories under Algo-
rithm 1.

Note that at some time instants, the human’s decision
cannot satisfy any specification, thus the input is corrected

Fig. 6. Velocity trajectory when the human drives the vehicle to
the parking region 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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Fig. 7. Belief update when the human drives the vehicle to the
parking region 2.

according to the synthesized control sets. After 4.6 seconds
(at which pxk is about 1 m), the synthesized control set
for ϕ1 is empty since this specification becomes infeasible.
This can also be observed from Fig. 7, which shows the
belief update. Note that the beliefs in ϕ1 and ϕ2 oscillate
from 1.2 seconds to 2.6 seconds since the volume of the
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control sets changes significantly during this time interval.
After that, the belief in ϕ2 increases since the vehicle
passes the parking region P1 and approaches the parking
region P2, which then becomes more likely.

In this example, we can observe the capabilities of our ap-
proach. Even though the system’s initial belief is neutral,
as the human operates the vehicle, the system updates its
belief appropriately. The guiding controller works together
with the human operator to complete the parking maneu-
ver.

7. CONCLUSION

In this paper, we presented a solution for robust human-
in-the-loop learning and control under uncertain temporal
specifications. With our framework, we give priority to
the human operator’s decision, allowing her to complete
one of several possible tasks. Our framework makes no as-
sumptions about the operator’s preference over the tasks.
Our system updates a data-driven belief of the operator’s
intent. We proposed a new method for synthesizing the
control sets for LTL formulae based on a correspondence
between LTL and reachability analysis. We proved recur-
sive feasibility of the method, showing that the controller
is always feasible and able to guarantee that the human
will not be able to drive the system to violate invariances,
despite her freedom to control the system. We illustrated
the effectiveness of the proposed method on a remote
parking example.

Future work includes the extension of TLTs to handle
general LTL formulae and more detailed experimental
evaluation of our approach.
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