
Privacy Preserving Distributed Summation
in a Connected Graph ?

Katrine Tjell ∗ Rafael Wisniewski ∗

∗Aalborg University, Department of Control and Automation, Fredrik
Bajers Vej 7C, Aalborg, Denmark (e-mail: {kst},{raf}@es.aau.dk).

Abstract: Most decentralized algorithms for multi-agent systems used in control, signal
processing and machine learning for example, are designed to fit the problem where agents
can only communicate with immediate neighbors in the network. For instance, decentralized
and distributed optimization algorithms are based on the fact that every agent in a network
will be able to influence every other agent in the network even if each agent only communicates
with its immediate neighbors (given that the network is connected). That is, a distributed
optimization problem can be solved in a decentralized manner by letting the agents exchange
messages with their neighbors iteratively. In many algorithms that solve this kind of problem,
agents in the network does not need individual values from their neighbors, rather they need
a function of the values from its neighbors. This observation makes it interesting to consider
privacy preservation in such algorithms. By privacy preservation, we mean that raw data from
individual agents will not be exposed at any time during calculations.
This paper is concerned with decentralized algorithms, where each agent must learn the sum
of its neighbors values, and we propose a privacy preserving method to compute this sum.
Employing this method in corresponding decentralized algorithms makes the whole algorithm
privacy preserving. The only restriction we make on the graph topology of the network is that
each agent must have at least two neighbors. We provide simulations of the proposed method,
which illustrates the scalability of it.

Keywords: Privacy, multi-agent systems, decentralized control, decentralized and distributed
control, cyber-physical systems.

1. INTRODUCTION

Multi-agent systems with a decentralized graph topol-
ogy appear in many areas such as; formation control,
distributed resource allocation, workload balancing and
energy optimization. Thus, many decentralized algorithms
for solving different problems in a distributed and de-
centralized fashion has been proposed. For some of these
algorithms, each agent are only required to communicate
with immediate neighbors and moreover; each agent does
not necessarily need to learn individual values from neigh-
boring agents, rather they need to learn the sum of neigh-
boring agents values. Such algorithms can for instance be
seen in the work by Banjac et al. (2019), Chang et al.
(2015), and Ma et al. (2018). Other examples include
the work by Franceschelli et al. (2009) that considers
decentralized estimation of Laplacian eigenvalues in multi-
agent systems and the work by Liu et al. (2019) that
proposes a communication efficient algorithm for resource-
aware exact decentralized optimization.

This paper considers privacy preservation of agents in a
multi-agent network where each agent needs to learn the
sum of its neighboring agents values in order to carry out
required local computations. Specifically, we are interested
in the case where agents are unwilling to share raw data,
perhaps because the data is sensitive from a business

? This work is supported by SECURE project funded by AAU.

perspective or because it leaks personal information. Moti-
vated by the many decentralized algorithms only requiring
agents to learn the sum of neighboring agents values, we
investigate the privacy preserving calculation of

∑
j∈Ni

xj , (1)

where Ni is the set of indices of neighbors to agent ai and
xj is a value known only to agent aj .

To give thorough motivation for the problem, consider the
minimization problem

minimize
x

N∑
i=1

fi(xi)

subject to

N∑
i=1

Bixi − c = 0,

(2)

where x = [x1, . . . ,xN], xi is a local variable, fi is a local
objective and Bi and c are constraints. For solving the
problem distributed and decentralized, Chang et al. (2015)
proposes the following steps:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 3507

p
(k)
i = p

(k−1)
i + ρ

∑
j∈Ni

(
v
(k−1)
i − v

(k−1)
j

)
, (3)

x
(k)
i = arg min

xi

{
fi(xi) +

ρ

4|Ni|

∥∥∥1

ρ
(Bixi −

1

N
c)

− 1

ρ
p
(k)
i +

∑
j∈Ni

(
v
(k−1)
i + v

(k−1)
j

)∥∥∥2
2

}
, (4)

v
(k)
i =

1

2|Ni|

(∑
j∈Ni

(
v
(k−1)
i + v

(k−1)
j

)
− 1

ρ
p
(k)
i +

1

ρ

(
Bixi −

1

N
c

))
, (5)

that are performed locally by each agent. As can be seen,
values of neighboring agents appear in all three equations.
In (3), the values appear as

∑
j∈Ni

(
v
(k−1)
i − v

(k−1)
j

)
= |Ni|v(k−1)

i −
∑
j∈Ni

v
(k−1)
j , (6)

and in (4) and (5) as

∑
j∈Ni

(
v
(k−1)
i + v

(k−1)
j

)
= |Ni|v(k−1)

i +
∑
j∈Ni

v
(k−1)
j . (7)

Evidently, if
∑

j∈Ni
v
(k−1)
j can be computed without leak-

ing individual vj values, the algorithm is privacy preserv-
ing. Hence, the aim of this paper is to, for each agent in
a multi-agent system, compute the sum of its neighboring
agents values without individual terms of the sum being
exposed.

Related work. Computing the sum of private values among
a set of participants, without leaking the private values,
is a well-known problem within the field of cryptography.
Most secret sharing schemes (see the work by Cramer et al.
(2015)) such as Shamir’s secret sharing scheme and the
additive secret sharing scheme are able to compute shares
of the sum of secret input values from shares of the input
values. The same goes for more or less all the homomorphic
encryption schemes, see Will and Ko (2015). All though
our proposed solution is based both on secret sharing and
encryption, the paper distinguishes it self by being applied
to agents in a graph network. Thus, we do not assume that
all agents can communicate or that there exist a central
node which all agents can communicate with, which is
the general assumption in this kind of work. Our work
also distances it self from traditional secret sharing and
homomorphic encryption based approaches, as it includes
a preprocessing phase which speed up efficiency at the
actual execution time.

Many works (also outside cryptography) are occupied with
the privacy preserving summation of values, for instance
Mehnaz et al. (2017), Clifton et al. (2002) and Sheikh
et al. (2009). The work by Mehnaz et al. (2017) proposes
a secure sum protocol for computing a sum of N private
values among N participants. Their solution relies on an
(untrusted) moderator to ensure privacy. Our proposed
method does not require a moderator and for the setup
considered in this paper, it is not a viable solution to adopt
moderators in the network.

Fig. 1. A multi-agent network, where agents are depicted
as vertices and the communication channels are de-
picted as edges.

Structure. Section 2 states the problem of the paper in
detail and gives the necessary preliminaries. The main
content of the paper is in sections 3 and 4, where the
problem is solved with two different assumptions on the
graph topology. Section 5 gives an illustration of the
scale-ability of the proposed method and finally, section
6 concludes the paper.

2. PROBLEM FORMULATION

Consider a multi-agent network consisting of N agents,
a1, . . . , aN , with a certain communication network linking
them. Fig. 1 depicts such a multi-agent network, where
the vertices are the agents and the edges illustrates the
communication network. We define Ni as the neighbors to
agent ai; that is, Ni is the set of indices j of agents aj
where there is an edge between ai and aj . Note that we
consider ai to be a neighbor to itself.

Furthermore, each agent ai has a private value xi. The aim
is to compute the sum

yi =
∑
j∈Ni

xj , (8)

for each agent ai in the multi-agent network. As each agent
can communicate with all of their neighbors, the problem
is trivially solved be letting all agents aj for j ∈ Ni send
their value xj to agent ai, who can then compute the sum.
However, in this paper we are interested in the case where
agents are unwilling to hand over raw data, for instance
because the data is considered corporate secrets or simply
because it leaks private information. Thus, the goal is that
agent ai learns only yi and not the individual terms xj
in the sum. For this to be possible, we assume that all
agents has at least two neighbors besides from itself, that is
|Ni| ≥ 3∀i. Furthermore, we assume that agents will follow
the protocol, however they may collude in attempting to
disclose the secret values of other agents. To this end,
we assume that a majority of an agents neighbors are
not colluding, which will ensure the privacy of the honest
agents.

We consider two different scenarios with respect to graph
topology, we will refer to these as problem 1 (P1) and
problem 2 (P2). The difference between P1 and P2 is
that in P1, we assume that in each neighborhood Ni, the
agents {aj}j∈Ni form one or more cliques. A clique is a
fully connected subset of a graph, thus in other words, we
assume in P1, that each aj , j ∈ Ni is connected to at least

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3508

Fig. 2. An example of a multi-agent network considered in
P1.

Fig. 3. An example of a multi-agent network considered in
P2.

one other agent aj′ , j
′ ∈ Ni, where j 6= {i, j′}. On the

other hand, in P2, we make no assumptions on cliques in
the neighborhood of ai. In the following, P1 and P2 are
more formally presented.

Problem 1. (P1). Let a1, . . . , aN be agents in a multi-agent
network and assume that the agents in Ni form one or
more cliques with cardinality at least three, with all of them
including ai. Then, the problem is to calculate (8) for all
agents ai.

Fig. 2 is a simple example of the graph topology P1 is
investigating. As seen, all agents has at least two neighbors
(besides itself) and the neighbors of each agent forms at
least one clique. For instance, for agent a1, (a1, a2, a3)
forms a clique and so does (a1, a2, a4).

For P2, we relax the constraint on the graph topology and
accepts the case where not all neighbors to an agent is part
of a clique.

Problem 2. (P2). For all agents, ai, in an arbitrary con-
nected multi-agent network, the problem is to calculate (8).

Fig. 3 is a simple example of the graph topology P2 is
investigating. It can be seen that agent a4 does not form
a clique with other agents that are in the neighborhood of
either a1 or a3.

The aim of the paper is to solve P1 and P2 without
leaking the agents private values. For P1, we propose to
use secret-sharing and two rounds of communication. This
approach is evident under the assumption of cliques in
the neighborhood. In the case of P2, where cliques in the
graph are not assumed, we introduce a so-called virtual
clique between agents in the same neighborhood, which is
done with the use of encryption. In this way, we use the

same method in P2 as in P1 but with the cost of additional
communication rounds. This we see as a generalization of
the proposed method, making it independent of the graph
topology. Remark, P1 is a special case of P2, and is as
such covered by the solution to P2. However, we believe
that solving them one at a time will improve readability.

Notation. Let Ni denote the neighbors of agent ai and
C1, . . . , Cm are the cliques in the multi-agent network,
specifically, Ck is a set consisting of the indices j of agents
aj in the k’th clique. Moreover, Ci is the cliques agent ai
is part of; that is, k ∈ Ci iff ai ∈ Ck. Lastly, for each agent
ai, we will need to define the sets Ci,j , j ∈ Ni, where for
all k ∈ Ci, k ∈ Ci,j iff aj ∈ Ck. Note that Ci,j = Cj,i.

3. PRIVACY PRESERVING SOLUTION TO P1

For solving P1 without leaking data, the idea is to compute
the sum of values in each clique in the neighborhood of
each agent. The sum is computed using secret sharing
techniques, which will be key to preserve privacy in the
protocol.

3.1 Secret Sharing

The aim of secret sharing is to share a secret among a
set of participants such that none of the participants learn
the secret and only by recombining the information of each
participant, can the secret be reconstructed. In this way,
an adversary attempting to learn the secret has to attack
several entities instead of just one.

Dividing a secret into shares can be done in many ways.
A simple scheme is called additive secret sharing and it
has the property that the shares s1, . . . , sn of the secret s
satisfies

s = s1 + · · ·+ sn mod p,

where p is a prime large enough that the probability of
guessing si is negligible.

The modulo operator is used to make sure that each
individual share does not leak information about s. Specif-
ically, the shares are uniformly distributed on 0, . . . , p− 1
and p > s. In our method, we will use a sharing of zero to
achieve privacy.

3.2 Proposed method: Solution to P1

To present the idea in the method, consider a clique Ck,
k ∈ {1, . . . ,m}. The approach is for each agent aj for
j ∈ Ck to add a uniformly random number rj to xj before
sending it to the other agents in the k’th clique. In this
way, xj is not revealed to the neighbors of aj , since xj +rj
is a uniformly random number. Designing the random rj
values such that

∑
j∈Ck

rj = 0, ensures that the sum of
the values in the cliques can still be learned by the agents
in the clique.

To improve efficiency, we introduce a two-phase algorithm.
The first phase is a preprocessing phase where the de-
scribed uniformly random numbers are chosen; hence, this
phase can be carried out in advance of the actual execution
which boost efficiency at run-time. The second phase is the
execution phase, where the private values are involved.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3509

We explain the preprocessing phase with a numerical
example, see Example 1.

Example 1. Let a clique consist of the agents a1, a2 and
a3 and let p = 23. Table 1 illustrates the steps in the
preprocessing phase. The first step is that each agent
chooses 3 random numbers which must sum to zero; this
is shown in the first column. Then each agent sends
one random number to each agent (including itself), the
random number received by each agent is shown in the
second column. The last column shows for each agent the
sum of received numbers modulo 23, which is the result
of the preprocessing phase. Note that the sum of the last
column modulo 23 is zero.

Choose uniformly
random numbers

Recieved
numbers

Sum of rec.
numbers

Agent 1 0 = 15+5+3 mod 23 15,10,8 15+10+8 mod 23 = 10

Agent 2 0=10+6+7 mod 23 5,6,9 5+6+9 mod 23 = 20

Agent 3 0=8+9+6 mod 23 3,7,6 3+7+6 mod 23 = 16

Table 1. Overview of the steps each agent take
per clique in the preprocessing phase. In this
example there is one clique consisting of three

agents.

Example 2 continues Example 1, and shows the steps the
agents take in the execution phase. As seen, all agents
learn the sum of private values without exposing them.

Example 2. This example is a continuation of Example 1.
Assume the agents have secret values, x1 = 5, x2 = 2, x3 =
10. The goal is to find the sum of secret values in the clique,
thus all agents should end up with learning the number 17,
as 5 + 2 + 10 = 17. Table 2 illustrates the execution phase
that would follow the preprocessing phase in Example 1.
The first step is for each agent to add their secret value to
the random number generated in the preprocessing phase;
this is shown in the first column. Then each agent sends
this sum to all other agents; the second column shows the
numbers each agent receives. The last colunmn shows the
computed sum, which is the result of the execution phase.

Add xi to si1
Received
numbers

Sum of rec.
numbers % 23

Agent 1
x1 = 5

5+10 mod 23 = 15 15,22,3 17

Agent 2
x2 = 2

2 +20 mod 23 = 22 15,22,3 17

Agent 3
x3 = 10

10 + 16 mod 23 = 3 15,22,3 17

Table 2. Overview of the steps each agent take
per clique in the execution phase, which would
follow the steps in the preprocessing phase

shown in Example 1.

There is still one thing that must be taken into ac-
count in the algorithm. If agent aj , j ∈ Ni is part of
more than one clique that includes ai, then xj would
be added to the sum, (8), more than one time. To
see this, consider the graph depicted in Fig. 2. At-
tempting to compute y1 = x1 + x2 + x3 + x4 by the de-
scribed method would result in the computation of
(x1 + x2 + x3) + (x1 + x2 + x4) 6= y1. As seen, x1 and x2
are added twice. x1 can be subtracted since a1 knows this
value, however, a1 cannot subtract x2. To circumvent this,
a2 must add only half of x2 in each of the two cliques.

In Protocol 1, the privacy preserving solution to P1 is
formally presented from the view of agent ai, where we
use the notation introduced in section 2.

Protocol 1 Privacy Preserving Solution to P1

p > max
i

(
∑

j∈Ni
xj) is a public prime and

D = {0, . . . , p− 1}.
1: For each aj , j ∈ Ni, ai chooses λi,j,k, k ∈ Ci,j such

that  ∑
k∈Ci,j

λi,j,k

 mod p = 1.

Preprocessing
2: For each k ∈ Ci, ai draws from D a uniformly dis-

tributed number ri,j,k for each agent j ∈ Ck (including
itself), such that∑

j∈Ck

ri,j,k

 mod p = 0, k ∈ Ci.

3: ai sends ri,j,k to agent aj for j ∈ Ck and k ∈ Ci.

4: Upon receiving rj,i,k from each agent aj , j ∈ Ck,
k ∈ Ci, agent ai computes the following sum for each
clique Ck, k ∈ Ci,

si,k =

∑
j∈Ck

rj,i,k

 mod p, k ∈ Ci.

Execution
5: For each k ∈ Ci, and each j ∈ Ck, ai computes

pi,j,k = (λi,j,kxi + si,k) mod p.

6: ai sends pi,j,k to each agent aj , j ∈ Ck for each k ∈ Ci.
7: Upon receiving pj,i,k for each j ∈ Ck, k ∈ Ci, ai

computes

y′k =
∑
j∈Ck

pj,i,k mod p, k ∈ Ci.

8: ai computes

yi =

(∑
k∈Ci

y′k

)
mod p. (9)

We now provide a sketch of the proof of correctness and
privacy of Protocol 1.

Sketch of Proof. Correctness. The protocol gives the cor-
rect result if ai learns(∑

j∈Ni

xj

)
mod p, (10)

which is equal to the sum in (8), since we choose
p >

∑
j∈Ni

xj . Consider the following rewrite of (9), where
each equation is modular p even though we omit it to
improve notation;

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3510

yi =

(∑
k∈Ci

y′k

)
=
∑
k∈Ci

∑
j∈Ck

pj,i,k

=
∑
k∈Ci

∑
j∈Ck

(λj,i,kxj + sj,k)

=
∑
k∈Ci

(∑
j∈Ck

λj,i,kxj +
∑
j∈Ck

∑
i∈Ck

ri,j,k

)
=
∑
k∈Ci

(∑
j∈Ck

λj,i,kxj +
∑
i∈Ck

∑
j∈Ck

ri,j,k︸ ︷︷ ︸
=0

)

(∗)
=
∑
j∈Ni

∑
k∈Ci,j

λj,i,kxj

=
∑
j∈Ni

xj
∑

k∈Ci,j

λj,i,k︸ ︷︷ ︸
=1

=
∑
j∈Ni

xj ,

(11)

where (∗) is because summing over the cliques ai is in
(k ∈ Ci) and all the agents in each of those cliques
(j ∈ Ck) is equivalent to summing over all the neighbors
aj of ai (j ∈ Ni) and the cliques both ai and aj are in
(k ∈ Ci,j) since we assume that all neighbors to ai is part
of a clique that includes ai. This proves the correctness of
the protocol.

Privacy. We consider the execution phase as the prepro-
cessing phase does not involve any private values. For
each k ∈ Ci, ai sends (λi,j,kxi + si,k) mod p to each aj ,
j ∈ Ck. This communication is privacy preserving since
si,k =

∑
j∈Ck

rj,i,k mod p, is a uniformly random number,

known only by ai. For aj receiving v = (λj,i,kxi + si,k)
mod p, the information aj gets is

λj,i,k︸ ︷︷ ︸
known to aj

xi = v︸︷︷︸
known to aj

− rj,i,k︸︷︷︸
known to aj

−
∑

j′∈Ck,j′ 6=j

rj′,i,k︸ ︷︷ ︸
unknown to aj

,

(12)
Since |Ck| ≥ 3,

∑
j′∈Ck,j′ 6=j rj′,i,k will at least consist of

two uniformly random numbers each of a probability of 1
p .

Hence, by choosing p large, the probability of aj guessing
the last term in (12) is negligible.

4. PRIVACY PRESERVING SOLUTION TO P2

The algorithm for solving P2 without leaking private
data is based on Protocol 1. Actually, the only difference
is for agents that are not part of a clique in a given
neighborhood. To clarify, consider Fig. 3, where a4 is a
neighbor to a1 but a4 does not form a clique with a1 and
another agent in N1. For a1 to learn x2 + x5 + x4 without
learning individual values in the sum, we need to extend
Protocol 1. Our propose is to create a so-called virtual
clique between aj , ai and one other agent, aj′ , in Ni. In
Definition 1, we define what is meant by a virtual clique.

Definition 1. (Virtual Clique). Let a1, a2 and a3 be agents
in a multi-agent network and let there be a communication
link between a1 and a2 and between a1 and a3. A virtual
clique between a1, a2 and a3 is made by letting a2 encrypt
its messages to a3 such that only a3 can decrypt them. a2

sends the encrypted messages to a1 who forwards to a3 and
vice versa for messages from a3 to a2.

In continuation, let Vm, . . . , Vv, be the virtual cliques in
the multi-agent network, where m is the number of cliques,
thus the indices of the virtual cliques starts from the last
index of the regular cliques. Let V i be defined similarly to
Ci and define for each agent, ai, the set Vi,j , j ∈ Ni, such
that for all k ∈ Ci ∪ V i, k ∈ Vi,j iff aj ∈ Ck ∪ Vk. For
encrypting messages, one can chose among many schemes,
see for instance the study of encryption algorithms by
Singh and Supriya (2013).

The protocol for solving P2 is formally written in Proto-
col 2 from the perspective of agent ai.

Protocol 2 Privacy Preserving Solution to P2

p and D are as in Protocol 1.

1: ai determines, for each aj , j ∈ Ni, the values
{λi,j,k}, k ∈ Vi,j such that∑

k∈Vi,j

λi,j,k mod p = 1, j ∈ Ni. (13)

2: ai executes Protocol 1 to compute the sum,

r1i =
∑
k∈Ci

∑
j∈Ck

xj ,

using the λi,j,k values in (13).

Preprocessing
3: Through a secret key generation process, ai determines

the secret keys gk for k ∈ V i for encrypted communi-
cation in the virtual cliques.

4: For each k ∈ V i, ai chooses two uniformly distributed
random numbers ri,k,0 and ri,k,1 from D such that

(ri,k,0 + ri,k,1) mod p = 0.

5: For each k ∈ V i, ai encrypts ri,k,1 using gk and sends
enc(ri,k,1)gk to agent aj , j ∈ Vk ∩Ni.

6: Upon receiving enc(rj,k,1)gk , ai decrypts and computes
the sum

si,k = (ri,k,0 + rj,k,1) mod p.

Execution
7: For each k ∈ V i, ai computes

pi,j,k = λi,j,kxi + si,k mod p, j ∈ Vk ∩Ni, j 6= i.

8: ai sends pi,j,k to aj , j ∈ Vk ∩Ni, j 6= i, k ∈ V i.

9: Upon receiving pj,i,k ai computes

y′i,k =
∑

j∈Vk,j 6=i

pj,i,k mod p, k ∈ V i.

10: Finally, ai adds the result from the cliques with the
result from the virtual cliques,

yi = r1i +
∑
k∈V i

y′i,k mod p. (14)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3511

1 2 3 4 5 6 7 8 9 10 11 12 13
·N

10

20

number of edges

ex
ec

u
ti

on
ti

m
e

in
se

co
n

d
s

N = 20 N = 60 N = 100

Fig. 4. Execution time versus number of edges in the graph.
Note that the x-axis is scaled by N .

The correctness of Protocol 2 follows from the correctness
of Protocol 1. Considering only the execution phase, show-
ing the privacy of Protocol 2 is equivalent to showing the
privacy of Protocol 1. The distinction lies in the creation
of the random numbers in the preprocessing phase since
in Protocol 2 agents in a virtual clique with no comuni-
cation link between them needs to send messages through
their common neighbor. However, since we encrypt these
messages, we make sure that the common neighbor can-
not learn the messages which would otherwise break the
privacy.

5. SCALABILITY

To illustrate the scalability of Protocol 2, we have con-
ducted simulations showing execution time as a function of
a specific graph constellation. The simulations are carried
out on a 2.70 GHz laptop, where one thread is created
for each agent in the simulated network. For this reason,
the absolute execution times may be misleading, as one
would expect the execution time to be lower if each agent
were given individual machines. However, the execution
times are comparable to each other, thus providing an
illustration of scalability.

Fig. 4 shows how the execution time is affected by the
number of edges in the graph. The orange line shows
an average simulation of the protocol, where the number
of agents N = 20 and the execution time is measured
with the number of edges in the graph being equal to
k · N for k = 1, . . . , 13. It may be counter-intuitive, that
the execution time decreases as edges are added to the
network. However, this is explained by the fact that as
edges are added, the number of virtual cliques in the graph
is decreasing, resulting in a faster computation time.

The same goes for the blue line, where the number of
agents is 60 and the green line where the number of agents
is 100.

6. CONCLUSION

The paper presents privacy preserving protocols for cal-
culating a sum function among neighbors in a connected

graph where each agent can only communicate with their
immediate neighbors. The result of the paper can be di-
rectly applied in existing decentralized protocols (where
agents need the sum of its neighbors values) for achieving
privacy. The protocols has a constant number of commu-
nication rounds and simulations show great scalability.
For future work, it will be interesting to consider other
functions of neighbors values than the sum function. To
this end, the simple additive secret sharing protocol can
be substituted by Shamir’s secret sharing scheme.

REFERENCES

Banjac, G., Rey, F., Goulart, P., and Lygeros, J. (2019).
Decentralized resource allocation via dual consensus
admm. 2019 American Control Conference (ACC). doi:
10.23919/acc.2019.8814988.

Chang, T., Hong, M., and Wang, X. (2015). Multi-agent
distributed optimization via inexact consensus admm.
IEEE Transactions on Signal Processing, 63(2), 482–
497. doi:10.1109/TSP.2014.2367458.

Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., and Zhu,
M. (2002). Tools for privacy preserving distributed data
mining. ACM SIGKDD Explorations Newsletter, 4. doi:
10.1145/772862.772867.

Cramer, R., Damgaard, I.B., and Nielsen, J.B. (2015). Se-
cure Multiparty Computation and Secret Sharing. Cam-
bridge University Press, 1 edition. ISBN: 978-1-107-
04305-3.

Franceschelli, M., Gasparri, A., Giua, A., and Seatzu, C.
(2009). Decentralized laplacian eigenvalues estimation
for networked multi-agent systems. In Proceedings of the
48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference,
2717–2722. doi:10.1109/CDC.2009.5400723.

Liu, C., Li, H., and Shi, Y. (2019). Resource-aware exact
decentralized optimization using event-triggered broad-
casting. URL https://arxiv.org/abs/1907.10179v2.
In press.

Ma, M., Nikolakopoulos, A.N., and Giannakis, G.B.
(2018). Hybrid admm: a unifying and fast approach
to decentralized optimization. EURASIP Journal on
Advances in Signal Processing, 2018(1), 73. doi:10.1186/
s13634-018-0589-x.

Mehnaz, S., Bellala, G., and Bertino, E. (2017). A secure
sum protocol and its application to privacy-preserving
multi-party analytics. In Proceedings of the 22Nd ACM
on Symposium on Access Control Models and Tech-
nologies, SACMAT ’17 Abstracts, 219–230. ACM, New
York, NY, USA. doi:10.1145/3078861.3078869. URL
http://doi.acm.org/10.1145/3078861.3078869.

Sheikh, R., Beerendra, K., and Mishra, D. (2009). Privacy-
preserving k-secure sum protocol. International Journal
of Computer Science and Information Security, 6.

Singh, G. and Supriya (2013). Article: A study of encryp-
tion algorithms (rsa, des, 3des and aes) for information
security. International Journal of Computer Applica-
tions, 67(19), 33–38.

Will, M.A. and Ko, R.K. (2015). Chapter 5 - a guide
to homomorphic encryption. In R. Ko and K.K.R.
Choo (eds.), The Cloud Security Ecosystem, 101 –
127. Syngress, Boston. doi:10.1016/B978-0-12-801595-
7.00005-7. URL https://doi.org/10.1016/B978-0-
12-801595-7.00005-7.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3512

