
Fast extremum seeking using multisine
dither and online complex curve fitting

Thijs van Keulen ∗,∗∗ Robert van der Weijst ∗ Tom Oomen ∗

∗ Eindhoven University of Technology, Dept. of Mech. Engineering,
Control Systems Technology group, Eindhoven, the Netherlands

(e-mail: t.a.c.v.keulen(at)tue.nl)
∗∗ASML, Veldhoven, the Netherlands

Abstract: Fast online optimization of uncertain Wiener systems using extremum seeking
control (ESC) is investigated. Derivative estimation in extremum seeking is herefore described
as an online parametric system identification problem. Multisine dithering is applied with
frequencies around the first resonance frequency of the system to remove the time scale
separation between dither and plant dynamics which is commonly required in ESC. Recursive
use of the Fourier transform, over a moving window of historic data, provides a frequency
response function estimate of the system’s local best linear approximation. Continuous online
complex curve fitting is then applied to extrapolate to an estimate of the steady-state response
which coincides with the local gradient of the steady-state objective function. An analysis of
the closed-loop dynamics is provided. Transient improvements and robustness of the approach
against plant variation are demonstrated with a simulation example.

Keywords: Extremum seeking and model-free adaptive control, closed-loop identification,
frequency domain identification

1. INTRODUCTION

It lies at the heart of human engineering to operate systems
in an optimal way. For instance, it can be an objective
to minimize energy consumption, to optimize a process
output, or to maximize the throughput of a system. One
way to achieve optimality is to use detailed modeling such
that optimal control settings can be predicted (Skoges-
tad, 2000). However, these model-based approaches lack
robustness in achieving optimality, either because the cost
of the system is too complex to be modeled accurately,
or the system suffers from unknown disturbances, e.g.,
due to slow transients, changing environmental conditions,
production tolerances, fouling or wear.

Extremum Seeking Control (ESC) is a data-driven control
approach for online optimization of systems and processes
that adds robustness to the optimization process. Under
the assumption that a cost can be measured online, and
there is a convex-like relation, in steady-state, between
the input of the system and the cost, a feedback loop
can be designed that adapts the system input such that
the derivative of the cost with respect to the input is
directed to a derivative of value zero which results in
(local) optimization of the steady-state cost.

Classical ESC provides optimization of the steady-state
cost of an unknown plant. This is achieved by injection of
a sinusoidal dither signal to estimate the local derivative
of the steady-state cost function and to adjust the control
input by a steepest descent feedback control. Classical
ESC convergence results (Krstic and Wang, 2001; Nesic et
al., 2010) hinge on time scale separation between the fast

system dynamics and the slow dither frequency. This time
scale separation, however, limits the adaptation speed.

A key objective in ESC is fast convergence to the optimum.
Convergence speed can be enhanced if prior knowledge of
the system dynamics is exploited. In Krstic (2000) and
Haring et al. (2013), faster convergence is achieved with
phase compensation which allows to perturb the system
with a higher frequency under the assumption that the
system’s phase lag at the dither frequency is known.

Similarly, the design of the ESC scheme in Moase and
Manzie (2012) and Atta and Guay (2017) exploits knowl-
edge of the relative order of the linear dynamics of a
Hammerstein plant. The technique uses compensation of
the high-frequency phase-shift associated with the sys-
tem’s relative order. Hence, these approaches allow for the
use of high perturbation frequencies relative to the plant
dynamics.

The fast ESC approaches demonstrate significant improve-
ments in transient performance. However, the existing ap-
proaches for fast ESC strongly depend on prior knowledge
of the system dynamics at high frequencies, and are, there-
fore, sensitive to system uncertainty. Also, at frequencies
beyond the system dynamics, the frequency response gain
is typically low which might lead to sensing and actuation
limitations in the presence of measurement noise.

Although important progress is made to improve con-
vergence speed of ESC algorithms, at present these ap-
proaches strongly depend on prior knowledge. The aim
of this paper is to develop an approach for fast ESC
for Single-Input-Single-Output (SISO) systems which does
not require accurate system knowledge. In sharp contrast,
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the key idea is to locally estimate the system, which is in
line with recent developments in nonparametric identifica-
tion of frequency response functions using local parametric
models, see Van Keulen et.al. (2017).

The method applies a multisine dither signal with frequen-
cies in the same time scale as the system dynamics, e.g.,
around the first resonance frequency of the system. Past
data of the input and cost output is stored in a moving
time window with a length equal to the multisine time
period. Using the Fourier Transform (FT), the Best Linear
Approximation (BLA) of the underlying transfer function
of the local linear system can be estimated at the multisine
dither frequencies (Pintelon and Schoukens, 2001). Next,
online complex curve fitting (Van Herpen et al., 2014;
Levy, 1959; Sanathanan and Koerner, 1963; Voorhoeve et
al., 2014) is applied to estimate the steady-state gain of the
response which relates to the local gradient of the steady-
state performance function. As long as the optimizer time
scale is slow compared to the dither frequencies, the BLA
estimate is accurate.

The main contribution of this paper is to achieve fast
Derivative Estimator (DE) in an ESC framework with
robustness to system uncertainty. The key difference com-
pared to earlier approaches is to allow for high-frequency
perturbation of the system without the requirement to
know the exact system’s order or phase lag at a particular
frequency.

This article is structured as follows. In Section 2, a problem
description is provided. Section 3 gives an overview of
the approach. An analysis of the closed-loop behavior
is provided in Section 4. In Section 5, the theory is
supported with a simulation example. Finally, in Section 6,
conclusions and outlook on future research are provided.

2. PROBLEM DESCRIPTION AND ASSUMPTIONS

Consider the optimization of the following SISO Wiener
system with a linear dynamic object and a static nonlinear
output characteristic:

ẋ(t) = Ax(t) +Bu(t), (1)

y(t) = h(x(t)), (2)

where u∈R is the control input, x∈Rl the state vector,
A ∈ Rl×l the constant state matrix, B ∈ Rl×1 the input
matrix and, h∈R a nonlinear output function.

Loosely speaking, the ESC objective is to steer the input
u to a value that optimizes the steady-state cost y.
Assumptions are imposed to ensure convergence of the
ESC loop. The following assumption states that the system
exhibits stability properties and possesses a steady-state
performance map.

Assumption 1 For any constant input u, the system
possesses a unique, asymptotically stable equilibrium xeq =
−A−1Bu, i.e. where Ax + Bu = 0, such that the cost
output y is described by the steady-state performance map
Qy : u→ y given by:

Qy(u) = h(−A−1Bu). (3)

Linearization of the dynamic system (1) to (2), at the
equilibrium xeq, and subsequent application of the Laplace

transform, provides the following transfer function:

H(s, u) = C̃(u) (sI −A)
−1
B, (4)

where C̃(u) := dy(x)
dx

∣∣∣
xeq

. Note that, C̃(u) is a frequency

independent scaling factor while the denominator of H is
time invariant and independent of the equilibrium.

Lemma 1 Given (1) and (2), and let Assumption 1 hold,
then the DE of the steady-state performance map at u
coincides with the steady-state gain of the transfer function
of the system linearized at u:

dQy(u)

du
= H(0, u). (5)

Proof Evaluating (4) at s = 0 provides H(0, u) =

−C̃(u)A−1B. Derivation of (3) with respect to u gives
dQy

du = dh(−A−1Bu)
dx

dx
du . By using C̃(u) := dy(x)

dx

∣∣∣
xeq

and

xeq

u = −A−1B, it follows that
dQy(u)
du = H(0, u). 2

In addition to Assumption 1, the following assumption
is imposed, which ensures the existence of a unique ex-
tremum and monotonic convergence towards that ex-
tremum of the map Qy(u).

Assumption 2 The mapping Qy(.) is 2 times continu-
ously differentiable and there exists a constant input u∗

such that the gradient

g(u) :=
dQy(u)

du
= 0, (6)

if and only if u = u∗, and

d2Qy(u)

du2
> 0. (7)

Observe that, using Assumption 1 and 2, and Lemma 1,
it follows that H(0, u) = 0 if and only if u = u∗.

The objective of the ESC is to adjust u such that the
steady-state performance map Qy(u) is minimized, i.e. to
find the unknown optimizing input:

u∗ = arg min
u

(Qy(u)). (8)

Assumptions 1 and 2 are common in classical ESC, see
again Krstic and Wang (2001); Nesic et al. (2010). To
enable the fast ESC approach outlined in this paper, the
following assumption is added:

Assumption 3 The system can locally be approximated
by a low-order continuous-time rational-form parametric
model approximation:

Ha(s) =
Q(s)

P (s)
=

∑nq

r=0 qrs
r∑np

r=0 prs
r
, (9)

of system (4) for which supω∈[0 ωq ] |H(jω)−Ha(jω)| ≤ εH .
Where εH > 0 is a positive constant, ωq is the frequency
up to which accurate model information is available, and
qr, pr ∈ R.

Assumption 3 enables that the system’s fast dynamics, i.e.
above ωq, can be ignored. However, it is assumed that a
low-order approximate of the system is available.

Remark 1 A suitable low-order approximation for the
system dynamics can be obtained with offline system iden-
tification at some constant u. Explicit knowledge of (2) is
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Fig. 1. Schematic overview of the fast ESC loop.

not required, i.e. the ESC scheme provides robustness to
the optimization process.

3. FAST EXTREMUM SEEKING USING MULTISINE
EXCITATION AND ONLINE COMPLEX CURVE

FITTING

3.1 Overview of the approach

Figure 1 provides a schematic of the envisioned fast ESC
approach. Similar to classical ESC, the loop contains
a DE and an optimizer. Essentially, the ESC follows a
continuous steepest-descent optimization approach where
locally a gradient of Qy in u is estimated and the function
value is optimized by integration of the DE. However, this
DE is more involved than the classical implementation.

Frequency-based evaluation is recursively applied to past
data of input u and output y stored over a finite interval
with length T in a moving horizon fashion. Next, the
FT of both the input and output signal is derived and
the Frequency Response Function (FRF) is computed. A
parametric plant model is estimated on the FRF using
complex curve fitting.

A DE of the steady-state performance map is then ob-
tained by evaluating the steady-state response of the fitted
local linear continuous-time dynamic model. Finally, an
integral-type optimizer is applied to steer the plant input
towards the optimizing value u∗ in (8).

3.2 Multisine dither signal

The multisine dither signal is defined as:

d(t) =

Nk∑
k=0

a cos (ωkt+ φk) , (10)

in which Nk + 1 is the number of harmonics present in
the multisine, a the amplitude which for simplicity is kept
constant for all dither frequencies, and, ωk and φk are the
respective, frequency and phase of the k-th sinusoid. A
random phase multisine is considered since it results in a
small peak variation of d.

The dither signal is added to the input of the plant:

u(t) = û(t) + d(t), (11)

where û(t) is the optimizer output.

3.3 Online frequency response function measurements

The window time T over which the online FT is computed
is chosen to be T = 2π/ω0 and the higher dither frequen-
cies are restricted to be integer multiples of ω0 such that

the dither signal has an integer number of periods of each
sinusoid in the window.

The FT, at time instance t, of the input and output signal,
is given by:

U(t, k) =
1

T

∫ t

t−T
u(σ)e−jktω0dσ, (12)

Y (t, k) =
1

T

∫ t

t−T
y(σ)e−jktω0dσ, (13)

in which, U(t, k) and Y (t, k) are the response at the kth

dither frequency, of the input and output, respectively.

Application of the FT to the measured input and output
signals provides a measurement of the FRF and an esti-
mate of the underlying transfer function at Nk frequencies:

G(t, ωk) = Y (t, k)/U(t, k), (14)

where G(t, ωk) is the measured FRF of the plant at the
corresponding k dither frequencies, at time instance t in
the receding horizon.

3.4 Complex curve fitting

The FRF (14) provides information of the system’s local
dynamics at the dither frequencies. However, the ESC
objective is to improve the steady-state cost (3) which
requires a DE of the system’s steady-state performance
map. So, the estimation of the steady-state response
requires an extrapolation from high-frequency response
function information at the dither frequencies to the
steady-state response. To extrapolate, a parametric model
fit is used.

Therefore, consider a continuous-time rational-form para-
metric model of the form:

H̃(s, θ(t)) = θ(t)Ha(s). (15)

Here, H̃ ∈ H(s) is the parametric model fit obtained
within the model set H(s) according to Assumption 3,
and θ is the unknown model parameter at time instance t.
Given Assumption 1, it follows that the system is stable
and has no poles on the imaginary axis which makes the
steady-state response finite and constant.

The plant model parameter θ is obtained by minimizing
the sum of squared residuals:

V (θ(t)) :=

Nk∑
k=0

∣∣∣W (ωk)
(
G(t, ωk)− H̃(ωk, θ(t))

)∣∣∣2 , (16)

where, W (ωk) is a frequency-dependent weighting func-
tion, and G(t, ωk) is given by the FRF in (14). In Levy
(1959), the solution θ(t) is obtained by minimization of
(16).

It is known (Sanathanan and Koerner, 1963; Voorhoeve
et al., 2014), that (16) can overemphasis high-frequency
errors. Therefore, it is suggested to adapt the weighting of
the cost function (16) with W (ωk) = 1

|Q(jω)|2 . Where Q is

the nominator of Ha in (9).

Frequency responses W , G and Ha have real and imagi-
nary components:

W (jωk)G(t, jωk) = α(t, ωk) + jβ(t, ωk), (17)

W (jωk)Ha(jωk) = γ(ωk) + jκ(ωk). (18)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5438



Moreover, V is quadratic in θ. Hence, the value θ∈R that

minimizes V , satisfies ∂V (θ)
∂θ = 0, therefore:

θ(t) =
1

Nk + 1

Nk∑
k=0

α(t, ωk)γ(ωk) + β(t, ωk)κ(ωk)

γ2(ωk) + κ2(ωk)
. (19)

Using Lemma 1, an estimate of the local gradient of the
steady-state performance map Qy can be derived from the
fitted dynamic plant model evaluated at ω = 0:

g̃(t) := H̃(0, θ(t)) = θ(t)
q0
p0
. (20)

Remark 2 It is possible to extend the complex curve fitting
to multiple model parameters. Hereby reducing the need
for an accurate model Ha. However, it is shown in Whit-
field (1989) that, the fixed point to which subsequent SK-
iterations are converging, generally, does not correspond
to a (local) minimum of criterion (16). Nevertheless, it is
possible to replace the adaptive updating of weighting W
after a few iterations by Gauss-Newton iterations which
guarantee convergence to a (local) minimum, see (Pintelon
and Schoukens, 2001, Section 7.9.1). Also, in Van Herpen
et al. (2014), an optimally conditioned Instrumental Vari-
able approach is formulated as an alternative frequency
domain identification algorithm, potentially enabling global
convergence with an increase of algorithm efficiency.

3.5 Optimizer

Online optimization of the steady-state cost is achieved by
adjusting û by a steepest-descent optimization algorithm:

˙̂u(t) = −cg̃(t), (21)

where g̃ is the DE by (20) and c > 0.

4. ANALYSIS OF CLOSED-LOOP DYNAMICS

The main contribution of fast ESC is convergence analysis
without restrictive requirements on time scale separation
between the dither signal and plant dynamics. However,
the usual assumption that c in (21) is sufficiently small is
adopted such that the ESC loop is slow compared to the
dither frequencies and plant dynamics.

The objective of this section is to demonstrate the removal
of time scale separation between dither and plant dynam-
ics. To this end, the following steps are considered: 1)
accuracy of the FT in the presence of nonlinear distortions,
2) accuracy of the complex curve fit, 3) description of the
plant and DE time scales, 4) description of the closed-loop
dynamics.

4.1 Accuracy of the Fourier transform

The accuracy of the FT relies on recursive identification
of a linear dynamic system in the presence of a nonlinear
distortion. The measured FRF in (14) consists of

G(jωk) = GBLA(jωk) +Gs(jωk), (22)

where GBLA is the BLA to the nonlinear system and Gs is
a stochastic nonlinear contribution. To the complex curve
fitting of Section 3.4 Gs will look like noise, and the effects
are smoothed out, see Crama and Schoukens (2005).

The BLA has two contributions:

GBLA(jωk) = G0(jωk) +GB(jωk). (23)

Here, G0 is the local linear approximation of the under-
lying dynamic system and GB a systematic error due to
nonlinearity (Pintelon and Schoukens, 2001).

For Wiener system (1) to (2), excited with a random phase
multisine, it follows that (Pintelon and Schoukens, 2001,
Section 3.4.3.5):

GBLA(jωk) = K(a,H)H(jωk). (24)

The asymptotic BLA GBLA equals the linear system
within a real frequency-independent scale factor K. For
sufficiently small amplitudes a the linear contribution
dominates the nonlinear one, hence, G(jωk) ≈ H(jωk).

4.2 Accuracy of the complex curve fit

Criterion V is quadratic in parameter θ. Hence, (19)
provides the global minimum. So, given that the FRF
measurement G(jωk) at the dither frequencies is accurate,
it follows from Assumption 3 that the gradient estimation
error is bounded |H(0)− θHa(0)| < εH .

4.3 Time scale analysis

Let (Ap, Bp, Cp) be a minimal realization of stable system
(4) in Jordan canonical form with state-space equations:

dx(t)

dt
= Apx(t) +Bpu(t), (25)

y(t) = Cpx(t), (26)

in which Ap =


ωp1

ωp2 *

0
. . .

ωpm

 . Here, eigenvalues

ωpi are ordered |ωp1 | ≤ |ωp2 | ≤ . . . ≤ |ωpm |. The time
scale of the system (1)-(2) can be characterized by the
eigenfrequency ωp1 of the slowest pole.

Suppose now that, Assumption 3 holds for high enough
frequency ωq > ωNk

such that the slowest dither frequency
ω0

π ≈ ωp1 , i.e. the multisine dither lies in the time scale of
the plant dynamics, then Ap in (25) can be scaled such
that:

dx(t)

dt
= ω0

π Ãpx(t) +Bpu(t), (27)

where the first entry of Ãp is
πωp1

ω0
≈ 1.

4.4 Time scale of the estimated derivative

The FT described by (12) to (13) is a Moving-Average
Filter (MAF) with a time scale of T = 2π/ω0. Observe
that, calculations (14), (19) and (20) are algebraic and do
not lead to additional delay in the DE. The MAF works
as an ideal low-pass filter for input frequency components
that are periodic in T , see Robles et al. (2010).

The MAF transfer function for (12) and (13) is given by:

Ψ(s, k) =
1− e−Ts

Ts
≈ ω0

πs+ ω0
, (28)

where the approximate is based on a first order Pade

approximation of the delay term e−Ts ≈ 1−Ts/2
1+Ts/2 .
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Furthermore, assuming that the change in u and y is small
compared to the dither induced oscillation, the approxi-
mate of the delayed and averaged frequency content, at
the Nk dither frequencies, of (12) and (13) is given by:

U̇a(t, a, k) ≈ −ω0

π [Ua(t, a, k) + µu(a, ua, k)ua(t)], (29)

Ẏ a(t, a, k) ≈ −ω0

π [Y a(t, a, k) + µy(a, ua, k)ya(t)], (30)

Here, ua is the averaged input and ya=h(−Ã−1p Bua), µu
and µy relate to the computation of the signal frequency
content of u and y, respectively.

4.5 Description of the closed-loop dynamics

The aim of the framework is to demonstrate stability
of the closed-loop system by combining the continuous
optimization (21) with the plant dynamics and DE in
a way that the closed-loop dynamics approximates the
behavior of (21) which is in line with Nesic et al. (2010).

Introduce ũ = û − u∗ and τ = ω0

π δt in new time scale τ .
Here, δ∈R is a tuning variable 0<δ�1. The closed-loop
dynamics of the system in Fig. 1 are given, in standard
singular perturbation form, by:

dũa(τ)

dτ
= f(a, εH , U

a, Y a), (31)

δ
dUa(τ)

dτ
= −Ua(τ, a, k) + µu(a, ua, k)ua(τ), (32)

δ
dY a(τ)

dτ
= −Y a(τ, a, k) + µy(a, ua, k)ya(τ), (33)

δ
dxa(τ)

dτ
= Ãpx

a(τ) +Bpu
a(τ). (34)

Here, parameter c in (21) is replaced by ω0

π δ and f(.) is a
static nonlinear mapping defined by (14), (19) and (20).
This demonstrates that the DE operates in the same time
scale as the system dynamics.

Next, “freeze” Ua, Y a and xa, at their equilibria Ua =
µu(a,ua,k)ua, Y a = µy(a,ua,k)ya and xa = −Ã−1Bua, i.e.
as δ→0, to obtain the reduced system in ur:

dur

dτ
= −f(a, εH , U

a, Y a). (35)

Finally, convergence of the ESC loop is demonstrated
with application of Nesic et al. (2010, Theorem 1). Let
zu(t) = Ua − µu(a,ua,k)ua, zy(t) = Y a − µy(a,ua,k)ya,

zx(t)=xa+Ã−1Bua, and z=[zu zy zx].

Assumption 4 A function β : R≥0×R≥0 → R≥0 is of
class KL if it is strictly increasing in the first argument
and strictly decreasing to zero in its second argument.
There exists βu ∈ KL such that the following holds: for
any positive pair (∆,ν), there exists ε∗ > 0 such that for
any ε ∈ (0,ε∗) and ||w||∞ ≤ ε the solutions of the system
u̇ = −f(a,ε,Ua,Y a) + w(t) satisfy |u(t)−u∗| ≤ βu(|u(0)−
u∗|,t)+ν, for all |u(0)−u∗|≤∆.

Theorem 1: Suppose that Assumptions 1, 2 and 4 holds.
Then, there exists βu and βz ∈ KL such that the following
holds: for any given positive pair (∆, ν), there exists ω∗0 > 0
and a∗ > 0 such that for any ω0 ∈ (0, ω∗0) and any
a ∈ (0, a∗), there exists δ∗(a) > 0 such that for any
δ ∈ (0, δ∗(a)), the solutions of the system satisfy

|ũ(t)| ≤ βu
(
|ũ(t0)|, ω0

π δ(t− t0)
)

+ ν, (36)

|z(t)| ≤ βz
(
|z(t0)|, ω0

π (t− t0)|
)

+ ν, (37)

for all |[ũ(t0) z(t0)]>| ≤ ∆ and t ≥ t0 ≥ 0.
Proof: see Appendix in Nesic et al. (2010).

The application of Nesic et al. (2010, Theorem 1) demon-
strates that the output of the system can be regulated ar-
bitrarily close to the extremum value Qy(u∗) by adjusting
tuning variables a, δ and εH .

5. EXAMPLE

To illustrate the performance gain of fast ESC over clas-
sical ESC, the following Wiener system with six’th order
dynamics is used:

ẋ1(t) = x2(t)− u(t), (38)

ẋ2(t) = −ω2
p1x1(t)− 2β1ωp1x2(t), (39)

ẋ3(t) = x4(t)− x2(t), (40)

ẋ4(t) = −ω2
p2x3(t)− 2β2ωp2x4(t), (41)

ẋ5(t) = x6(t)− x4(t), (42)

ẋ6(t) = −ω2
p3x5(t)− 2β3ωp3x6(t), (43)

y(t) = x26(t), (44)

in which, u(t) is the input variable, y(t) the cost output
variable, x1-x6 the state variables, ωp1 = 2π, ωp2 = 10π,
ωp3 = 14π are the resonance frequencies, and β1 = 0.2,
β2 = 0.025, β3 = 0.025 are the dampling factors. The
steady-state cost function is given by:

Qy(u) = u2. (45)

The transfer function of the linearized system at constant
input u is given by:

H(s, u) =
2ω2

p1u

s2 + 2βωp1s+ ω2
p1

·

ω2
p2

s2 + 2β2ωp2s+ ω2
p2

·
ω2
p3

s2 + 2β3ωp3s+ ω2
p3

. (46)

It is assumed that a low-order parametric model approx-
imation can be obtained at u = 1.5 which is accurate up
to a frequency ωq = 2 Hz:

Ha(s) =
12π2

s2 + 0.8πs+ 4π2
. (47)

To demonstrate robustness of the approach, random varia-
tions of the damping and resonance frequencies is applied
in the range of 5% of the nominal value to generate a
family of ten plants, see the gray lines in Figure 2. The
solid black line depicts the low-order approximation Ha.

The dither frequency for classical ESC is selected to be
0.4π with an amplitude of a = 0.15. A multisine with
Nk = 4 is designed with the highest dither frequency
ωNk

= ωq, see Table 1 for the multisine settings. Fig. 2
shows the dither frequencies with respect to the linearized
system dynamics at u = 1.5. The amplitude per frequency
a is selected such that the peak-to-peak variation of d(t)
is the same as in the classical ESC implementation. The
optimizer gain is tuned c = 0.0875 for both the classical
and fast ESC case.

Figure 3 shows the performance of fast ESC in comparison
to classical ESC. It can be seen that, the fast ESC
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Fig. 2. Bode plot of a family of linearized plant dynamics
at u = 1.5.

Fig. 3. Trace of extremum seeking control.

converges faster to a neighborhood of the optimum than
the classical ESC. The bottom plane shows the DE error
calculated with respect to the “true” local gradient of
(45). Note that, the classical ESC requires 5s before an
accurate DE is available, while the fast ESC only needs
2s. Furthermore, it can be seen that, the performance of
fast ESC is robust to the parameter variations.

6. CONCLUSION AND OUTLOOK

The results in this paper enhance the convergence speed
of Extremum Seeking Control (ESC) by leveraging from
local parametric model techniques. This allows to estimate
the gradient of the local steady-state cost using multiple
dither frequencies in the range of the system dynamics in
conjunction with the aid of frequency-domain analysis and
complex curve fitting in a receding horizon fashion. Hence,
the time scale separation principle in ESC is relaxed.
The transient performance is improved with a factor 4

Table 1. Multisine parameters

k 0 1 2 3

ωk 0.5 1 1.5 2

a 0.0593 0.0593 0.0593 0.0593

φk 0.7922 0.9595 0.6557 0.0357

compared to classical ESC, while robustness to plant
uncertainty enables the application of fast ESC. Future
work focuses on including measurement noise, delay and
multi-input systems.
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