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Abstract: This paper investigates a class of optimal control problems associated with Markov
processes with local state information. The decision-maker has only a local access to a subset
of a state vector information as often encountered in decentralized control problems in multi-
agent systems. Under this information structure, part of the state vector cannot be observed. We
leverage ab initio principles and find a new form of Bellman equations to characterize the optimal
policies of the control problem under local information structures. The dynamic programming
solutions feature a mixture of dynamics associated unobservable state components and the
local state-feedback policy based on the observable local information. We further characterize
the optimal local-state feedback policy using linear programming methods. To reduce the
computational complexity of the optimal policy, we propose an approximate algorithm based on
virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal
solution and corroborate the results with numerical case studies.
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1. INTRODUCTION

The subject of Markov decision process (MDP) has been
broadly explored in the area of robotics, wireless communi-
cation, and economics. In MDPs, the decision-maker is as-
sumed to have complete state information. Notwithstand-
ing, in many real world application, the direct observation
of the state is either impossible or difficult to acquire (See
Sharma and Sutanto (1997), Peng and Zhu (2019), Huang
et al. (2019)). Therefore, partially observable Markov de-
cision process (POMDP) becomes a standard framework
where the decision-maker does not have direct access to
the state information but indirect observations that are
correlated with the true state. A substantial literature
has been established over the past few decades, including
Puterman (2014); Altman (1999); Krishnamurthy (2016);
Sondik (1978).
In standard POMDPs, the state information as a whole
is taken as incompletely observable and the observations
are statistically dependent on the state. In this work, we
consider a class of problems where the state takes the form
of a vector and its information can be partitioned into two
components. One component contains a subset of states
that are completely observable while the other component
consists of a subset of states that are completely unobserv-
able. This class of problem often arises from distributed
multi-agent control systems, where one agent can only
observe his own state while the state information of the

others are not observable. We refer this class of problems
as MDP under Local State Information or LSI-MDP, in
short.
One difference between this class of problems and the
classical POMDPs is that decision-maker of LSI-MDP
has no information of a subset of states. As a result,
the optimal control policy of the decision-maker takes the
form of local-state feedback, which depends solely on the
observable components of the state vector. We use two
examples to motivate the LSI-MDP model as follows.
(1) Team Optimization Problem and Multiagent System

Problems
In both team optimization problem and multiagent
systems, multiple agents make decisions based on
their observations to optimize their objective func-
tions, and the decisions can impact the state of the
system, which is the aggregation of states of all the
agents (See Singh (1994), Gupta et al. (2015)). If their
objective functions are fully aligned, the problem be-
comes a team problem. If their objective functions
are partially aligned with each other, the problem
becomes a nonzero-sum game problem. Our work
studies this problem from the perspective of a single
agent in which the agent knows his own state but has
no access to the states of other agents.

(2) Optimal Planning in Robotics
The robots plan the route or actions based on the
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observations or information it acquires (See Kaelbling
et al. (1998); Parkan and Wu (1999)). Nevertheless,
due to the physical limitation of the sensors, there is
no guarantee that the robots are capable of obtaining
the complete observation of the state (See Sharma
and Sutanto (1997)). Hence, the state can be divided
into two parts: one part is observable and the other
part is unobservable. As the unobservable part of the
state is also influenced by the actions, this scenario
coincides with our model.

Specifically, our contributions can be summarized as fol-
lows:

• We formulate an LSI-MDP problem and characterize
the local-state feedback policy using the principle of
optimality. We identify the connections with MDPs
and POMDPs.

• We show that the local-state feedback policy is char-
acterized by a mixture of open-loop deterministic
nonlinear system dynamics and a feedback solution
arising from dynamic programming.

• We develop a method termed as Virtual Belief Method
to provide a suboptimal stationary local feedback
policy. We can show that the worst-case performance
degradation is bounded.

This paper is organized as the following. In Section II, we
present the problem formulation and identify the relations
of our framework with MDPs and POMDPs. In Section
III, we use the principle of optimality to establish the as-
sociated Bellman-like equation. In Section IV, we propose
a method to find suboptimal solutions. In Section V, we
study several special cases regarding the structures of the
system dynamics, cost function, and transition probabili-
ties. It is shown that under some of the special cases, the
method proposed in Section IV can yield optimal solution.
In Section VI, we conclude this work and give possible
directions of the future work.

2. PROBLEM FORMULATION

In this section, we present the problem formulation of the
infinite-horizon discounted cost optimal control problem
under local-state information. Let A be the finite action
space and X be the finite state space. The state of the
dynamical system is assumed to be a joint process of two
substates: observable substate and unobservable substate.
The observable substate, which is denoted by xo, can be
observed to the agent directly and utilized for the decision
making. The unobservable substate, which is denoted by
xu, cannot be obtained as observations by the agent. Thus,
the state space is the Cartesian product of two state
subspaces as follows:

X = Xu ×Xo,

where Xo contains all the possible observable substates xo

and Xu contains all the possible unobservable substates
xu.
The stage cost function is assumed to be a nonnegative
and bounded stationary function

c(x, a) : X ×A → R+.

The transition probability is given by a stationary function
p(x′|x, a) : Xo ×Xu ×A → [0, 1]|X |.

More specifically, it can be written as p(x′
o, x

′
u|xo, xu, a).

In this work, we study the following criteria:

V π
αu
(xo,0) = Eπ

[ ∞∑
t=0

βtc(xo,t, xu,t, at)

∣∣∣∣xo,0,

]
, (1)

where xo,t, xu,t, and at are the observable substate, unob-
servable substate, and action at time t, respectively. We
aim to determine the policy which minimizes (1). Here, β is
the discount factor and 0 ≤ β < 1. The distribution of the
initial state xu,0 is given by αu, π a policy is a collection of
the decision rules, and each decision rule is a mapping from
the space of the history of states and actions to the action
space. The agent only has access to the observable substate
xo at each time instant. Therefore, his decision can only
be dependent on the observation history formed by xo.
Formally, denote the state-action history of the original
system at time t as

ht = {xo,t, xo,t−1, ..., xo,0, αu, at−1, at−2, ..., a0} ,
and

h0 = {xo,0, αu} .
Let Ht be the space of ht. By definition, π = {dt}t and
dt : Ht → ∆(A).
Here, xu can be regarded as unobservable uncertainty in
the dynamic system. Thus, to cope with this uncertainty,
we have the expectation in (1) that averages out the
randomness induced by xu.
It is clear that our framework differs from the classical
MDPs and POMDPs and there exist close connections
between the LSI-MDP framework and these two models.
To see this, we let the dynamical system evolve according
to the following rule

(X ′
o, X

′
u) = f(xo, xu, a,Γ),

where Γ is an exogenous random variable.
Assumption 1. There exists a deterministic function g(·, ·)
such that at each time instant,

Xu,t = g(Xo,t, X̃u,t), (2)
where Xo,t and X̃u,t are conditionally independent condi-
tioned on a given state-action history.

This assumption means that we can decompose the unob-
servable into two parts: the first part is correlated with
the observable substate and second part is independent of
the observable substate. Let X̃u be the space of x̃u. Then
g : Xo × X̃u → Xu.
Assumption 2. For every xo ∈ Xo, g(xo, x̃u) is an injective
function.

This assumption implies that, given a pair of (xo, xu), we
can identify the value of x̃u uniquely.
Next, we use the following theorem to construct a con-
trolled Markov process in which {xu,t}t is conditionally
independent of {xo,t}t.
Theorem 1. Under Assumptions 1 and 2, for any given
fixed policy, there exists a random process {X̃u,t}t which
satisfies the following:

a) it evolves (conditionally) independently of {Xo,t}t,
i.e., such that

p(x′
o, x

′
u|xo, xu, a) = p(x′

o|xo, a)p(x̃
′
u|x̃u, a),
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where xu = g(xo, x̃u) and x′
u = g(xo, x̃

′
u); and

b) one can represent the state of the system as (Xo,t, X̃u,t)
with the same amount of information; at time t + 1,
there exists a deterministic function f̃ such that

(Xo,t+1, Xu,t+1) = f̃(Xo,t, X̃u,t, a,Γ).

Proof See Peng et al. (2020). �
In view of the above theorem, in some of the future
sections, we focus on the class of MDPs with ‘conditionally
independent’ transition probabilities as in the right hand
side of equation (1).
To complete the earlier argument, here we discuss how
our model is related to POMDPs and MDPs. In POMDP,
the observation and the state are assumed to be statisti-
cally correlated. Our system formulation includes the case
where xu,t and xo,t are conditionally independent and xu,t

provides no information of xu,t at all (once actions are
observed). Hence it is a generalization of POMDP. When
the relation between xo and xu can be described by a
deterministic function, ḡ, such that xu = ḡ(xo), then our
framework reduces to a classical MDP, as xo can represent
the system state.

3. DYNAMIC PROGRAMMING WITH BELIEFS

As the substate xu cannot be observed, the agent can
form belief over the unobservable state. Denote the belief
at time t by b(xu,t), which evolves (depending upon
observation xo,t+1) according to

b(xu,t+1) =

∑
xu,t

p(xo,t+1, xu,t+1|xo,t, xu,t, at)b(xu,t)∑
x̂u,t,x̂u,t+1

p(xo,t+1, x̂u,t+1|xo,t, x̂u,t, at)b(x̂u,t)
,

(3)
and

b(xu,0) = αu(xu,0).

With a slight abuse of notation, let bt be the belief vector
at time t. Thus, with the state denoted by (xo, b), the
system is Markovian. We define the transition function of
the belief state as

bt+1 = T (xo,t+1, xo,t, bt, at). (4)
We would like to point out that the belief state acts as a
deterministic nonlinear subsystem.
Define

c̄(xo, b, a) =
∑
xu

b(xu)c(xo, xu, a).

Since xu’s are not observable and we can only form belief
over xu. After taking expectation using the belief of xu,
we define the new objective function

V̄ π̄
αu
(xo,0, b0) = Eπ̄

[ ∞∑
t=0

βtc̄(xo,t, bt, at)

∣∣∣∣xo,0

]
. (5)

As we have mentioned above, the new system whose state
is (xo, b) is Markovian. Denote the set of Markovian deter-
ministic policies in this new system by ΠMD. That is, the
decision at time t is only dependent on the current state
(xo,t, bt).

For the system whose state is (xo, b), the state-action
history at time t is given by
h̄t = {xo,t, xo,t−1, ..., xo,0, bt, bt−1, ..., b0, at−1, at−2, ..., a0} ,

and
h̄0 = {xo,0, b0} .

It is worth noting that h̄t provides the same information
as ht, as bt evolves according to the rule (3).
Lemma 1. If a given pair of policies π = {dt}t and π̄ ={
d̄t
}
t

satisfies that d̄t(h̄t) = dt(ht), then
V π
αu
(xo,0) = V̄ π̄

αu
(xo,0, b0).

Proof See Peng et al. (2020). �
Theorem 2.
inf
π∈Π

V π
αu
(xo) = inf

π∈Π
V̄ π̄
αu
(xo,0, b0) = inf

πMD∈ΠMD

V̄ πMD
αu

(xo,0, b0).

Proof See Peng et al. (2020). �
Using standard arguments of dynamic programming, we
can write down the following Bellman equation:

u(xo, b) = min
a

{
c̄(xo, b, a)

+ β
∑
x′
o,b

′

u(x′
o, b

′)p(x′
o, b

′|xo, b, a)

}
.

(6)

We note that the system can be regarded as a mixture of
two subsystems: one is MDP and the other is a nonlinear
deterministic system. And the states of these two subsys-
tems are intertwined through the transition probability.
Let αo(xo) be the distribution of the initial observable
substate xo. Moreover, let B be the reachable set of the
belief, which contains all the possible belief. If B is infinite,
then the number of constraints of linear programming
formed by (6) are also infinite, even for finite state and
action spaces. Therefore, solving this optimization prob-
lem is challenging using the classical linear programming
method.

4. VIRTUAL BELIEF METHOD

In this section, we propose a method called virtual belief
method, which aims to approximate the system with an
MDP and provide a suboptimal solution. We show that
this proposed method reduces the complexity and yet
guarantees the performance by a bounded term.
In the virtual belief method, the agent is assumed to
believe that at each time instant, the system is at xu with
probability b0(xu), which is equal to the distribution of
the initial substate xu,0. And this belief stays unaltered
throughout the whole process.
To proceed, let us formally define the virtual system
constructed by this method. The transition probability is
in this system given by

p̃(x′
o|xo, a) =

∑
xu

p(x′
o|xo, xu, a)b0(xu).

The new cost function now becomes
c̃(xo, a) =

∑
xu

b0(xu)c(xo, xu, a).

The objective function in the new system is given by

Ṽ π
αu
(xo,0) = Eπ

[ ∞∑
t=0

βtc̃(xo,t, at)

∣∣∣∣xo,0

]
.
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It is straightforward to check that the system considered
in the virtual belief method is a classical MDP. Following
the procedures in Puterman (2014), the Bellman equation
associated with the MDP is

ũ(xo) = min
a

c̃(xo, a) + β
∑
x′
o

ũ(x′
o)p̃(x

′
o|xo, a)

 . (7)

To solve this MDP, we revisit the method of linear pro-
gramming. Likewise, we begin with the primal linear pro-
gramming.

Primal LP′ (Virtual Belief Model)
min
ũ(xo)

∑
xo

ũ (xo)αo(xo)

s.t. c̃(xo, a) + β
∑
x′
o

ũ(x′
o)p̃(x

′
o|xo, a) ≤ ũ(xo), ∀ xo, a.

The corresponding dual LP is given by the following.

Dual LP′

max
ỹ(xo,a)

∑
xo,a

ỹ(xo, a)c̃(xo, a)

s.t. αo(x
′
o) +

∑
xo,a

βp̃(x′
o|xo, a)y(xo, a) =

∑
a

ỹ(x′
o, a),

∀ x′
o

ỹ(xo, a) ≥ 0, ∀ xo, a.

Both linear programmings above are solvable as they have
finite constraints (with finite state and action spaces). To
see how the disregard of the evolution of the belief process
{bt}t can deteriorate the optimization performance, we
first define the operator acting on ũ(xo) as follows:

L̃ũ(xo) = min
a

{
c̃(xo, a) + β

∑
x′
o,xu

ũ(x′
o)p̃(x

′
o|xo, a)

}
. (8)

To make comparisons, we consider the bellman equation
in a full-information setting. In this setting, both xo and
xu are available for decision making, resulting in a classical
MDP. The objective funtion in this setting is given by

V π
f,αu

(xo,0) = Eπ

[ ∞∑
t=0

βtc(xo,t, xu,t, at)

∣∣∣∣xo,0

]
.

Let the value function in the full-information setting be
v(xo, xu), which satisfies the following fixed-point equation

v(xo, xu) = min
a

{
c(xo, xu, a)

+ β
∑
x′
o,x

′
u

v(x′
o, x

′
u)p(x

′
o, x

′
u|xo, xu, a)

}
.

(9)
Define the operator acting on {v(xo, xo)}xo,xu

as

Lv(xo, xu) = min
a

{
c(xo, xu, a)

+ β
∑
x′
o,x

′
u

v(x′
o, x

′
u)p(x

′
o, x

′
u|xo, xu, a)

}
.

(10)

Also, the fixed-point equation (9) can be transformed to
the following linear programming problems.

Primal LP′′ (Full information case)

min
v

∑
xo

v (xo, xu)αo(xo)αu(xu)

s.t. c(xo, xu, a) + β
∑
x′
o,x

′
u

v(x′
o, x

′
u)p(x

′
o, x

′
u|xo, xu, a)

≤ v(xo, xu), ∀ xo, xu, a.

And the corresponding dual LP is given by the following.

Dual LP′′

max
yf

∑
xo,xu,a

yf(xo, xu, , a)c(xo, xu, a)

s.t.
∑

xo,xu,a

βp(x′
o, x

′
u|xo, xu, a)yf(xo, xu, a)

=
∑
a

yf(x
′
o, x

′
u, , a)− αo(x

′
o)αu(x

′
u), ∀ x′

o, x
′
u

yf(xo, xu, , a) ≥ 0, ∀ xo, xu, a.

Before we give the main theorem of this section, we present
the following two propositions. Puterman (2014).
Proposition 3. The operator defined in (8) is a contraction
mapping and it has the following properties:

(1) if ũ ≥ L̃ũ, then ũ ≥ ũ∗;
(2) if ũ ≤ L̃ũ, then ũ ≤ ũ∗;
(3) if ũ = L̃ũ, then ũ = ũ∗.

Proposition 4. The operator defined in (10) is a contrac-
tion mapping and it has the following properties:
(1) if v ≥ Lv, then v ≥ v∗;
(2) if v ≤ Lv, then v ≤ v∗;
(3) if v = Lv, then v = v∗.

Theorem 5. (Comparison between Full information
and Virtual Belief models)
If the transition probability can be decomposed as

p(x′
o, x

′
u|xo, xu, a) = p(x′

o|xo, a)p(x
′
u|xu, a), (11)

then
sup
xo,0

∣∣∣∣ infπ∈Π
Ṽ π
αu
(xo,0)− inf

π∈Π
V π
f,αu

(xo,0)

∣∣∣∣
is bounded by

C = max

{
−C

1− β
,

C̄

1− β

}
,

where
C̄ := max

xo,xu,x′
u,a

{c(xo, xu, a)− c(x, x′
u, a)} ,

and
C := min

xo,xu,x′
u,a

{c(xo, xu, a)− c(x, x′
u, a)} .

Proof See Peng et al. (2020). �
Remark 1. The theorem above states that, even though
the direct observation of xu cannot be obtained, we can
still guarantee that the performance is deteriorated at
most by a bounded term.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6966



We note that the bound on the difference is dependent
on the structure of the cost function with respect to xu.
More explicitly, the bounds depend on the sensitivity of
c(xo, xu, a) with respect to the change in xu.
Also, we can compare the value function in virtual belief
method and the value function define in (5). The compar-
ison results are stated in the following theorem.
Theorem 6. (Comparison between POMDP and Vir-
tual Belief Models)
If the transition probability can be decomposed as

p(x′
o, x

′
u|xo, xu, a) = p(x′

o|xo, a)p(x
′
u|xu, a),

then
sup
xo,0

∣∣∣∣ infπ∈Π
V π
αu
(xo,0)− inf

π∈Π
Ṽ π
αu
(xo,0)

∣∣∣∣
is bounded by

C ′ = max

{
−C ′

1− β
,

C̄ ′

1− β

}
,

where
C̄ ′ := max

b,b′∈B,xo,a
{c̄(xo, b, a)− c̄(xo, b

′, a)} ,

and
C ′ := min

b,b′∈B,xo,a
{c̄(xo, b, a)− c̄(xo, b

′, a)} .

Proof. The proof of Theorem 6 largely relies on the proof
of Theorem 5. �

The results in Theorem 5 & 6 hold under the assumption
that the transition probability can be decomposed. Gener-
ally, when this assumption does not hold, even if the cost
function does not change significantly with respect to xu,
the results may not hold. In such cases, the update of the
belief is required for estimating the evolution of observable
part {xo,t}t.

5. SPECIAL CASES

In this section, we discuss several special cases concerning
the structure of the system dynamics, cost function, and
transition probabilities.

5.1 xu = ḡ(xo) or Xu = ∅

If xu = ḡ(xo), the unobservable substate can be fully
determined from the observable substate. That is, we
can infer the true value of the unobservable state from
the observation. Then, the overall state can be fully
characterized by xo. Therefore, xo is sufficient to represent
the overall state of the system. As we mentioned earlier, in
this case, the system reduces to MDP. It is straightforward
to see that (7) and (9) coincide and thus they yield the
same value function. Similar arguments hold for the case
where Xu = ∅.

5.2 Xo = ∅

In this case, the system is a deterministic system in which
the state can be fully characterized by the belief b. And
the approximated optimization faced here is given by

min
π

∞∑
t=0

βtbTt c(a)

s.t. bt+1 = Pu(a)bt

(12)

Here, with a slight abuse of notation, c(a) = {c(:, a)} and
Pu(a) is the transition matrix of xu for a given action a.
The optimization above is a classical nonlinear optimal
control problem.

5.3 c(xo, xu, a) = c(xo, x
′
u, a)

This case is trivial as the stage cost function is no longer
a function of the unobservable substate. Thus, C̄ = C.
Here, C̄ and C are defined in the proof of Theorem 2.
The two value functions are equal and the virtual belief
method loses no performance.

5.4 p(x′
o, x

′
u|xo, xu, a) = p(x′

o|xo, a)p(x
′
u|xu)

In this case, the independent random process, {xu,t}t, is
not controllable and thus evolves independently respect
to the actions. By assuming that the transition kernel
p(x′

u|xu) is ergodic, we denote the stationary measure of
xu by bs(xu) and the corresponding belief vector by bs. In
such that a setting, as there exist stationary measures over
xo and xu jointly, we can reduce (6) to

us(xo) = min
a

{
c̄(xo, bs, a) + β

∑
x′
o

us(x
′
o)p(x

′
o|xo, a)

}
,

(13)
which leads to tractable linear programmings as the state
space and number of constraints are finite. As for the
virtual belief method, if we replace the initial belief vector
b0 with bs, then it will yield the optimal solution.

6. NUMERICAL EXAMPLE

In this section, we use numerical experiments to demon-
strate o results. Consider the following dynamical system:

A = {0, 1}, Xo = {0, 1}, Xu = {0, 1},
Let Po(a) and Pu(a) be the transition matrices of the ob-
servable substate and unobservable substate, respectively.

Po(0) =

[
0.8 0.2
0.5 0.5

]
, Po(1) =

[
0.2 0.8
0.8 0.2

]
,

Pu(0) =

[
0.2 0.8
0.8 0.2

]
, Pu(1) =

[
0.8 0.2
0.5 0.5

]
.

Let C(a) = {c(xo, xu, a)}Xo×Xu
be the cost matrix.

C(0) =
[
2 0.2
1 0.4

]
, and C(1) =

[
0.7 0.4
1 0.4

]
.

And the probabilities of xu,0 = 0 and xo,0 = 0 are both
assumed to be 1/2. The discount factor is set as β = 1/2.
First consider the system of full information, i.e., the agent
has access to both xo and xu. The optimal value found by
solving LP is approximately 2.0524. And if xu cannot be
observed, using virtual belief method and we have that the
policy d(xo) = 1, ∀ xo. and we obtain the value as 2.3714,
which is bounded by C.
Another way to find the find the stationary policy is by
solving the following constrained linear programming:

(Constrained) Dual LP∗
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min
yc

∑
a,xo,xu

yc(xo, xu, a)c(xo, xu, a)

s.t.
∑
a

yc(x
′
o, x

′
u, a)− αo(x

′
o)αu(x

′
u)

=
∑

xo,xu,a

βp(x′
o, x

′
u|xo, xu, a)yc(xo, xu, a), ∀ x′

o, x
′
u

yc(xo, xu, a) = yc(xo, x
′
u, a), ∀ xo, xu, x

′
u, a.

Here, y(xo, xu, a) is the measure function measuring the
frequency of the system visiting the state-action pair
(xo, xu, a). The constraint arises from the fact that xu

cannot be observed and used in the policy in the system
whose state is solely xo. The corresponding primal LP is
given by

Primal LP∗

min
uc

∑
xo,xu

uc (xo, xu)αo(xo)αu(xu)

s.t.
∑
xu

uc(xo, xu)−
∑
xu

c(xo, xu, a)

≥ β
∑

xu,x′
o,x

′
u

uc(x
′
o, x

′
u)p(x

′
o, x

′
u|xo, xu, a), ∀ xo, a.

Note that there exists one-to-one correspondence between
the solutions to Primal LP∗ and Dual LP∗. There is no
dynamic programming equation associated with Primal
LP∗, yet it provides a numerical method to compute the
stationary policy. The optimal deterministic stationary
found using the constrained LPs is given by dMD(xo) = 1,
∀ xo, which yields value 1.8706.

7. CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this paper, we have studied LSI-MDP, which is a
Markov decision process with incomplete state informa-
tion. In this model, the state can be divided into two
parts, one of which is observable and the other is unob-
servable. System of this kind is closely related to MDP
and POMDP and we have pointed out their relations. We
have shown that directly solving optimal control problem
in such systems is challenging using the classical linear pro-
gramming approach, as the number of decision variables
(or constraints) is possibly infinite. We have proposed a
new method to tackle this challenge, which provides a
suboptimal solution. We have provided bounds on the dif-
ference between optimal and sub-optimal solution, under
certain separability conditions.

7.2 Future Works

When coping with an optimization problem with uncer-
tainty, the agent can either average the randomness out
or be robust to the uncertainty. As a consequence, if
we consider the unobservable substate as the source of
uncertainty, we can formulate a robust optimal control
problem, where the objection is given by the following:

V π
R (xo,0) = sup

xu

∞∑
t=0

Eπ

[
βtc(xo,t, xu,t, at)

∣∣∣∣{xu,s}s≤t

]
.

The agent aims to find an optimal policy while being
robust to all the possible trajectories of the unobservable
substate, xu. It is worth noting that the transition prob-
abilities and the cost function share the same uncertainty
induced by xu, which makes the robust problem NP-hard
as shown in Mannor et al. (2012); Bagnell et al. (2001).
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