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Abstract: Dual control explicitly addresses the problem of trading off active exploration and exploitation
in the optimal control of partially unknown systems. While the problem can be cast in the framework of
stochastic dynamic programming, exact solutions are only tractable for discrete state and action spaces
of very small dimension due to a series of nested minimization and expectation operations. We propose
an approximate dual control method for systems with continuous state and input domain based on a
rollout dynamic programming approach, splitting the control horizon into a dual and an exploitation
part. The dual part is approximated using a scenario tree generated by sampling the process noise and the
unknown system parameters, for which the underlying distribution is updated via Bayesian estimation
along the horizon. In the exploitation part, we fix the resulting parameter estimate of each scenario
branch and compute an open-loop control sequence for the remainder of the horizon. The key benefit
of the proposed sampling-based approximation is that it enables the formulation as one optimization
problem that computes a collection of control sequences over the scenario tree, leading to a dual model
predictive control formulation.

Keywords: dual control, stochastic optimal control, nonlinear predictive control, learning

1. INTRODUCTION

Many advanced control methods require a model of the system
to be controlled. The standard procedure is to perform offline
system identification (Ljung (1986)) of the plant and develop
a posteriori a controller based on the identified model. This
approach, however, assumes that all system characteristics have
been observed during offline identification, which is becoming
increasingly challenging and time-consuming for complex sys-
tems and environments. Adaptive control techniques (Åström
and Wittenmark (2008)) address this problem by simultane-
ously learning and controlling an uncertain dynamical system.
This leads to the well-known exploration-exploitation trade-off,
which is computationally difficult to address. For this reason,
many techniques revert to passive learning, i.e. the control in-
puts are chosen only with respect to the performance objective
and not in order to drive active exploration of the unknown
dynamics.

In this paper, we develop an approximate dual control al-
gorithm that aims at optimally balancing active exploration
and exploitation in the optimal control of partially unknown
systems with continuous state and input spaces, while offer-
ing a tractable optimization-based formulation. The proposed
method casts the exploration-exploitation trade-off as a stochas-
tic optimal control problem by extending the state with the cur-
rent parameter estimate, for which the optimal solution can be
determined by applying stochastic dynamic programming (DP)
with imperfect state information (Bertsekas (2017)). The so-
lution relies on the information state of the system, the dimen-
sionality of which grows rapidly along the horizon. For discrete
state, input and parameter spaces this results in partially ob-
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servable Markov decision processes (POMDP) (Poupart et al.
(2006)), which are hard to solve even for small and medium
sized systems (Santamarı́a et al. (1997)).

Stochastic DP provides the optimal exploration-exploitation
trade-off with respect to the specified cost, and can therefore
be regarded as the exact solution to the dual control prob-
lem (Feldbaum (1961), Mesbah (2018)). However, exact DP
solutions are computationally tractable only for discrete state
and action spaces of very small dimension. Among the approx-
imate solutions proposed in the literature, dual control methods
based on approximations of DP are known as implicit dual
control methods (Filatov and Unbehauen (2000)), since the
dual effect is implicit in the approximate solution of the Bell-
man equation. Solutions can be found by using approximate
dynamic programming (ADP) (Tse and Bar-Shalom (1973),
Bayard and Eslami (1985)) or the wide-sense property (Klenske
and Hennig (2016)). An alternative is given by explicit dual
control methods, which provide the dual effect explicitly, e.g.
by heuristically adding probing features to the control inputs
or to the cost (Marafioti et al. (2014), Tanaskovic et al. (2014),
Heirung et al. (2017)). We refer to (Mesbah (2018)) for more
references and an overview of the literature.

The formulation proposed in this paper is an implicit dual
control technique that makes use of an ADP strategy, gener-
ally referred to as a rollout approach (Bertsekas (2017)). The
method is based on splitting the control horizon in a dual and
an exploitation part. In the dual part, we approximate the DP
solution by constructing a scenario tree from samples of the
uncertain system parameters and process noise. Each subtree
is associated with a control input and a parameter distribution
conditioned on the previously seen realizations and obtained
at each time step by Bayesian estimation. A crucial feature
of this formulation is its ability to maintain the dual effect by
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continuously updating the parameter distribution in the predic-
tion based on scenarios. In the exploitation part, the param-
eter distribution is fixed for the remaining time steps of the
control horizon. Furthermore, the control sequence associated
with each sampled trajectory is optimized in open-loop, as in
model predictive control (MPC). Similar techniques developed
in an MPC setting are presented in (Thangavel et al. (2018)),
in which future observations are used to update disturbance
confidence bounds in a robust formulation, and (Hanssen and
Foss (2015)), in which the unknown system parameter samples
are updated using an ensemble Kalman filter.

In contrast to these approaches, we systematically derive a
dual control method with regard to the underlying stochastic
optimal control problem and its exact DP solution. Sample-
based computations approximate the expected value operations
in the Bellman equation, resulting in the construction of a sce-
nario tree. Within each scenario branch, we update the avail-
able information by Gaussian conditioning of the parameter
distribution on observations. This explicit connection to DP
and Bayesian estimation comes with several advantages. It al-
lows the connection to a number of established ADP strategies,
for instance motivating the use of a rollout approach, which
provides computational tractability for longer control horizons.
This interpretation also provides a statistically consistent anal-
ysis of concepts introduced in (Hanssen and Foss (2015)).
Furthermore, a Bayesian update of the parameter distribution
within each scenario branch provides a flexible framework. In
this paper, we specifically address parameter affine systems
under Gaussian noise, for which the Bayesian update can be
analytically expressed. By providing a clear interpretation of
different approximation steps in the DP framework, the pro-
posed method can be easily extended to other system classes
and distributions. Finally, we show that the overall optimization
problem, involving both the dual and exploitation part, can be
formulated with respect to a collection of control sequences
along the branches of the scenario tree, resulting in a dual
stochastic MPC approach which can be solved using gradient-
based optimization techniques.

The paper is organized as follows. In Section 2 we formulate
the problem and recount the stochastic dynamic programming
solution. The proposed approximate dual control method is
presented in Section 3. In Section 4 we discuss examples and in
Section 5 final remarks.

1.1 Notation

With P[·|·] we refer to the conditional probability. A normally
distributed variable x with mean µ and covariance Σ is denoted
x ∼N (µ,Σ). Ex[·] represents the expected value with respect
to the random variable x. We use upper script indices to refer to
samples of a quantity, and lower script indices for the time step,
i.e. x j

k denotes a sample j of state variable x at stage k. The zero
matrix is defined as 0n,m and the identity matrix as In,m, with n
rows and m columns.

2. PRELIMINARIES

2.1 Problem Formulation

We consider the control of discrete-time dynamical systems
with parametric uncertainty subject to additive process noise,
which can be described by

xk+1 = Φ(xk,uk)θ +wk, (1)

where Φ(xk,uk) ∈ Rnx×nb is a matrix composed of nonlinear
basis functions φi j(xk,uk) mapping the states xk ∈ Rnx and
control inputs uk ∈ U ⊆ Rnu to scalar values, i.e. φi j : Rnx ×
Rnu → R. The set U defines the input constraints, the distur-
bance wk ∼ N (0,Σw) is assumed to be i.i.d. Gaussian and
θ ∈ Rnb is a vector of fixed but uncertain parameters. In this
paper, we consider the case of Gaussian distributed continuous
parameters θ ∼N (µθ ,Σθ ). Note that system (1) includes, e.g.,
the case of LTI systems with parametric uncertainty.

The goal is to find an optimal policy sequence Π = {π0, . . . ,
πN−1} for system (1), where πk :Rnx→U, minimizing the finite
horizon cost

JN(Π,x0) := Eθ ,w0,...,wN−1

[
N−1

∑
k=0

lk(xk,πk(xk))+ lN(xN)

]
, (2)

where N is the length of the control horizon, lk : Rnx×Rnu →R
is a potentially time-varying stage cost and lN : Rnx → R is the
terminal cost.

We address this finite-horizon stochastic optimal control prob-
lem using stochastic dynamic programming (DP), outlined in
the following, offering the key property of inherently leading to
a dual control policy.

2.2 Stochastic DP with Parametric Uncertainty

In order to apply DP to problem (2), we describe system (1)
using the augmented state [xk,θk]

T , i.e.[
xk+1
θk+1

]
=

[
Φ(xk,uk)θk

θk

]
+

[
wk

0nb,1

]
, (3)

for which information regarding the constant and unknown
parameter state θk = θ is only accessible through measurements
of the state xk. This formulation allows for phrasing the prob-
lem in the framework of systems with imperfect state informa-
tion (Bertsekas (2017)), for which the DP solution should take
into account the information about the parameter distribution
gained along the control horizon. The information available at
time step k can be formalized using the information vector Ik,
defined as

Ik := [xk, . . . ,x0,uk−1, . . . ,u0],

with I0 := [x0]. DP recursively computes the optimal policy by
evaluating the Bellman equation (see e.g. Bellman (1966)) as a
function of the information vector Ik, i.e.

J∗k (Ik) := min
πk

lk(xk,πk)+Eθ ,wk

[
J∗k+1(Ik+1)

∣∣∣Ik

]
, (4)

for k = 0, . . . ,N−1, which is initialized with J∗N(IN) := lN(xN).
The expected value of the optimal cost-to-go is evaluated with
respect to the process noise and the unknown parameters, given
the available information. The evolution of the probability dis-
tribution of the parameter vector, conditioned on the informa-
tion state, can be recursively obtained via Bayesian estima-
tion (Mesbah (2018))

P[θ |Ik] =
P[xk|θ ,uk−1, Ik−1]P[θ |Ik−1]

P[xk|uk−1, Ik−1]
, (5)

with P[θ |I0] := P[θ ], i.e. the prior distribution over the parame-
ter vector θ .

The resulting DP policy therefore takes into account future
observations, which affect the knowledge about the parameter
distribution. As a consequence, the solution inherently explores
the system as necessary to optimally solve the control problem
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given by (2), providing dual control with optimal exploration-
exploitation trade-off. Unfortunately, the alternation of mini-
mization and expectation steps induced by the Bellman equa-
tion is generally computationally intractable even under the
given assumption that the unknown parameter is Gaussian dis-
tributed and the state is perfectly measured (Klenske and Hen-
nig (2016)), in which case (5) is analytically tractable.

In the next section, we propose an approximate dual control
method based on stochastic DP, which provides a tractable
formulation by splitting the control horizon in a dual part and
exploitation part and approximating the solution via sampling.

3. DUAL STOCHASTIC MPC

The approach introduced in the following relies on a suboptimal
solution to the Bellman equation, often referred to as the rollout
approach. Optimally solving problem (2) requires to carry out
the DP algorithm for all steps of the control horizon of length
N. The idea of a rollout approach is to use a truncated horizon
of length L < N and approximating the cost to go J̃L(IL) for
the remainder of the horizon. The approximate DP recursion is
given by

J̃k(Ik) := min
πk

lk(xk,πk)+Eθ ,wk

[
J̃k+1(Ik+1)

∣∣∣Ik

]
, (6)

for k = 0, . . . ,L−1, which is initialized with J̃L(IL) and results
in a L-step lookahead problem (Bertsekas (2017)). The terminal
cost J̃L(IL) is evaluated with respect to a suboptimal base policy
π̃L, resulting in a suboptimal control policy with respect to
the N-step horizon cost (2). It can, however, be shown that
the policy obtained from (6) is always improving with respect
to the base policy (Bertsekas (2017)). For this reason, rollout
approaches are generally implemented in a receding horizon
fashion.

We propose an approximate dual control algorithm for solv-
ing (2) based on the principles of the rollout approach. The
control horizon is split into a dual part of length L, which is
formulated as an L-step lookahead problem (6), and an ex-
ploitation part of length N − L, which is captured via the ter-
minal cost-to-go J̃L(IL). While the rollout approximation in (6)
maintains the property that the solution is inherently dual, the
stochastic DP algorithm is still computationally intractable. We
address this problem by further approximating (6) for the dual
part and evaluating the expectations as averages over samples of
process noise and unknown parameters. These samples are used
to build a scenario tree, as exemplified in Figure 1 for L= 2. The
subtree for every time step is defined by a control input and an
updated information state, which in turn affects the parameter
distribution and subsequently samples of the parameters for
k = 0, . . . ,L−1.

Using averages instead of evaluating the expected value al-
lows for unnesting the minimizations arising in (6) and for
simultaneously optimizing all control inputs associated to each
subtree, without having to explicitly carry out the DP recursion.
Nevertheless, this approximation still provides a solution that
depends on future observations, while reacting to the sampled
state associated with each subtree, hence ensuring dual control.

The terminal cost J̃L(IL) is obtained from a base policy, which
fixes the information state and optimizes over a single control
sequence for each sampled trajectory for the remainder of the
horizon of length N−L, corresponding to a (non-dual) stochas-
tic MPC problem. Overall, this formulation of the dual and
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Fig. 1. Scenario tree for L = 2: The state propagation starts at
a given initial condition and evolves, under a given input
sequence, according to the Ns = 2 sampled parameters
and disturbances. The exploitation part further predicts the
trajectory using the parameter distribution from step k = 2.

the exploitation part allows for merging the two optimization
subproblems into one optimization problem that computes a
collection of control sequences for the entire control horizon
N, for all the branches of the scenario tree.

In the following subsections, further details are given on the
scenario tree for solving the dual part and on the parameter
inference (5) performed under the assumption of a Gaussian
distributed parameter. Furthermore, we discuss the optimal
control problem for the exploitation part defining the terminal
cost-to-go J̃L(IL) and finally the overall optimization problem
that merges the two parts and approximates the dual control
problem in the form of a dual MPC approach.

3.1 Dual Part

Scenario Tree Generation. In order to approximate the DP
recursion in the dual part, we consider a scenario tree generated
by repeated sampling of the noise wk and parameter vector
θ , given the distribution defined by the available information
vector Ik. The nodes of the tree are denoted by the state samples
x jk

k , where step k indicates the depth level of the tree and
jk = 1, . . . ,Nk

s indicates a sample at this level, with Nk
s being

the k-th power of the number of scenarios Ns. At each node
x jk

k in the tree, we generate Ns scenarios of wk ∼ N (0,Σw)

and θ ∼ P[θ |I jk
k ], that is the distribution of θ according to the

information vector I jk
k at that node. This generates the child

nodes according to (1), i.e.

x jk+1
k+1 = Φ(x jk

k ,u jk
k )θ

jk+1
k +w jk+1

k , jk+1 = 1, . . . ,Nk+1
s (7)

where node jk at step k is the parent of node jk+1 at step k+1,
i.e. x jk

k = p(x jk+1
k+1 ). At the first time step, for instance, we draw

Ns sample pairs (w j1
0 ,θ j1

0 ) according to w0 ∼N (0,Σw) and the
prior distribution θ ∼ P[θ ]. Starting from x1

0 and applying an
input u1

0, this gives rise to Ns child nodes x j1
1 , j1 = 1, . . . ,Ns,

with information I j1
1 = [x1

0,u
1
0,x

j1
1 ]. Applying this procedure
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over L steps, we obtain the scenario tree depicted in Figure 1
for L = 2 and Ns = 2.

The updated distributions P[θ |I jk
k ] are computed for each child

node using Bayes rule (5), enabling recursive application of the
procedure, which will be detailed in the following. The scenario
tree depends on the selection of inputs u jk

k which, as opposed to
a classical DP recursion, will be optimized in one batch (see
subsection 3.1.3 for further details).

Parameter Update. The vector of available information at
each node of the scenario tree is given by

I jk+1
k+1 = [x jk+1

k+1 ,u
jk
k , I jk

k ], with I0
1 = x1

0

such that for the element x jk
k of I jk

k , the relation x jk
k = p(x jk+1

k+1 )
holds. This vector collects the states visited up to time k and
inputs applied until k−1 for each node jk, and is used to update
the probability distribution of the unknown parameters θ using
Bayesian estimation (5). The case considered here, where in (1)
the uncertain parameters affect the system linearly and the noise
as well as the prior parameter distribution is Gaussian, allows
inference to be carried out in closed form.

Assuming that, given the current information vector I jk
k at stage

k and node jk, the parameter vector is Gaussian distributed, i.e.

P[θ |I jk
k ] = N (µ

jk
θk
,Σ

jk
θk
),

we generate samples θ
jk+1

k from P[θ |I jk
k ] and find the likelihood

of the state at the next time step as

P[xk+1|θ
jk+1

k ,u jk
k , I jk

k ] = N (Φ(x jk
k ,u jk

k )θ
jk+1

k ,Σw) .

By additionally drawing Ns samples from the noise distribution
and choosing an input u jk

k , we generate realizations of the
state x jk+1

k+1 at nodes jk+1, which define the information state

I jk+1
k+1 . According to Bayes’ rule (5), at these nodes we have a

parameter distribution

P[θ |I jk+1
k+1 ]∝ P[xk+1|θ

jk+1
k ,u jk

k , I jk
k ] P[θ |I jk

k ]. (8)
Since the Gaussian distribution is self-conjugate, the posterior
will also be Gaussian, with updated mean and covariance ma-
trix defined as (Bishop (2006))[

Σ
jk+1
θk+1

]−1
=
[
Σ

jk
θk

]−1
+Φ(x jk

k ,u jk
k )T

Σ
−1
w Φ(x jk

k ,u jk
k ),

µ
jk+1

θk+1
= Σ

jk+1
θk+1

(
[
Σ

jk
θk

]−1
µ

jk
θk
+Φ(x jk

k ,u jk
k )T

Σ
−1
w x jk+1

k+1 ).
(9)

This provides a recursive update of the first and second mo-
ments of the parameter distribution, based on the information
available at the last measured node I jk+1

k+1 . Starting this procedure
from a Gaussian prior P(θ) therefore provides an analytic re-
cursion, resulting in Gaussian parameter estimates at each node
in the scenario tree.

This Bayesian framework provides great flexibility and can be
readily adjusted to different use cases, for instance when the up-
dated distributions cannot be analytically computed. Examples
found in (Subramanian et al. (2015), Hanssen and Foss (2015))
make use of unscented and ensemble Kalman filters, which can
be understood as an approximate Bayesian parameter update.

DP Approximation using Scenario Tree. We outline the pro-
cedure for solving (6) using the scenario tree and assuming that
J̃L(I

jL
L ) is given for each sampled path. The formulation of the

terminal cost-to-go will then be discussed in subsection 3.2.
The expectation in (6) is approximated at each step as an

average sum over realizations of process noise and unknown
parameters, drawn from the updated distribution (8), i.e.

J̃0(I1
0 ) := min

u1
0

l0(x1
0,u

1
0)+

1
Ns

Ns

∑
j1=1

[
min
u

j1
1

l1(x
j1
1 ,u j1

1 )

+
1

N2
s

N2
s

∑
j2=1

[
· · ·+ 1

NL−1
s

NL−1
s

∑
jL−1=1

[min
u

jL−1
L−1

lL−1(x
jL−1
L−1 ,u

jL−1
L−1 )

+
1

NL
s

NL
s

∑
jL=1

J̃L(I
jL

L )] . . . ]].

(10)

Differently from problem (6), which requires the evaluation of
nested minimizations and expectations for L steps, the sampled
expected value allows to unnest the minimizations

J̃0(I1
0 ) := min

u0,...,uL−1
l0(x1

0,u
1
0)+

1
Ns

Ns

∑
j1=1

l1(x
j1
1 ,u j1

1 )+

+
1

N2
s

N2
s

∑
j2=1

l2(x
j2
2 ,u j2

2 )+ · · ·+ 1
NL

s

NL
s

∑
jL=1

J̃L(I
jL

L ),

(11)

where uk = {u j
k}

Nk
s

j=1 is the collection of control inputs at time
k for all sampled trajectories Nk

s . Note that this reformulation
is possible since cost functions in outer minimizations are
independent of the inner minimizations. This can be easily seen
by considering the simple example of minimizing functions
f1(·), f2(·) with respect to variables x1,x2:

min
x1

f (x1)+min
x2

f (x1,x2) = min
x1,x2

f (x1)+ f (x1,x2).

The reformulation in (11) avoids the explicit DP recursion and
enables simultaneous minimization of the control sequences
associated with each sampled path.

3.2 Exploitation Part

In the exploitation part, we fix the distribution of the parameters
in the prediction and solve a simplified problem minimizing the
expected cost for the remainder of the horizon over an input
sequence u jL

L:N−1 = {u
jL
L , . . . ,u jL

N−1}, giving rise to the terminal
cost J̃L(I

jL
L ) in problem (11):

J̃L(I
jL

L ) = min
u jL

L:N−1

JL(I
jL

L ,u jL
L:N−1) , (12)

JL(I
jL

L ,u jL
L:N−1) = Eθ ,wL,...,wN−1

[
N−1

∑
k=L

lk(x
jL
k ,u jL

k )+ lN(x
jL
N )

∣∣∣∣∣I jL
L

]
.

The cost-to-go is thereby implicitly defined and can be directly
integrated with the optimization-based formulation of the ap-
proximate dual problem, as summarized in section 3.3.

In the general case, the expected value needs to be numerically
approximated, e.g. again by sampling. For some cost functions,
for instance the commonly used quadratic cost, analytical ex-
pressions of the expected value are available in terms of mean
and variance information. Other possible choices with this
property are, e.g., linear or saturating cost functions (Deisen-
roth and Rasmussen (2011)). We focus here on the quadratic
case, for which the expected value can be computed as

Exk [ l(xk,uk) ] = Exk [ ||xk||2Q ]+ ||uk||2R
= ||µxk ||

2
Q + tr(QΣxk)+ ||uk||2R.

Even under the assumption of a Gaussian distributed parameter
vector θ , the state will not remain normally distributed due to
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the product with the basis function matrix, such that mean and
variance need to be approximated. We consider two common
approaches: a certainty equivalent (CE) approach and a first
order Taylor approximation of (3) around the mean value of
the state. In the rest of this subsection we refer to one sample
index and omit it for the sake of simplicity.

For the certainty equivalent approach, consider system (3)
evaluated at the mean values, i.e.[

µxk+1
µθk+1

]
=

[
Φ(µxk ,uk)µθL

µθL

]
, (13)

where µθL is the mean obtained in the last step of the dual
part (8). For the first-order Taylor approximation, the state
dynamics are given by[

xk+1
θk+1

]
≈
[

Φ(µxk ,uk)µθL
µθL

]
+

[
wk

0nb,1

]
+

[
∇x[Φ(µxk ,uk)µθL ] Φ(µxk ,uk)

0nb,nx Inb,nb

][
xk−µxk
θk−µθL

]
,

providing simple update equations for both mean and covari-
ance based on properties of affine transformations of Gaussian
distributed variables:[

µxk+1
µθk+1

]
=

[
Φ(µxk ,uk)µθL

µθL

]
Σk+1 = Σ̄w + ĀΣkĀT ,

(14)

where

Σk =

[
Σxk Σxk,θk

Σ
T
xk,θk

Σθk

]
Ā =

[
∇x[Φ(µxk ,uk)µθL ] Φ(µxk ,uk)

0nb,nx Inb,nb

]
Σ̄w =

[
Σw 0nx,nb

0nb,nx 0nb,nb

]
.

Therefore, the prediction in (12) can be carried out using either
(13) or (14) for steps k = L, . . . ,N−1, with initialization at step
L being [

µxL
µθL

]
=

[
xL
µθL

]
ΣL =

[
0nx,nx 0nx,nb
0nb,nx ΣθL

]
,

where ΣθL is the covariance obtained in the last step of the dual
part (8).

Based on the presented approximations of the expected value in
the cost-to-go (12), we can formulate the overall optimization
problem in the next subsection.

3.3 Final Approximate Dual MPC Problem

The formulation of the dual and exploitation part in the form of
an optimization problem allows for merging the two subprob-
lems into one optimization problem with respect to a collection
of input sequences along the control horizon of length N:

minu0, . . . ,uN−1

L−1

∑
k=0

1
Nk

s

Nk
s

∑
jk=1

lk(x
jk
k ,u jk

k )+
1

NL
s

NL
s

∑
jL=1

JL(I
jL

L ,u jL
L:N−1)

s.t. (7) k = 0, . . . ,L−1,

θ
jk+1

k drawn from (8) k = 0, . . . ,L−1,
(13) or (14) k = L, . . . ,N−1,

uk ∈ Uk k = 0, . . . ,N−1
(15)

−0.5 0.6
Position p

Fig. 2. The mountain car problem: A car is initially placed in
a valley at position −0.5 and the goal is to pass a hill at
position 0.6. Depending on the parameter realization, the
car is unable to climb the hill directly and needs to ’swing
up’.

Problem (15) is solved in a receding horizon fashion, updating
at each time step the distribution of the parameters.

The parameters that mostly affect the outcome of this formu-
lation are the length of the dual part L, and the number of
initial samples Ns. As L tends toward the control horizon N,
and as the number of of samples increases, (15) approaches the
exact DP solution. In practice, however, the choice of these
two parameters will mostly be a trade-off depending on the
specific problem application and on the available computational
resources.
Remark 1. Note that input constraints are directly incorporated
in (15). State constraints can similarly be added, however no
closed-loop feasibility guarantees are provided.

It is important to note that in problem (15), the parameter
distribution (8) from which the samples are drawn at each stage,
is a function of the optimization variables uk. By assuming the
parameters to be Gaussian, we can however perform online
sampling by generating at first Nk+1

s offline realizations from
a standard normal distribution N (0,Inb,nb), and then linearly
transforming them online with the analytical expressions of
mean and variance (9) for each parent node jk, i.e.

θ
jk+1

k = µ
jk

k + chol(Σ jk
k )θ̄

jk+1
k ,

where θ̄
jk+1

k is drawn from N (0,Inb,nb), with chol(·) stand-
ing for the Cholesky decomposition. As a consequence, we
can avoid the explicit resampling of the unknown parameter
in problem (15), yet generating realizations from an updated
distribution computed exactly via Bayesian estimation.

4. SIMULATION EXAMPLES

We demonstrate the proposed algorithm with two different sim-
ulations. The first example is an illustrative scalar LTI system
with unknown actuator gain and additive Gaussian process
noise, for which we analyze the solution to problem (15) and
provide closed-loop results. The second example is typically
referred to as the mountain car problem (Sutton and Barto,
2018), for which we compare the performance of our approach
with respect to a certainty equivalent and an adaptive MPC
controller.

4.1 Scalar example

As a first illustrative example, we consider the control of a
scalar system described by

xk+1 = xk +θuk +wk,
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Fig. 3. Regulation of LTI scalar system. Depicted are the
closed-loop trajectory, mean and 1σ bounds of the Ns = 50
sampled open-loop trajectories. From the top: Plot 1 shows
at time k=0 the predicted open-loop sequences. Plot 2
shows the closed-loop state for two time steps and the
open-loop prediction generated at k=2. Plot 3 shows the
closed-loop trajectory for 10 time steps.

where θ is the unknown parameter, assumed to be distributed
as θ ∼N (1,(3.1)2), wk ∼N (0,(0.3)2) is process noise, and
the true parameter is θtrue = 3. Linearity with respect to the
unknown parameter allows inference to be carried out in closed-
form (8). Furthermore, for this simple set-up, propagation of
state mean and variance in the exploitation part can be evaluated
exactly, as a result of linearly combined Gaussian distributed
variables. The goal is to regulate the system to the origin from
an initial condition x0 = 5. We define a quadratic cost function
lk(xk,uk) = ||xk||2Q + ||uk||2R, where Q = 10 and R = 0.01, and
solve (15) using Ns = 50 samples and L = 1 lookahead steps.

The purpose of this illustrative example is to investigate the
ability of the dual controller to actively explore and gain in-
formation about the unknown system parameter. Nevertheless,
even this simple task would be very difficult for a non-dual
controller, e.g. certainty equivalent MPC, since the direction of
the actuator gain is unknown. Figure 3 shows the predictions
for both the dual and the exploitation part and the closed-loop
solution at time steps k = 0,2,10. Notice that at time k = 0,
the control action is selected to test several strategies, includ-
ing to go in the wrong direction with respect to the origin,
in order to gain information about θ . At time step k = 2, the
parameter is almost identified, and its updated distribution is
θ ∼N (3.1,(0.25)2). The exploration is now reduced, and for
the remaining time steps the controller regulates the system to
the origin.

4.2 Mountain Car

As a second example we consider the mountain car problem
with parametric model uncertainties. The goal is to drive a car
from a valley past the top of a hill, as illustrated in Figure 2. The
dynamics of the system are given by (Sutton and Barto, 2018)

xk+1 =

[
pk+1
vk+1

]
=

[
pk +Tsvk

vk−Ts cos(3pk)θ1 +Tsukθ2

]
+

[
0
1

]
wk ,

where p is the position and v is the velocity of the vehicle,
input u is given by the acceleration and disturbances wk ∼
N (0,0.0012). We choose a sampling time of Ts = 7. The task

0

25

50 CE-MPC aS-MPC D-MPC

0

25

50

0 5 10 15 20 25 30 35 ≥40
0

25

50

Maximum steps kgoal to complete task

Fig. 4. Histogram of step number kgoal to complete task in for
the mountain car problem for different controller formula-
tions, for 250 noise realizations. The finishing time kgoal is
the time at which the car position first exceeds pgoal = 0.6.

in the mountain car problem is to climb a hill, characterized by
the target position ptarget = 0.6 starting from an initial position
p0 =−0.5 located in a valley. We express this goal by choosing
a simple linear cost function lk(xk,uk) = −pk, such that the
system is encouraged to maximize its position as quickly as
possible, eventually exceeding the hill.

The parameters θ1,θ2 are typically chosen such that the vehicle
cannot reach the goal directly, but needs to ’swing back’ in
order to gain speed and then climb the hill. We consider the
case where the parameters are uncertain, specifically[

θ1
θ2

]
∼N

([
0.002
0.0025

]
,

[
0.0012 0

0 0.0012

])
,

such that for some realizations swinging back is necessary,
for others not. In this setup, the optimal controller should first
find the right strategy for the given parameter realization and
subsequently execute it to minimize the expected cost.

To solve this task we generate an approximate dual controller,
referred to as D-MPC, with lookahead L = 3 and Ns = 5
scenario realizations in each time step for an overall prediction
horizon of N = 15. We compare the D-MPC to two variants,
namely

CE-MPC Certainty equivalent receding horizon controller com-
puting open-loop control sequences based on the prior
maximum likelihood parameter value µθ .

aS-MPC Adaptive stochastic receding horizon controller. The
controller uses NL

s parameter and noise samples and com-
putes the optimal input sequence by optimizing the sam-
pled average of the cost, approximating the expected
value. The controller passively learns and adapts the pa-
rameter knowledge in closed loop using (9).

As performance indicator we investigate kgoal, i.e. the number
of time steps required until exceeding the target state pgoal = 0.6
for the different controllers using 250 simulation experiments
with different noise realizations. A histogram of the resulting
distributions of kgoal is given in Figure 4. The results clearly
show that the certainty equivalent controller (CE-MPC) is un-
able to exceed the hill within 40 time steps and fails in a
large portion of the trials. One can furthermore observe two
modes in the finishing times, the first around 10 time steps,
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Fig. 5. Prediction of the dual controller in the mountain car
problem at time step 0. Displayed are the mean and 2σ

bounds of the NL
s = 53 planned trajectory samples, sepa-

rated in two groups depending on the 5 initial tree branches
reflecting different strategies. The controller plans to
swing back and depending on the collected information
to start the hill climb at different points in time.

corresponding to a success on first trial, and a second starting
around 15 time steps, corresponding to success after a first
failure. The adaptive stochastic controller (aS-MPC) manages
to complete most trials within 40 time steps, since it is able
to learn the parameter distribution over time. The two modes,
however, are still visible, meaning that a number of climbing
attempts by the aS-MPC fail on first trial. The dual controller
(D-MPC) in contrast is able to successfully climb the hill on the
first trial in almost all cases, exceeding the other controllers in
performance.

Figure 5 illustrates the prediction of the dual controller in the
first time step, which generates NL

s = 53 sampled trajectories.
By observing the related scenario tree, the Ns = 5 branches can
be grouped in two distinct solution strategies, based on a short
and longer swing-back. The controller therefore plans to swing
back, and depending on the information gained, start the hill
climb earlier or later. This flexibility in the planning, due to the
ability of the controller to select a different control input based
on the information gained during execution, greatly helps to
reduce conservatism.

5. CONCLUSIONS

We have presented an approximate dual control approach that
is systematically derived from a stochastic DP framework and a
rollout strategy. The formulation is based on separating the con-
trol horizon into a dual and an exploitation part. The dual part is
formulated using a scenario tree with realizations of noise and
unknown parameters, and the exploitation part optimizes over
open-loop control sequences for the remainder of the horizon.
By approximating the expected values using sampling, the two
subproblems can be merged, simultaneously optimizing over a
collection of input sequences along the control horizon. The
problem of sampling online from a distribution that depends on
the optimization variables is solved by generating samples from
a standard normal distribution and affinely transforming them
with the exact mean and covariance computed via Bayesian es-
timation over the prediction horizon. The proposed technique,
thereby, offers a tractable procedure while maintaining the dual
features of stochastic DP. The results were illustrated for a
scalar LTI system and for the mountain car problem.
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Åström, K.J. and Wittenmark, B. (2008). Adaptive Control.
Dover Publications, 2 edition.

Bayard, D.S. and Eslami, M. (1985). Implicit dual control for
general stochastic systems. Optimal Control Applications
and Methods, 6(3), 265–279.

Bellman, R. (1966). Dynamic programming. Science,
153(3731), 34–37.

Bertsekas, D.P. (2017). Dynamic Programming and Optimal
Control. Athena Scientific, 4th edition.

Bishop, C.M. (2006). Pattern Recognition and Machine Learn-
ing. Springer.

Deisenroth, M.P. and Rasmussen, C.E. (2011). PILCO: A
model-based and data-efficient approach to policy search. In
28th Int. Conf. Machine Learning, 465–472.

Feldbaum, A.A. (1961). Dual control theory. Part I & II.
Automation and Remote Control, 21(9), 874–880, 1033–
1039.

Filatov, N. and Unbehauen, H. (2000). Survey of adaptive dual
control methods. Control Theory and Applications, 147, 118
– 128.

Hanssen, K.G. and Foss, B. (2015). Scenario based implicit
dual model predictive control. Conf. Nonlinear Model Pre-
dictive Control, 416 – 421.

Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2017). Dual
adaptive model predictive control. Automatica, 80, 340–348.

Klenske, E.D. and Hennig, P. (2016). Dual control for approxi-
mate Bayesian reinforcement learning. J. Machine Learning
Research, 17(1), 4354–4383.

Ljung, L. (1986). System Identification: Theory for the User.
Prentice-Hall.

Marafioti, G., Bitmead, R.R., and Hovd, M. (2014). Persistently
exciting model predictive control. Int. J. Adaptive Control
and Signal Processing, 28(6), 536–552.

Mesbah, A. (2018). Stochastic model predictive control with
active uncertainty learning: A survey on dual control. Annual
Reviews in Control, 45, 107 – 117.

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. (2006). An an-
alytic solution to discrete Bayesian reinforcement learning.
In 23rd Int. Conf. Machine Learning, 697–704.

Santamarı́a, J.C., Sutton, R.S., and Ram, A. (1997). Experi-
ments with reinforcement learning in problems with contin-
uous state and action spaces. Adaptive Behavior, 6(2), 163–
217.

Subramanian, S., Lucia, S., and Engell, S. (2015). Eco-
nomic multi-stage output feedback nmpc using the unscented
kalman filter. IFAC-PapersOnLine, 48(8), 38 – 43. 9th IFAC
Symposium on Advanced Control of Chemical Processes
ADCHEM 2015.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning:
An Introduction. MIT Press, 2 edition.

Tanaskovic, M., Fagiano, L., Smith, R., and Morari, M. (2014).
Adaptive receding horizon control for constrained MIMO
systems. Automatica, 50(12), 3019–3029.

Thangavel, S., Lucia, S., Paulen, R., and Engell, S. (2018).
Dual robust nonlinear model predictive control: A multi-
stage approach. J. Process Control, 72, 39 – 51.

Tse, E. and Bar-Shalom, Y. (1973). An actively adaptive
control for linear systems with random parameters via the
dual control approach. Trans. Automatic Control, 18(2), 109–
117.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8209


