
Fast Gradient Method for Model Predictive
Control with Input Rate and Amplitude

Constraints ?

Idris Kempf, Paul Goulart & Stephen Duncan ∗

∗Department of Engineering Science, University of Oxford, UK
(e-mail: {idris.kempf, paul.goulart, stephen.duncan}@eng.ox.ac.uk)

Abstract: This paper is concerned with the computing efficiency of model predictive control
(MPC) problems for dynamical systems with both rate and amplitude constraints on the inputs.
Instead of augmenting the decision variables of the underlying finite-horizon optimal control
problem to accommodate the input rate constraints, we propose to solve this problem using the
fast gradient method, where the projection step is solved using Dykstra’s algorithm. We show
that, relative to the Alternating Direction of Method Multipliers (ADMM), this approach greatly
reduces the computation time while halving the memory usage. Our algorithm is implemented
in C and its performance demonstrated using several examples.

Keywords: Model Predictive Control (MPC), Fast Gradient Method, Dykstra’s Method,
Alternating Direction of Multipliers Method (ADMM), Projection, Rate Constraints

1. INTRODUCTION

Despite its advantages for constraint handling and feed-
forward disturbance modeling, the applicability of model
predictive control (MPC) is limited by the requirement
to solve optimization problems in real-time to compute
the control law. While optimization problems are easily
solved on a standard computer in a simulation environ-
ment, it is considerably more challenging to solve such
problems on the embedded systems often encountered in
industrial applications. Cost factors often outweigh the
need for powerful hardware to implement an MPC scheme
using standard optimization program solvers. Embedded
systems employed in industrial applications, e.g. in the
aviation or automotive industry, therefore feature much
lower computational power than a standard desktop com-
puter and much tighter memory restrictions. Hardware
platforms in these industries commonly run at clock fre-
quencies of a few hundred megahertz, while offering only
a few megabytes of memory, whereas standard computers
run at gigahertz rates and can provide many gigabytes of
memory storage. A key to employing MPC in industrial
applications is therefore an algorithm that makes maxi-
mum use of available computing resources while keeping
the memory usage at a minimum.

Constraints imposed on control systems can be split into
state, output and input constraints. State and output con-
straints are usually associated with safety or operational
considerations. Input constraints, however, are enforced by
physical limitations of the actuators (Saberi et al., 1999,
Chapter 1). It is also observed that two different kinds
of constraints are usually imposed on the input: rate and
amplitude constraints. This paper focuses on systems for
which constraints on states and outputs can be omitted,

? This research is supported by the Engineering and Physical
Sciences Research Council (EPSRC) with a Diamond CASE stu-
dentship.

and targets MPC problems that are subjected to input
rate and amplitude constraints only.

Algorithms that aim to solve constrained optimal control
problems using first-order techniques typically require a
projection onto the constraint set. In the absence of rate
constraints, this projection is usually straightforward and
can be computed using a closed-form formula, e.g. projec-
tion onto a box-shaped set of upper and lower actuator
limits. However, if input rate (often referred to as slew
rate) constraints are included then the projection is more
complicated. We are not aware of any closed form solution
to the corresponding projection problem (see Section 3.1).
The simplicity of the box-projection can be recovered by
introducing an augmented problem form, e.g. one that
includes additional state variables (as implemented in Stel-
lato et al. (2020) for example). While this approach is
versatile in the sense that it can cope with most reasonable
sets encountered in practice, the augmentation of decision
variables curtails the computation speed while increasing
the memory usage. It also introduces additional equality
constraints to the problem, leading to difficulties in ap-
plying methods such as the fast gradient method. The
question arises whether it is actually necessary to augment
the decision variables in the particular case of constraints
arising from input rate and amplitude constraints.

This paper suggests an approach that does not require
augmenting the decision variables of the optimization
problem. By employing a closed-form solution for a 2-
dimensional rate and amplitude constraint set in combina-
tion with Dykstra’s algorithm (Boyle and Dykstra, 1986),
we show that the projection of a vector of arbitrary finite
dimension onto the space of rate-constrained signals can
be found iteratively, avoiding the need for additional state
or other problem variables. Our projection algorithm is
then embedded in a fast gradient method (Nesterov, 2003).
Compared to the complexity introduced by the augmenta-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 6620



tion of decision variables, it turns out that the additional
computations required by our projection algorithm are
insignificant.

This paper is organized as follows. In Section 2, we in-
troduce both the linear MPC problem and the fast gradi-
ent method – an algorithm which is particularly suitable
for solving it. Section 3 formally defines the input rate
and amplitude constraint set before presenting Dykstra’s
method and its application to rate constraints. In Section
4, the fast gradient method is combined with Dykstra’s
method. The performance of our algorithm is compared
with the Alternating Direction of Method of Multipliers
(ADMM) for MPC problems with input rate and ampli-
tude constraints. Both algorithms are implemented in C
and tested on several examples.

2. PROBLEM STATEMENT

2.1 Model Predictive Control

Given a discrete-time linear dynamical system and an
initial condition x(t) at time t, a standard MPC scheme
computes a control law by predicting the future evolution
of the system and minimizing a quadratic objective func-
tion over some planning horizon T . This can be achieved
via repeated solution of the following quadratic program
(QP):

min

T−1∑
k=0

xT
kQxk + uT

kRuk + xT
TPxT , (1a)

s.t. xk+1 = Axk +Buk, x0 = x(t), (1b)

(u0, . . . , uT91) ∈ U , (1c)

for k = 0, . . . , T−1, returning at each step the optimal first
input stage u(t) = u∗0 as a control law. The inputs uk ∈
Rnu are constrained to the closed convex set U ⊆ Rnu×nu .
It is assumed that no constraints are imposed on the states
xk ∈ Rnx . The terminal cost matrix P = PT � 0 can be
obtained from the discrete-time algebraic Riccati equation
(DARE) associated to the unconstrained infinite horizon
regulator problem. The QP in (1) has a unique solution

if R � 0, Q � 0 and the pairs (A,B) and (A,Q
1
2 ) are

controllable and observable, respectively (Borrelli et al.,
2017, Chapter 12).

By eliminating the state variables x := (x1, . . . , xT ) and
defining u := (u0, . . . , uT91)T, (1) can be reformulated in
its condensed form as (Borrelli et al., 2017)

min
1

2
uTJu+ q(x0)Tu, (2a)

s.t. u ∈ U , (2b)

where J and q(x0), which depends linearly on x0, arise
from elimination of the equality constraints in (1b). Note
that J = JT � 0 by the assumptions of the previous
paragraph.

2.2 Fast Gradient Method

The fast gradient method belongs to the family of first-
order methods that seek solutions of convex optimization
problems using only the first derivative of the objective
function (2a). In this paper we will use the constant
step scheme II (Nesterov, 2003, Chapter 2.2) for strongly
convex objective functions. This step scheme is known
to have an optimal convergence rate (Nesterov, 2003,

Thm. 2.2.2), but our results will hold generally for any
first-order optimisation scheme employing a projection. A
formulation of this algorithm is presented in (Jerez et al.,
2014) and repeated below in Algorithm 1. The fixed step
size β is based on the minimum and maximum eigenvalues
λmin and λmax of J � 0, respectively.

In order to reduce the computation effort and complexity,
we will not use any termination criterion for the optimisa-
tion and instead run the algorithm for a fixed number of
iterations Imax. Based on the convergence rate results for
the fast gradient method, a maximum number of iterations
Imax can be derived that guarantees a certain level of
suboptimality for all initial states x0 = x(t) within a
bounded set (Richter et al., 2012).

In order to apply Algorithm 1 to our optimal control
problem (2), the projection operator PU for the set U
must be known. For a constraint set combining both
input rate and amplitude constraints, this projection is
not straightforward and will be addressed in Section 3.

Algorithm 1 Fast gradient method applied to (1)

Input: x0 = x(t)
Output: u(t) = uImax

1: Compute q = q(x0) and set y1 = u1 = 0
2: for i = 1 to Imax do
3: ti = (I − J/λmax)yi − q/λmax
4: ui+1 = PU (ti)
5: yi+1 = (1 + β)ui+1 − βui
6: end for

2.3 Alternating Direction of Multipliers Method

The Alternating Direction of Method of Multipliers
(ADMM) belongs to the class of augmented Lagrangian
methods and is, like fast gradient method, a first-order
method. ADMM algorithms are based on repeatedly mini-
mizing the augmented Lagrange function w.r.t. the primal
variables and maximizing the same function w.r.t. to the
dual variables (Boyd and Vandenberghe, 2004, Chapter
5). Assuming that the input constraint set (2b) can be
represented as a polyhedron, i.e.

U = {u ∈ RT91|v
¯
≤ Ku ≤ v̄} (3)

the optimization problem (2) can be reformulated as

min
1

2
uTJu+ q(x0)Tu, (4a)

s.t. Ku− v = 0, (4b)

v
¯
≤ v ≤ v̄, (4c)

where the constraint variables v ∈ Rnv and equality con-
straints (4b) were introduced. The augmented Lagrangian
for (4) can be written as

L(u, v, γ) =
1

2
uTJu+ q(x0)Tu+

ρ

2
‖Ku− v‖22

+ γT(Ku− v) + I[v
¯
,v̄](v),

(5)

where I[v
¯
,v̄] is the indicator function for the set V =

{v | v
¯
≤ v ≤ v̄ } and the penalty parameter ρ > 0 and

the dual variables γ are associated with the constraint
(4b). A standard ADMM scheme solves (4) by repeatedly
minimizing (5) w.r.t. u and v and updating the dual
variables γ using an approximate gradient ascent method.
The algorithm is summarized in Algorithm 2, where the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6621



saturation function sat[v
¯
,v̄](·) is used, which limits its

argument to v
¯

and v̄. Reformulation (4) simplifies the
projection involved in the algorithm: instead of projecting
onto the polyhedron U , which might be as hard as solving
(2), the projection onto V is given by the saturation
function. For the purposes of this paper, the critical
distinction between our optimisation problem in the form
(2) (and its solution via fast gradient method) and (4) (and
its solution via ADMM) is that the form (2) has a positive
definite J and does not allow for equality constraints. The
problem form (4) makes neither restriction.

Algorithm 2 ADMM applied to (1) with set (3)

Input: x0 = x(t)
Output: u(t) = uImax

1: Compute q = q(x0) and set γ0 = 0
2: for i = 1 to Imax do
3: Solve for ui:

(
J + ρKTK

)
ui = KT(ρvi91 9 γi91) 9 q

4: vi = sat[v
¯
,v̄]

{
Kui + ρ−1γi91

}
5: γi = γi91 + ρ(Kui − vi)
6: end for

3. INPUT CONSTRAINT PROJECTION METHOD

Given a nonempty closed convex set X ⊆ RN×N , the
Euclidean projection x∗ of a point x◦ ∈ RN is defined
as the minimizer of the following optimization problem:

x∗ = arg min
x∈X

‖x− x◦‖2 =: PX (x◦). (6)

By the assumptions on the set X , the optimization prob-
lem (6) admits a unique solution (Bauschke and Com-
bettes, 2011, Chapter 3.2).

3.1 Rate and Amplitude Constraint Set

Given a maximum allowable input amplitude a∈Rnu > 0
and rate r ∈Rnu > 0, define the amplitude constraint set
as Ak :=

{
u ∈ Rnu(T−1) | |uk| ≤ a

}
and the rate constraint

set as Rk :=
{
u ∈ Rnu(T−1) | |uk − uk91| ≤ r

}
for k =

0, . . . , T − 1, where the inequalities are applied element-
wise. The set R0 includes the input u−1 that is treated
as a fixed constant stemming from the actual input of
the system at time t − 1. We exclude the trivial case
where Ak is entirely contained in Rk by assuming that
0 ≤ r ≤ 2a for all nu elements. The input rate and
amplitude constraint set for problem (2) is obtained as the
intersection ofA = A0∩· · ·∩AT91 andR = R0∩· · ·∩RT91,
i.e.

U := {u ∈ Rnu(T91)
∣∣|uk| ≤ a, |uk 9 uk91| ≤ r ∀ k∈K}. (7)

Because the constraints are not coupled among the ele-
ments of uk ∈ Rnu , we will assume throughout that nu = 1
for clarity of exposition. However, all of our results apply
in the case that nu > 1.

While the projection onto A is given by saturating the
elements of u to ±a, we know of no tractable closed-
form solution for PR (see also Bauschke and Koch (2013))
and hence also not for PU . In order to see why this
projection is not straightforward, PR(u◦) can be redefined
as a dynamic programming problem (Kempf et al., 2020).
It quickly becomes apparent that the evaluation of 3T91

conditions is required for obtaining PR(u◦). While it can
be possible to derive a formula for small horizons, the

solution for dynamic programming becomes intractable for
larger horizons.

Another approach to obtain PR(u◦) or directly PU (u◦)
would be to define a multi-parametric program (Borrelli
et al., 2017, Chapter 2) with parameters u◦ and u91. The
multi-parametric solution of the projection results in a
piecewise affine function (PWA) of the parameters u91 and
u◦, i.e. n affine functions defined on n disjoint sets. While
an explicit solution could be computed using dedicated
software, e.g. (Herceg et al., 2013), it is expected that the
number of regions n would be at least 3T91, which only
accounts for projecting onto R.

3.2 2-Dimensional Projection

Consider the input rate and amplitude constraint set (7)
for nu = 1 and T = 2, i.e. u = (u0, u1)T, which can be
represented as

U1 :={u∈Rnu(T91)
∣∣ a
¯
≤u0≤ ā, |u1|≤a, |u19u0|≤r}, (8)

where a
¯

:= max(−a,−r + u91) and ā := min(a, r + u91).
When r and a are fixed, the shape of set (7) depends on
parameter u91 and resembles a rectangle with cut-off top-
left and bottom-right corners. Each facet and corner of this
set define disjoint regions for which a specific projection
function is valid (Kempf et al., 2020). If these regions and
functions are parametrized by u91, the projection consists
of two steps: Firstly, determine to which region the point
belongs. Secondly, apply the projection function of that
particular region. In other words, we identify explicitly
the PWA solution to the problem of projection onto the
set U1 following the general method of (Borrelli et al., 2017,
Chapter 2). A complete C-language implementation of the
2-dimensional projection can be found in (Kempf, 2019a).

3.3 Dykstra’s Algorithm

Dykstra’s algorithm (Boyle and Dykstra, 1986) was first
published in 1983 as an extension to von Neumann’s Alter-
nating Projections Method (Von Neumann, 1951), which
is suitable for finding a point lying in the intersection
U = U1 ∩ · · · ∩ UN of N closed convex sets Ui by cycli-
cally projecting onto the sets Ui. While von Neumann’s
algorithm only finds some point in U , Dykstra’s algorithm
determines the Euclidean projection x∗ = PU (x◦) of x◦

onto U . Both algorithms circumvent the potentially com-
plicated projection PU by iteratively applying the (known)
projections PUi . The method is summarized below in Al-
gorithm 3 for the case that U = U1 ∩ U2.

Algorithm 3 Dykstra’s Algorithm for two sets

Input: x◦

Output: PU (x◦) = xi+1

1: Set x0 = x◦, µ0 = 0 and γ0 = 0
2: for i = 1 to Imax do
3: yi = PU1(xi + µi)
4: µi+1 = µi + xi − yi
5: xi+1 = PU2(yi + γi)
6: γi+1 = γi + yi − xi+1

7: if ‖xi+1 − xi‖∞ < ε then break
8: end for

What distinguishes Dykstra’s algorithm from von Neu-
mann’s is the choice of variables µk and γk that track

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6622



the residuals from projecting onto U1 and U2 (Tibshi-
rani, 2017). It can be shown that Dykstra’s algorithm
is equivalent to ADMM applied to problem (6) for the
case that U = U1 ∩ U2 (Tibshirani, 2017). In addition,
it has been proved that Algorithm 3 always converges to
the Euclidean projection onto U , provided that the sets
U1 and U2 are closed convex sets and their intersection
is nonempty (Boyle and Dykstra, 1986; Bauschke and
Combettes, 2011).

Before applying Algorithm 3 to the rate and amplitude
constraint set (7), it remains to show that the set (7)
can be formulated as the intersection of two closed convex
sets with known projection operators. In Section 3.2 we
demonstrated how to project onto (7) for T = 2 using a
geometrical approach. Set (7) can be represented as the
intersection of N = T − 2 closed convex sets Uk, where U1

is defined in (8) and

Uk :={u∈Rnu(T91)
∣∣|uk|≤a, |uk91|≤a, |uk9uk91|≤r}, (9)

for k = 2, . . . , T−1. Let πk denote the procedure presented
in Section 3.2 applied element-wise to the nu elements of
uk91 and uk, respectively, with ā= 9a

¯
= a for k > 1. Let

π1
k and π2

k be the resulting nu projections of uk91 and uk,

respectively. Then PUk ∈ Rnu(T91) can be written as

PUk(u) = (u0, u1, . . . , π
1
k, π

2
k, . . . , uT91)T, (10)

where elements uk91 and uk have been replaced by π1
k and

π2
k, respectively. Assume for the purpose of explanation

that T is even and let Ue and Uo denote the intersection of
sets Ui grouped by even and odd indices, respectively. The
projections PUe(u◦) ∈ Rnu(T91) and PUo(u◦) ∈ Rnu(T91)

are obtained by combining the corresponding projections
from (10) and given by

PUe(u) = (u0, π
1
2 , π

2
2 , π

1
4 , . . . , π

2
T92, uT91)T, (11a)

PUo(u) = (π1
1 , π

2
1 , π

1
3 , π

2
3 , . . . , π

1
T91, π

2
T91)T. (11b)

By setting PU1 = PUe and PU2 = PUo , Algorithm 3 can
be applied to project onto the input rate and amplitude
constraint set (7). The choice of using a 2-dimensional pro-
jection in combination with Dykstra’s method is mainly
motivated by the geometrical approach of Section 3.2.
Another possibility would be to compute a formula for
a 3-dimensional projection π̃k onto the set Uk ∩ Uk+1 for
nu = 1 using one of the methods outlined in Section 3.1.
Compared to the 2-dimensional case, fewer π̃k would have
to be evaluated at the expense of increased complexity.
How this would affect the computational performance and
the convergence rate of the method is not clear a-priori
(Boyle and Dykstra, 1986).

Figure 1 compares the output of Algorithm 3 applied to the
input rate and amplitude constraint set (7) with r = a = 1
for different horizons T . The distance of iterates xi+1 from
Algorithm 3 to the solution x∗ = PU (x◦) obtained using an
interior-point method is shown. For the figure we selected
100 starting points x◦ from a normal distribution with zero
mean and a standard deviation of 100 (left) and 10 (right),
respectively.

4. MPC FOR SYSTEMS WITH INPUT RATE AND
AMPLITUDE CONSTRAINTS

By replacing the projection PU with Dykstra’s algorithm,
the fast gradient method (Algorithm 1) and Dykstra’s
projection method (Algorithm 3) are combined (Algorithm

0 200 400
0

0.5

1

1.5

2

0 50 100
0

0.5

1

1.5

2

T = 4

T = 8

T = 16

T = 32

Iteration Index i

‖x
i
+

1
−
x
∗
‖ 2

T = 4

T = 8

T = 16

T = 32

Iteration Index i

Fig. 1. Application of Algorithm 3 to (7) with r = a =
1. Shown is the distance of xi+1 to an accurate
projection x∗ = PU (x◦) for distant (left) and close
(right) starting points x◦, respectively.

1&3). Compared to the ADMM implementation, Algo-
rithm 1&3 bears several advantages. Dykstra’s algorithm
makes the augmentation of decision variables superfluous.
While the ADMM formulation (4) requires 2T − 1 de-
cision variables, Algorithm 1&3 reduces the number of
decision variables to T . This not only greatly reduces
the computation time, as the next section will show, but
also lowers the memory footprint. If we assume that all
matrices are dense and neglect the storage of vectors, then
Algorithm 1&3 reduces the memory footprint by approxi-
mately T 2/(T 2 + (T − 1)2nv/nu), which roughly amounts
to a reduction of 50% for set (7) and large T . Dykstra’s
algorithm barely introduces any memory footprint because
it only involves Boolean operations and vector additions.
Moreover, arrays allocated by Algorithm 1 can be used
as temporary placeholders to execute Dykstra’s method.
Stand-alone C-language implementations of Algorithm 1
and 3 can be found under (Kempf, 2019a,b). To this end,
note that Algorithms 1, 2 and 1&3 could be warm-started
using the solution computed at time step t−1, e.g. setting
y1 = u91 = u(t− 1) in Algorithm 1&3.

4.1 Numerical Studies

Algorithm 1&3 is compared against an ADMM implemen-
tation which – as described in Section 2.3 – commonly
uses an augmentation of decision variables to simplify the
projection. While Algorithm 1&3 was implemented in C
and can be found under Kempf (2019a,b), the Operator
Splitting Quadratic Program solver (Stellato et al., 2020) –
a constrained QP solver that uses ADMM – was employed
for Algorithm 2. In order to avoid refactoring the matrix on
the left-hand side of step 3 of Algorithm 2, our benchmark
ADMM implementation uses a constant penalty parameter
ρ. Neither of the C-programs includes a non-standard C-
library.

Figure 2 compares the average execution times of one
iteration of the C-language implementation of the ADMM
and the fast gradient method applied to problem (2) with
the input rate and amplitude constraint set U as defined
in (7) with r = a = 1. The OSQP solver uses a matrix-
factorization to solve step 3 of Algorithm 2 and the time
for factorizing the matrix is excluded from Figure 2. The
problem data (J, q) is randomly generated and the average
execution times are benchmarked over 100 problems per
horizon. Figure 2 reveals that the combination of the fast
gradient method and Dykstra’s method greatly reduces
the computation time for one solver iteration. The perfor-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6623



ADMM

FGM

Horizon T

T
im

e
p

e
r

It
e
ra

ti
o
n

[µ
s
]

Fig. 2. Average execution times and standard deviations
(shaded) of one iteration of Algorithm 2 (ADMM, red)
and Algorithm 1&3 (FGM, blue), respectively, applied
to problem (2) with set (7).

mance gain is due to the fact that Dykstra’s method makes
the augmentation of decision variables (4) unnecessary,
which in case of the input rate and amplitude set amounts
to tripling the number of decision variables. Because Dyk-
stra’s method involves only vector additions and Boolean
operations, the projection algorithm only requires a few
processor cycles. The termination criterion for Dykstra’s
algorithm is checked on every 10th iteration.

Figure 3 compares the practical convergence behaviour of
Algorithm 2 (ADMM, red) and Algorithm 1&3 (FGM,
blue) applied to problem (2) with the input rate and
amplitude constraint set as defined in (7) with r = a = 1.
The average distance between a high-accuracy solution u∗

calculated using an interior-point method and the solution
at iteration i of Algorithm 2 and 1&3, respectively, are
shown. The problem data (J, q) is randomly generated and
the distances are averaged over 100 problems per horizon
T . For Algorithm 1&3, Dykstra’s method is implemented
as follows: An initial verification is applied to avoid exe-
cuting the algorithm for vectors ti that lie inside set (7).
If ti /∈ U , Dykstra’s method is run for a fixed number of
iterations Jmax = 50.

4.2 Example

We study the application of Algorithms 2 and 1&3 to
an aircraft stabilization problem. The linearized model
is taken from (Kose and Jabbari, 2001), discretized with
a sampling time of Ts = 1ms and an MPC problem
formulated in its condensed form (2) for horizons T =
{4, 8, 16, 32} and with Q = R = I. The aircraft model
features nu = 3 inputs, i.e. uk = (uailk , ustabk , urudk )T,
where uailk , ustabk and urudk denote the differential aileron
deflection, the differential stabilizer deflection and the
rudder deflection, respectively. The inputs are constrained
by rate and amplitude constraints with (aail, astab, arud) =
(25, 24, 30) and (rail, rstab, rrud) = (200Ts, 80Ts, 82Ts),
respectively. While Algorithms 2 and 1&3 are used to
solve the condensed MPC problem (2), the dynamics of the
aircraft are simulated using (1b) starting with a random
non-zero initial condition. The closed-loop simulation is
run for 1000 time steps. In order to be able to compare
the solution accuracies and avoid computing the number
of iterations Imax required for a certain level of optimality
(see Section 2.2), a termination criterion for Algorithm
1&3 is introduced:

ri < εabs + εrelri91, ri := ‖ui+1 − ui‖∞. (12)

T = 4 T = 8

T = 16 T = 32

ADMM

FGM

ADMM

FGM

ADMM

FGM

ADMM

FGM

Iteration Index i Iteration Index i

Iteration Index i Iteration Index i

‖u
i
−
u
∗
‖ 2

‖u
i
−
u
∗
‖ 2

Fig. 3. Practical convergence behaviour of Algorithm 2
(ADMM, red) and Algorithm 1&3 (FGM, blue) ap-
plied to problem (2) with set (7) for T = {4, 8, 16, 32}.
Shown is the distance between the iterates and a
solution u∗ computed using an interior-point method.
Algorithm 2 uses a constant penalty parameter ρ. The
problem data is randomly generated and the distances
are averaged over 100 problems.

2
2

2
3

2
4

2
5

10
-3

10
-2

10
-1

2
2

2
3

2
4

2
5

10
-1

10
0

10
1

Horizon T Horizon T

T
im

e
p

e
r

It
e
ra

ti
o
n

[m
s
]

T
o
ta

l
T

im
e

[m
s
]

Fig. 4. Comparison of the execution times of Algorithm 2
(red) and Algorithm 1&3 (blue), respectively, applied
to the aircraft stabilization problem of Section 4.2.
The vertical bars indicate the standard deviations.

Both algorithms check for termination on every 10th
iteration and its is verified that they produce a similar
closed-loop behavior.

Figure 4 depicts the average time per iteration (top)
and the average total time (bottom) required to solve
one instance of problem (1). Both rows are averaged
over the 1000 time steps of the closed-loop simulation.
Compared to Figure 2 where nu = 1 was used, it can
be seen that the nu = 3 inputs introduce an overhead
and slow down Algorithm 1&3 for smaller horizons. The
performance advantage is approximately regained for T =
32. The bottom row confirms the results from Figure 3,
which showed that a similar convergence behavior can be
expected from Algorithms 2 and 1&3.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6624



5. CONCLUSIONS AND FUTURE WORK

This paper demonstrated the use of Dykstra’s method to
project onto the input rate and amplitude constraint sets.
A procedure to solve the 2-dimensional projection was
presented and a C-language implementation provided. It
was shown how the input constraint set can be represented
as the intersection of two sets. Using the formula for
the 2-dimensional case, the projection was extended to
higher dimensions and computed iteratively using Dyk-
stra’s method. Several simulations showed the fast con-
vergence of the projection algorithm. The choice of us-
ing an underlying 2-dimensional projection was motivated
by a geometrical approach. It is certain that choosing a
different dimension for the underlying projection would
affect the performance of the algorithm. Investigating the
performance for different underlying projections is subject
of future work.

In order to solve a linear MPC problem constrained by
input rate and amplitude limits, Dykstra’s method was
embedded in an fast gradient method that uses a con-
stant step scheme. The resulting algorithm was compared
against an ADMM implementation. The ADMM uses a
decision variable augmentation to accommodate the con-
straints. Using a C-language implementation applied to
several example problems, it was shown that the combina-
tion of the fast gradient method and Dykstra’s algorithm
significantly reduces the computation time compared to
an ADMM implementation. Moreover, the practical con-
vergence behaviour was simulated and it was shown that
the combination of fast gradient method and Dykstra’s
method converges as quickly as the ADMM implementa-
tion. In addition, it was demonstrated that the combined
algorithms approximately halve the memory footprint,
which is of particular importance for an implementation
on an embedded system.

While it has been shown that the practical convergence
behaviour of Algorithm 1&3 matches the one of Algo-
rithm 2, future work will focus on establishing convergence
criteria for the combination of Algorithms 1 and 3. Dyk-
stra’s method introduces a projection error that can be
made arbitrarily small by increasing the number of itera-
tions (Bauschke and Combettes, 2011, Chapter 29.1). The
convergence of ADMM under an inexact projection has
been proved in Eckstein and Bertsekas (1992, Theorem 8),
where it was shown that the algorithm converges provided
that the sum of the projection errors remains bounded.
Since the projection error of Dykstra’s algorithm can be
made arbitrarily small, the boundedness of the sum of the
projection errors can be enforced and it might be expected
that a similar proof can be formulated for Algorithm 1&3.
A practically relevant situation is when the fast gradient
method as well as Dykstra’s method are run for a fixed
number of iterations. A proof exists for the fast gradient
method with an exact projection in Richter et al. (2012),
where it was shown that a certain level of suboptimality
can be guaranteed provided that the initial condition x0

of the MPC problem (1) lies within a bounded set. Future
efforts will also aim at extending the proof from Richter
et al. (2012) to the case of a projection using Dykstra’s
method.

REFERENCES

Bauschke, H. and Combettes, P. (2011). Convex Anal-
ysis and Monotone Operator Theory in Hilbert Space.
Springer.

Bauschke, H. and Koch, V. (2013). Projection methods:
Swiss army knives for solving feasibility and best ap-
proximation problems with halfspaces. ArXiv e-prints.

Borrelli, F., Bemporad, A., and Morari, M. (2017). Predic-
tive Control for Linear and Hybrid Systems. Cambridge
University Press.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press.

Boyle, J.P. and Dykstra, R.L. (1986). A method for
finding projections onto the intersection of convex sets
in Hilbert spaces. In Advances in Order Restricted
Statistical Inference, 28–47. Springer New York.

Eckstein, J. and Bertsekas, D.P. (1992). On the Douglas–
Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Mathematical
Programming, 55(1), 293–318.

Herceg, M., Kvasnica, M., Jones, C., and Morari, M.
(2013). Multi-Parametric Toolbox 3.0. In 2013 12th
European Control Conference (ECC), 502–510. Zürich,
Switzerland. URL http://control.ee.ethz.ch/∼mpt.

Jerez, J.L., Goulart, P.J., Richter, S., Constantinides,
G.A., Kerrigan, E.C., and Morari, M. (2014). Em-
bedded online optimization for model predictive control
at megahertz rates. IEEE Transactions on Automatic
Control, 59(12), 3238–3251.

Kempf, I. (2019a). Box-rate-projection. URL https://
github.com/kmpape/box rate projection.

Kempf, I. (2019b). Fast-gradient-method. URL https://
github.com/kmpape/fast gradient method.

Kempf, I., Goulart, P., and Duncan, S. (2020). Fast
gradient method for model predictive control with input
rate and amplitude constraints. ArXiv e-prints.

Kose, I.E. and Jabbari, F. (2001). Control of systems with
actuator amplitude and rate constraints. In Proceedings
of the 2001 American Control Conference, volume 6,
4914–4919.

Nesterov, Y. (2003). Introductory Lectures on Convex
Optimization: A Basic Course. Applied Optimization.
Springer Science & Business Media.

Richter, S., Jones, C.N., and Morari, M. (2012). Compu-
tational complexity certification for real-time mpc with
input constraints based on the fast gradient method.
IEEE Transactions on Automatic Control, 57(6), 1391–
1403.

Saberi, A., Stoorvogel, A., and Sannuti, P. (1999). Con-
trol of Linear Systems with Regulation and Input Con-
straints. Communications and Control Engineering.
Springer London.

Stellato, B., Banjac, G., Goulart, P.J., Bemporad, A., and
Boyd, S. (2020). OSQP: An operator splitting solver
for quadratic programs. Mathematical Programming
Computation.

Tibshirani, R.J. (2017). Dykstra’s algorithm, ADMM, and
coordinate descent: Connections, insights, and exten-
sions. In Advances in Neural Information Processing
Systems 30, 517–528. Curran Associates, Inc.

Von Neumann, J. (1951). Functional Operators: The
Geometry of Orthogonal Spaces. Number Bd. 2 in
Annals of Mathematics Studies. Princeton University
Press.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6625


