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Abstract: As Floating Offshore Wind Turbines (FOWTs) operate in deep waters and are
subjected to stressful wind and wave induced loads, they are more prone than onshore
counterparts to experience faults and failure. In particular, the pitch system may experience
Pitch Actuator Stuck (PAS) type of faults, which will result in a complete loss of control
authority. In this paper, a novel fast and adaptive solution is developed by integrating a model-
based Fault Diagnosis (FD) scheme and the Subspace Predictive Repetitive Control (SPRC).
The FD role is to quickly detect and isolate the failed pitch actuator. Based on the fault
isolation results, a pre-tuned adaptive SPRC is switched online in place of the existing one,
whose initial values of the parameters has been tuned offline to match the specific faulty case.
After that, SPRC employs subspace identification to continuously identify a linear model of the
wind turbine over a moving time window, and thereby formulate an adaptive control law to
alleviate the PAS-induced loads. Results show that the developed architecture allows to achieve
a considerable reduction of the PAS-induced blade loads. More importantly, the time needed
to reduce the PAS-induced loads are significantly shortened, thus avoiding further damage to
other components during the adaption time and allowing continued power generation.

Keywords: Fault diagnosis, fault accommodation, subspace predictive repetitive control, pitch
actuator stuck, floating offshore wind turbines

1. INTRODUCTION

Over the past decade, offshore wind energy has been
playing an increasingly important role in the international
wind energy mix (Ohlenforst et al., 2019), being capable
of harvesting deep-water (depth > 60 m) wind resources.
However, FOWTs are subjected to continuous and extreme
aerodynamic and hydrodynamic loads due to wind and
waves, which can lead to unexpected mechanical and
electric faults (Carroll et al., 2016). Particularly, the pitch
actuators system, which is critical in optimizing power
generation and minimizing structural loads, account for
the biggest proportion (more than 21%) of the overall
failure rate for offshore wind turbines (Jiang et al., 2014).
Consequently, the reliability, safety and resilience of the
pitch systems have received increasing attention.

During operational conditions, the pitch system may expe-
rience severe faults, such as abrupt Pitch Actuator Stuck
(PAS) ones, which may lead to a complete loss of control
authority, as well as non-severe ones, such as pitch actua-
tor or sensor degradation (Li et al., 2018). Currently, the
preferred way to overcome a PAS type of fault currently
is via a safe and fast shutdown of the wind turbine (Jiang
? This work was supported by the European Union via a Marie
Sklodowska-Curie Action (Project EDOWE, grant 835901).

et al., 2014). However, as PAS faults appear frequently
(Ribrant, 2006), such a shutdown solution may lead to
high Operation and Maintenance (O&M) costs due to lost
power production and unplanned maintenance.

To approach the dearth of the fault-tolerant control (FTC)
for PAS faults, a novel, fast adaptive FTC solution for
FOWTs is proposed in this paper, which will reduce
blade loads in nominal healthy conditions and rapidly
accommodate PAS faults. To reach the goal, an integrated
model-based Fault Diagnosis (FD) and Subspace Predictive
Repetitive Control (SPRC) scheme are introduced. The
FD role is responsible for detecting and isolating which
pitch actuator failed. Based on this, the SPRC-based IPC
parameters will be switched online to initialize values that
were pre-tuned for the specific faulty conditions, by using
offline simulations. After the initialization, SPRC utilizes
subspace identification and data captured over a moving
time window to continuously identify a linear model of the
wind turbine and design an adaptive blade load-limiting
control law. The effectiveness and benefits of the proposed
fast adaptive fault accommodation architecture will be
illustrated via a case study involving a 10MW FOWT
model (Fontanella et al., 2018).

The remainder of the paper is organized as follows. Section
2 presents the 10MW FOWT model and the simulation
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Fig. 1. Block diagram of the proposed architecture in-
cluding FD scheme and SPRC-based IPC, baseline
controller and 10MW FOWT. (PA: pitch actuator)

environment. In section 3, the SPRC-based IPC and the
FD scheme are detailed. Next, a comparison study utilizing
a high-fidelity simulator is implemented in Section 4.
Section 5 draws conclusions.

2. DESCRIPTION OF THE 10MW FOWT AND OF
FAULT SCENARIOS

The FOWT model used to demonstrate the benefits of
the proposed architecture, is based on the DTU 10MW
three-bladed variable speed reference wind turbine and the
Triple-Spar floating platform (Fontanella et al., 2018).

Fig. 1 shows the block diagram of the proposed fault
tolerant control architecture, which includes a model-
based FD block, the switching SPRC-based IPC, a base-
line Collective Pitch Controller (CPC, Jonkman and Buhl
2005) and the 10MW FOWT. Regarding the simulation
environment, the aero-hydro-structural dynamic part of
the 10MW FOWT is simulated in the widely-used Fa-
tigue, Aerodynamics, Structures, and Turbulence (FAST)
numerical package (Jonkman and Buhl, 2005), while the
baseline wind turbine control part, SPRC-based IPC and
FD scheme are implemented in MathWorks Simulink. In
particular, the pitch control utilizes the SPRC-based IPC
while the FD scheme uses a model-based approach, both
will be introduced in Section 3, for detection and identifi-
cation of PAS type of faults. It produces a fault decision
dFD ∈ {0, 1, 2, 3} where dFD = 0 indicates no fault, and
dFD = l 6= 0 indicates the l–th pitch actuator is faulty. The
decision dFD is fed to the SPRC-based IPC block where
it is used to switch the controller parameters to offline-
learned values as described in the rest of the paper.

The aero-hydro-structural dynamics of the FOWT can be
described by the following nonlinear discrete-time system

xk+1 = A0xk + ρ(xk, ũk) + ηx(xk, ũk, k)

ũk = uk + β(k − k0)φ(uk, ϑ)

yk = C0xk + ηy(xk, ũk, k)

, (1)

where k = 0, 1, . . . is the discrete time index and x ∈ Rn,
ũ ∈ Rq, y ∈ Rq with q = 3 denote the FOWT state, the
control input and the measurement output vectors, respec-
tively. The matrix A0 ∈ Rn×n and the vector field ρ : Rn×
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Fig. 2. A flowchart showing the main steps and signals
involved in the proposed integrated FD and SPRC
architecture.

Rq 7→ Rn describe the nominal linear and nonlinear parts
of the FOWT healthy nominal dynamics while C0 ∈ Rl×n

is the nominal output matrix. The unavoidable modelling
uncertainties and periodic disturbances caused by wind
loading as well as measurement noise are characterized by
the unknown but bounded functions ηx : Rn×Rq×R 7→ Rn

and ηy : Rn × Rq × R 7→ Rq. The output y contains the
measurements of the three blades root load.

In order to account for the possible effect of a PAS fault,
the term ũ is used to denote the actual physical value of the
three blades pitch angles, while u represents the value that
would have been produced by a healthy actuator. The two
variables are related by the term β(k− k0)φ(uk, ϑ), where
β is the discrete time unit step, k0 is the unknown index
of the fault occurrence time and

φk = (−uk + ϑ)ef , (2)

is the PAS fault function. The unit vector ef ∈ Rr has a
single 1 in its f–th position, with f being the index of the
stuck actuator while the stuck-at values are contained in
ϑ ∈ Rr. Finally, the nominal healthy angle u is assumed
to depend on the reference value ur provided by the pitch
control system via a second order transfer function

u =
bs+ 1

a2s2 + bs+ 1
ur ,

with a = 1/ωac and b = 2βac/ωac, in which angular
frequency ωac = 6.28rad/s and damping βac = 0.7.

3. FAST ADAPTIVE FAULT ACCOMMODATION

The theoretical framework behind the proposed architec-
ture will be elaborated in detail in this section. The key
points are summarized in the following two steps: Step
1: An online model-based FD scheme is developed for
FOWTs to detect and isolate PAS faults. Step 2: A SPRC-
based IPC is reconfigured to accommodate PAS faults
based on the FD results.
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3.1 Model-based fault diagnosis for pitch actuator faults

The online FD scheme in step 1 is now introduced.
Following Ferrari et al. (2008), a bank of N = 3 Fault
Detection and Isolation Estimators (FDIEs), one for each
actuator, are designed to yield each an output estimate
ûlk ∈ R and a residual signal

rlk , ũk,(l) − ûlk , (3)
where ũk,(l) denotes the l–th component of the vector
ũk ∈ R3. The healthy hypothesis would be rejected if the
absolute value of at least one residual rlk crosses a suitable
time-varying threshold r̄lk at detection time kd.
Remark 1. For the sake of simplicity, here only one
PAS type of fault is considered in each study case. This
means that the l–th faulty actuator can be isolated and
dFD set to l if the l–th residual is the only one crossing its
corresponding threshold.

The l–th FDIE is based on the following discrete-time
estimator{

x̂lk+1 = Alx̂lk +Blurk + Ll(ũk,(l) − ûlk)

ûlk = Clx̂lk +Dlurk
, (4)

where x̂lk ∈ RK and ûlk ∈ RM represent the predicted
state vector and output, respectively. Al, Bl, Cl and Dl,
are obtained by implementing a state space realization of
the l–th actuator dynamics (Fontanella et al., 2018). The
matrix L ∈ RK×M is an estimator gain chosen such that
A0,l , Al − LlCl is stable. A time-varying threshold r̄lk,
guaranteed to bound the healthy rlk, is defined as

r̄lk ,
k−1∑
h=0

αδk−1−h[∆̄ρh + η̄xh] + αδk ε̄x0 + η̄yk , (5)

where the two constants α and δ are calculated as in
the paper (Zhang et al. (2001)), such that ‖Cl(A0,l)k‖ ≤
αδk ≤ ‖Cl‖‖A0,l‖k. The terms η̄x > ‖ηx‖ and η̄y > ‖ηy‖
are known upper bounds on the uncertainties. In addition,
ε̄x0 > ‖x0−x̂l0‖ denotes an upper bound on the initial value
of the state estimation error. The difference between the
real nonlinear dynamics and the value computed by the
FDIE is denoted by ∆ρ, with ∆̄ρ being its upper bound

∆ρ(xk, x̂, uk) , ρ(xk, uk)− ρ(x̂k, uk) ,

∆̄ρ(x̂k, uk) , max
x∈Rx

(‖∆ρ(x, x̂, uk)‖) (6)

3.2 Subspace predictive repetitive control

After a PAS type of fault is detected and isolated via
the designed FD scheme, the SPRC-based IPC (Navalkar
et al., 2014) is reconfigured based on the FD results
to accommodate the fault, as summarized in step 2. In
detail, the dynamics of the SPRC-based IPC of FOWTs
under faulty conditions can be described by the following
LTI system affected by unknown periodic disturbances
(Houtzager et al., 2013). In prediction form, it is{

xk+1 = Ãxk +B(uk + φk) + Ẽdk + Lyk
yk = Cxk + Fdk + ek

, (7)

where dk denotes the periodic component of disturbances
on the blades, while ek ∈ Rl is the aperiodic component
of the blade loading. In addition, Ã , A− LC and
Ẽ , E − LF , where matrices A ∈ Rn×n, B ∈ Rn×r,

C ∈ Rl×n, L ∈ Rn×l, E ∈ Rn×m and F ∈ Rl×m represent
state transition, input, output, observer, periodic noise
input and periodic noise direct feed-through matrices,
respectively. During healthy conditions (0 ≤ k < k0), it
holds φk = 0. The effect of the periodic disturbance on
the input-output system could be eliminated by defining
a periodic difference operator δ as,

δdk = dk − dk−P = 0,

δuk = (uk + φk)− (uk−P + φk−P ),

δyk = yk − yk−P ,
where P denotes the disturbance period. During the oc-
currence of a PAS type of fault, δuk,(f) for the f–th blade
is 0, since φk = φk−P accordingly.

Based on the definition of δ, eq. (7) is formulated as{
δxk+1 = Ãδxk +Bδuk + Lδyk
δyk = Cδxk + δek

(8)

Considering a given time window of length p in the past,
the following stacked vector can be defined,

δU
[p]
k =


uk − uk−P

uk+1 − uk−P+1

...
uk+p−1 − uk+p−P−1

 , (9)

and, similarly, the vector δY [p]
k . If p is large enough such

that Ãj ≈ 0 ∀j ≥ p (Chiuso (2007)), the future state vector
δxk+p can be approximated based on δU [p]

k and δY [p]
k as

δxk+p =
[
K [p]

u K [p]
y

] [ δU [p]
k

δY
[p]
k

]
, (10)

where K [p]
u and K [p]

y are defined as,
K [p]

u =
[
Ãp−1B Ãp−2B · · · B

]
,

K [p]
y =

[
Ãp−1L Ãp−2L · · · L

]
.

Combining eq. (10) with (8), δŷk can be estimated as

δyk+p =
[
CK [p]

u CK [p]
y

]︸ ︷︷ ︸
Ξ

[
δU

[p]
k

δY
[p]
k

]
+ δek+p , (11)

where the Markov matrix Ξ ∈ Rl×((r+l)·p) was introduced.
In essence, the aim of the identification is to find an online
solution of a Recursive Least-Squares (RLS) optimization
problem. In order to achieve adaptive tolerant control for
the PAS type of fault, the RLS optimization is decoupled
for each blade based on the assumption that the n–th blade
load is independent from the m-th, where n 6= m. There-
fore, the subspace identification step for faulty conditions
is implemented by the following RLS optimization

Ξ̂k,(l) = argmin
Ξ̂k

∞∑
k=0

∥∥∥∥∥δyk,(l) − λΞ̂k,(l)

[
δU

[p]
k,(l)

δY
[p]
k,(l)

]∥∥∥∥∥
2

2

, (12)

where λ denotes a forgetting factor (0 � λ ≤ 1) to
attenuate the effect of past data, and adapt to the updated
system dynamics online. In this paper, a large value, i.e.
λ = 0.99999, was selected to guarantee the robustness of
the optimization process (Gustafsson, 2000). l = 1, 2, 3

represents the blade number, while Ξ̂k,(l) is the estimate
of independent Markov matrix for each blade. As a conse-
quence, the optimization process in eq. (12) is conducted
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three times at each time instant k. Next, the Ξ̂k is syn-
thesized as Ξ̂k = [Ξ̂k,(1), Ξ̂k,(2), Ξ̂k,(3)]

T . Therefore, the
FOWT system dynamics are identified online, taking into
consideration the faulty conditions due to the occurrence
of PAS. It is noted that the FOWT system should be
persistently excited in order to obtain a unique solution
of the RLS optimization (Verhaegen and Verdult, 2007).
Then, the RLS problem is solved via a QR algorithm, as
introduced in Sayed and Kailath (1998). Consequently, the
estimates of Ξ̂k are employed to formulate a SPRC law.

The state feedback controller can be formulated with a
state-space representation (Navalkar et al., 2014) based
on the identified Ξ̂k, Ȳj+1

δθj+1

δȲj+1


︸ ︷︷ ︸

K̄j+1

=

 Il·P φ+ ̂
Γ[P ]K

[P ]
u φ φ+ ̂

Γ[P ]K
[P ]
y φ

0l·P 0r·P 0l·P

0l·P φ+ ̂
Γ[P ]K

[P ]
u φ φ+ ̂

Γ[P ]K
[P ]
y φ


︸ ︷︷ ︸

Āj Ȳj
δθj
δYj


︸ ︷︷ ︸

K̄j

+

 φ+Ĥ [P ]φ
Ir·P

φ+Ĥ [P ]φ


︸ ︷︷ ︸

B̂j

δθj+1 , (13)

where j = 0, 1, 2, · · · is the rotation count of the rotor.
Ĥ [P ] and Γ[P ] are the same matrices defined in the paper
(Navalkar et al. (2014)). The symbol + represents the
Moore-Penrose pseudo-inverse. θ ∈ R2r denotes the con-
trol inputs projected on the basis function φ, analogously
to the study (van de Wijdeven and Bosgra (2010)),

U
[P ]
k = φ · θj . (14)

It is worth noting that θ is updated at each P . The state
transition and input matrices are updated at each discrete
time instance k. Based on this, the classical optimal state
feedback matrix Kf,j can be synthesised in a Linear
Quadratic Regulator (LQR) sense (Hallouzi et al. (2006)).
Given the state feedback law, the control signal for the
frequency of interest, e.g. 1P, is formulated, as

δθj+1 = −Kf,jK̄j , (15)
Considering that δθj+1 = θj+1 − θj , the projected output
update law θj+1 can be calculated as,

θj+1 = σθj − βKf,j

 Ȳj
δθj
δȲj

 , (16)

where σ ∈ [0, 1] and β ∈ [0, 1] are tuning parameters
related to the convergence rate of the algorithm. Kf,j

denotes the optimal state feedback gain during the for-
mulation of the state feedback controller.

If l–th faulty actuator is isolated at kd and dFD = l, the
pre-tuned values of SPRC parameters, i.e. θl and Ξ̂l, are
switched online to initialize the controller as, 1) θkd

= θl,
2) Ξ̂kd

= Ξ̂l. A flow-chart of the proposed integrated FD
and SPRC architecture is presented in Fig. 2.

4. CASE STUDY

The effectiveness and benefits of the developed fast adap-
tive fault accommodation architecture is verified in this
section, via a case study on the 10MW FOWT (Fig. 1).

4.1 Model configuration

In total, three Load Cases (LCs), which are characterized
by a uniform wind profile, are considered in the case study.
The mean hub-height wind speed Uhub are 12, 16 and 20
m/s respectively. In addition, one specific PAS type of fault
is chosen for each LC, considering a different pitch angle
setting ϑ(3) equaling to 20◦, 0◦, 10◦ respectively for the
stuck blade (f = 3 in all cases). During each LC, totally
1400s are simulated at a fixed discrete time step of Ts =
0.01 s, with a fault occurring at T0 =900 s. The measured
signal is pitch angle for each blade, which was affected by
a Gaussian white noise measurement with variance of 1.5◦.

In order to guarantee persistence of excitation in the
nominal healthy and faulty conditions for online subspace
identification in the SPRC-based IPC, a filtered pseudo-
random binary signal with a maximum amplitude of 3◦

is superimposed on top of the collective pitch demand of
blades. Based on the excited FOWT system, the Markov
matrix is recursively updated by the RLS algorithm and
then used for the generation of the SPRC control law.

4.2 Fast adaptive fault accommodation

In order to appreciate the performance of the designed
model-based FD scheme, detection results for LC3 are
shown in Fig. 3. Before T0 = 900 s, all the residuals are
bounded by their corresponding thresholds, thus verifying
the robustness of the threshold. After the fault time T0,
only the pitch angle residual of blade #3 crosses the
corresponding threshold, while others are still bounded by
their thresholds (see Fig. 3(a-b)), which imply that the
PAS fault is successfully detected and isolated. Hence, the
correct fault decision dFD = l = 3, l = f is obtained and
used for reconfiguring the SPRC-based IPC.

Based on the FD results, pre-tuned parameters for the
SPRC-based IPC are switched online in order to quickly
accommodate the fault. Such new initial values, i.e. Ξ̂l

and θl, have been tuned offline to match the specific
faulty blade, thereby reducing the adaptation time. For the
offline tuning purpose, two FAST simulations per each pos-
sible fault were run to determine Ξ̂l and θl. In particular
the specific PAS type of fault is injected at the beginning
of the simulated steady operation of the 10MW FOWT.
As a result, time series of θ in offline simulations, showing
the convergence of the SPRC algorithm, are collected. In
order to demonstrate the effectiveness and benefits of the
proposed architecture, Figs. 4-5 show the comparisons of
MOoP and pitch angles between the proposed architecture
and other two control logics (i.e. baseline controller and
SPRC-based IPC only) in LC3.

In nominal healthy conditions, the proposed architecture
has the same performance as a non-switched SPRC-based
IPC, which is designed to alleviate significantly blade loads
in comparison to the turbine baseline controller. After the
fault is successfully detected and isolated (Fig. 3), the
values of the SPRC parameters are switched to the pre-
tuned values in order to quickly accommodate the fault,
as shown in Fig. 4 and 5. In the same figures it is possible
to notice, as well, that the regular SPRC algorithms may
lead to even higher blade loads than the baseline controller
during faulty conditions (Fig. 4(a)).
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Furthermore, the Power Spectrum Densities (PSDs) of the
corresponding MOoP in Fig. 4 within last 200s simulation
periods are illustrated in Fig. 6 for investigations. It is
clear that MOoPs at 1P frequency of blade #1 and #2
are significantly reduced by the pitch angles formulated
by the proposed architecture, compared to the baseline
controller and SPRC-based IPC only. Particularly, the
corresponding θ in LC3, used to formulate the pitch

0.1 0.2 0.3 0.4
Frequency (Hz)

100

105

B
la

de
 #

1 
M

O
op

 P
S

D
 

(k
N

2
 m

2
/H

z)
   

  

Baseline SPRC only Proposed architecture

0.1 0.2 0.3 0.4
Frequency (Hz)

100

105

1010

B
la

de
 #

2 
M

O
op

 P
S

D
 

(k
N

2
 m

2
/H

z)
   

  

0.1 0.2 0.3 0.4
Frequency (Hz)

10-4

10-2

100

B
la

de
 #

1 
pi

tc
h 

an
gl

e 
P

S
D

 

(°
2
/H

z)
   

   
   

   
 

0.1 0.2 0.3 0.4
Frequency (Hz)

10-4

10-2

100

B
la

de
 #

2 
pi

tc
h 

an
gl

e 
P

S
D

 

(°
2
/H

z)
   

   
   

   
 

1P

1P

1P

1P

(d)

(b)(a)

(c)

Fig. 6. PSD of MOoP and pitch angle. (a) MOoP of blade
#1, (b) MOoP of blade #2, (c) Pitch angle of blade
#1, (d) Pitch angle of blade #2. Blade #3 is not
shown since it is the faulty blade.

control demands, are presented in Fig. 7. It is found that
the parameter θ, when using the proposed architecture,
tends to a value very quickly, which implies a much
faster adaptation compared to the SPRC-based IPC only.
Similar results are observed in other LCs. In detail, the
load reductions compared to the baseline controller are
calculated and summarized in Tab. 1. It is clear from
this table that the MOoP are significantly reduced by the
propose architecture. Particularly, the cumulative MOoP
are reduced by the proposed combined FD and SPRC-
based IPC by ∼ 66% on average. In comparison, the
scheme based on only the SPRC-based IPC attains an
average reduction of ∼ 34%.

5. CONCLUDING REMARKS

In this paper, a novel architecture is proposed to accommo-
date the PAS type of faults in a fast adaptive way. In detail,
a model-based FD scheme is developed for pitch actuators
in FOWTs to detect and isolate PAS type of pitch actuator
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Table 1. Load reduction in faulty conditions in
all LCs*.

LC1 (%) LC2 (%) LC3 (%)
SPRC-based IPC only

Blade #1 41.93 60.93 13.89
Blade #2 6.53 55.03 70.12

Cumulative 23.64 56.39 21.65
Proposed architecture

Blade #1 50.53 70.06 80.36
Blade #2 50.54 69.00 83.28

Cumulative 50.23 67.11 80.57
*The number indicates the reduction of the load variance in %.
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Fig. 7. Time series of θ. (a) θ(1) of blade #1, (b) θ(4) of
blade #1, (c) θ(2) of blade #2 (d) θ(5) of blade #2.
Time periods of faulty conditions are indicated by a
grey background.

faults. Based on the fault isolation results, a pre-tuned
SPRC-based IPC is switched online to accommodate the
detected PAS type of faults, whose initial values of the pa-
rameters has been tuned offline to match the specific faulty
condition. The effectiveness and benefits of the proposed
architecture are illustrated via a case study of a 10MW
FOWT in different LCs. Results show that the proposed
architecture, integrating the FD scheme and SPRC-based
IPC, is able to significantly alleviate the PAS-induced
loads. More importantly, the time needed to reduce the
PAS-induced loads are significant shortened, which, to
some extent, avoids further damage to other components
of FOWTs due to the possible improper control demands
formulated by the SPRC-based IPC only during the slow
adaption time, and thereby allow continued power gener-
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