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Abstract: Visual Simultaneous Localisation and Mapping (VSLAM) is a key enabling technol-
ogy for small embedded robotic systems such as aerial vehicles. Recent advances in equivariant
filter and observer design offer the potential of a new generation of highly robust algorithms
with low memory and computation requirements for embedded system applications. This paper
studies observer design on the symmetry group proposed in (van Goor et al., 2019), in the case
where inverse depth measurements are available. Exploiting this symmetry leads to a simple
fully non-linear gradient based observer with almost global asymptotic and local exponential
stability properties. Simulation experiments verify the observer design, and demonstrate that
the proposed observer achieves similar accuracy to the widely used Extended Kalman Filter
with significant gains in processing time (linear verses quadratic bounds with respect to number
of landmarks) and qualitative improvements in robustness.
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1. INTRODUCTION

Visual Simultaneous Localisation and Mapping (VSLAM)
and the closely related Visual Odometry (VO) are estab-
lished topics in the robotics community (Kaess et al., 2012;
Leutenegger et al., 2015; Faessler et al., 2016; Forster et al.,
2017b,a). They are key components of almost all aerial
robotic systems (Delmerico and Scaramuzza, 2018) and
are used in a host of other robotic applications (Bonin-Font
et al., 2008) including autonomous driving and underwater
robotics. VSLAM is used to refer to the case of the general
SLAM problem where the available measurements are the
bearings of landmarks such as provided by image features
obtained using a monocular camera. Visual Odometry is
a variant of the VSLAM problem where the solution is
optimised for local consistency of the localisation of the
system and updates landmark states only for currently
visible landmarks. While the VO community has focused
on embedded systems applications, and places a premium
on algorithms with low computational and memory re-
quirements (Delmerico and Scaramuzza, 2018), the VS-
LAM community has placed a premium on large scale map
building, loop closure and accuracy (Stachniss et al., 2016;
Cadena et al., 2016). As a consequence, many state-of-the-
art VO systems use filter based formulations (Mourikis
and Roumeliotis, 2007; Bloesch et al., 2015; Forster et al.,
2017b; Lynen et al.,, 2013) in contrast to the full tra-
jectory smoothing and graph based optimization formu-
lation accepted as the community standard for SLAM
problems (Cadena et al., 2016). Well engineered trajectory
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smoothing algorithms using short sliding-windows are still
highly competitive algorithms for VO (Kaess et al., 2012;
Leutenegger et al., 2015; Qin et al., 2017; Forster et al.,
2017a).

The non-linear observer community has become interested
in the visual SLAM and VO problem in the last few
years. Work by Guerrerio et al.(Guerreiro et al., 2013) and
Lourengo et al.(Lourenco et al., 2016) propose a non-linear
observer for the “robo-centric” SLAM problem. Recent
work by Barrau et al.(Barrau and Bonnabel, 2016, 2017)
introduce a symmetry group SE,.1(3) for the SLAM
problem and use this to derive an Invariant Kalman Filter
algorithm that overcomes consistency issues that have
plagued the EKF algorithms from the classical SLAM era
(Dissanayake et al., 2011; Zhang et al., 2017). Parallel work
by Mahony et al.(Mahony and Hamel, 2017) show that
this symmetry acts transitively on a principle fibre bundle
M.,,(3) which forms a natural geometric state-space for the
SLAM problem, overcoming the gauge uncertainty present
in the usual pose-map state representation. However, the
symmetry induced by the group SE,.;(3) applies only
to the SLAM configuration state and is not compatible
with bearing measurements. As a consequence, applying
the SE,;1(3) symmetry to the visual SLAM problem still
requires linearisation of the output map. A new symmetry
for the VSLAM problem was proposed in (van Goor et al.,
2019) along with a non-linear observer. However, in this
prior work the observer is closely based on (Hamel and
Samson, 2016) and is derived in local coordinates and then
lifted onto the symmetry group. It is of interest to consider

9695



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

the case where the observer is designed explicitly using the
symmetry structure.

In this paper, we present a highly robust, simple, and
computationally cheap non-linear observer for the vi-
sual SLAM problem based on the new symmetry of the
SLAM configuration space, first presented in (van Goor
et al., 2019). The symmetry is associated with the novel
VSLAM,,(3) Lie-group, which acts on the raw pose-
map configuration coordinates and is compatible with
the SLAM configuration manifold M,,(3) (Mahony and
Hamel, 2017). The symmetry group structure introduced
allows direct application of previous work by Mahony
et al.(Mahony et al., 2013) in development of non-linear
observers to yield a novel observer for continuous-time
VSLAM. In the design of this observer, it is assumed
measurements of the inverse depths of landmarks are avail-
able in addition to the bearing measurements. In practice,
the inverse depth may be measured by using optical flow,
triangulation, or depth cameras. The resulting algorithm is
fully non-linear; no linearisation is required of the system
or output maps. The approach has the advantage that
constant gains can be used in the filter (no Riccati gains
need be computed on-line) leading to lower computation
and memory requirements. This additionally leads to a
reduction in the number of parameters that need to be
tuned in comparison with a standard EKF, making the
proposed filter simpler to use in practice. The inherent
symmetry of the approach ensures high levels of robust-
ness and Theorem 5.1 proves almost global asymptotic
and local exponential stability of the error coordinates.
The convergence properties of the filter are demonstrated
through a simulation experiment. Additional simulation
experiments compare an EKF with our observer. These
show that our observer achieves comparable mean RMSE
to the EKF and has fewer outliers, and operates with a
computational complexity that is only linear in the number
of landmarks compared to quadratic complexity for the
EKF.

2. NOTATION

The special orthogonal group is the set of rotation matrices
and is denoted SO(3) with Lie algebra so(3). The special
Fuclidean group is the set of rigid body transformations
and is denoted SE(3) with Lie algebra se(3). The group
of positive real numbers equipped with multiplication is
denoted MR with Lie algebra mt. We use the notation
Rp € SO(3) and xzp € R?® to denote the rotation and
translation components of a rigid-body transformation
P ¢ SE(3) and write

p=(ftrer). M

The pose of a vehicle moving in Euclidean space is written
P ¢ SE(3). The kinematics of such a pose frame are
written as

P=PU, Rp=RpQ;, ip=RpVy (2)
where Qu = (21,92,Q3)7 and Vi are the body-fixed

rotational and translational velocity vectors, respectively,
and

x -Q3 Q

_ X AL QU VU X _ gg) 3 _5
U_(QUaVU) T 0 0 ) QU— 3 0 1]-

-Q Q1 0

3)

One has that Q5w = Qp x w for any w € R® where x refers
to the vector (cross) product.

For a unit vector y € S? c R3, the projector is given by
I, = I3 - yy', (4)
and has the property IL, = -y y*.

3. PROBLEM FORMULATION

The total space coordinates for the SLAM problem are
defined with respect to an unknown fixed but arbitrary
reference {0}. Let P € SE(3) represent the body-fixed
frame coordinates of the robot with respect to this ref-
erence frame. Let
pi € RS?

be sparse points in the environment expressed with respect
to the reference frame {0}. The total space of the SLAM
problem is the product space

T(3) = SE(3) xR x - x R? (5)
made up of these raw coordinates Z := (P,p1,...,pn).
The bearing of a point p; co-located with the robot pose
centre xp is undefined, so the VSLAM problem can only
be considered on the reduced total space

Tn (3) ={(P.pi) € To(3) [ (Vi) p; # xp}. (6)
Moreover, since all the measurements of the VSLAM
problem considered are made in the body-fixed frame the
solution is only well defined up to an SE(3) gauge trans-
formation (Kanatani and Morris, 2001). This property can
be expressed as an invariance of the problem formulation
and leads to the quotient structure of the SLAM manifold
proposed in (Mahony and Hamel, 2017). To keep the
derivation simple and more accessible, in the present paper
we will define the group actions and derive the observer
on the reduced total space.

i=1,...,n,

The measurements considered are spherical coordinates y;
of body-fixed frame observations of points in the environ-
ment, which in practice may be obtained from a calibrated
monocular camera. Additionally, in this analysis, we as-
sume inverse depth estimates z; are also available. That
is, for a given robot pose P and environment point p;,

RL(pi -
e ez or) (7a)
lpi =z p|
2= |pi—xp| (7b)
The combined output space is N, (3) = (SZxR*)x---x (S

2

X

R*) and we write (y,2) = h(ZE) = (hi(8),...,hn(E)) =
((y1,21),- -5 (Yn, zn)), where appropriate.

Let U € se(3) denote the velocity of the robot. Assume that
the environment points p; being observed are static, and
thus do not have a velocity. The tangent space of T,(3)
at a point E = (P,p1,...,pn) can be identified with the
matrix subspace

(PU,uy,...;up), Uese(3), uy,...,u, € R
The system kinematics can then be written as
d
g(P,pl,..wpn):(PU70,...70). ()

We assume that the robot velocity U € se(3) is measured.
We will also measure the optical flow of each landmark

¢;i €T, S* cR?
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by numerically differentiating the coordinates of y; be-
tween consecutive measurements. Here, we express ¢; €
T,,S? using the coordinates obtained by embedding S* c
R3. Define a measurement velocity space

V=se(3) xR x - x R? (9)
with elements (U, ¢1,...,¢n).

4. SYMMETRY OF THE VSLAM PROBLEM

The symmetry group of the VSLAM for n landmarks in
Euclidean 3-space with separate bearing and range mea-
surements problem is the visual SLAM group VSLAM,,(3)
first described in (van Goor et al., 2019). However, in this
paper the VSLAM group and its actions are presented in
a different form to (van Goor et al., 2019).

In the following, we will write (Qa,a); instead of the
more formal ((Qa);,a1) and sometimes write (Q4,a); to
represent the tuple (Qa,a)1,...,(Qa,a),. Similarly, we
will sometimes write (P, p;) instead of (P,p1,-..,pn)-

The VSLAM group (van Goor et al., 2019) may be written
VSLAM’”(3) = {(Aa (QA) a)la R (QA7 Q)n) |
Ace SE(3), (QA)z € 80(3), a;, e MR, 1=1,... ,n}.

Lemma 4.1. The set VSLAM,,(3) is a Lie group, defined
as
VSLAM,,(3) == SE(3) x (SO(3) x MR)".
The visual SLAM group acts as a symmetry group on the
reduced total space 7,2(3).
Lemma 4.2. The mapping T : VSLAM,,(3) x 7,2(3) —
T2 (3) defined by
T((A,(Qa,a)i), (Ppi))

= (PA,(a”'RpaQuRp(p—xp) +xpa)i),

is a right group action of VSLAM,,(3) on 7,7(3).

(10)

The group action for the robot pose is rigid-body trans-
formation. The group action for environment points is
considerably more subtle and can be understood concep-
tually as a sequence of operations: firstly, the reference
frame coordinates of an environment point are written in
the body-fixed frame, this point is then rotated by QL
and then scaled by a™!, before these body-fixed frame
coordinates are rewritten in the inertial frame using the
new body-fixed frame reference.

A key property of the proposed structure is that there is
a compatible group operation on the output N, (3) of the
system.

Lemma 4.3. The action p : VSLAM,(3) x N,(3) —
N, (3) defined by

p((Av(QAva)i)v(yvz)i) = ((Qllyvaz)l) (11)
is a transitive right action on NV, (3). Furthermore, one has
p((4,(Qa;a)i), M(E)) = (T ((4,(Qa,a)),E))

where h is given by (7). That is, h is equivariant with
respect to the actions Y and p.

4.1 Lift of the SLAM kinematics

A key aspect of the proposed approach is that the symme-
try group VSLAM,, (3) and the reduced total space T,°(3)
are quite different spaces. The difference is particularly

a 'RpaQ " Rh(p—xp) +xpa ¥

Fig. 1. Group action T((A4,(Qa,a);),(P,p1,...,0n)). The
pose P — PA, that is the tip point of the pose is
updated by the correction A € SE(3). The body fixed-
frame environment points R} (p; -« p) are rotated by

Q' and scaled by a~! in the body-fixed frame before
transforming with the robot pose to a new point p}
which is rewritten in the inertial frame.

clear in studying the structure of the lifted kinematics on
the VSLAM,,(3) group.

The Lie-algebra of VSLAM,,(3) is
vslam,, (3) = s¢(3) x (s0(3) x mr) x --- x (s0(3) x mr).

We write (U, (W, w);) € vslam,,(3) with U € se(3), W; €
50(3) and w; € v, where

_ (25 W
U—(O 0).

In order to implement an observer on the VSLAM group,
it is necessary to lift the velocity measurements (U, ¢;) € V
(9) to elements (U, (W,u);) € vslam,(3) such that the
resulting group velocity is compatible with the system
kinematics. That is, an algebraic map A : T7(3) x V —
vslam,,(3) is required such that

dT(P,pl)/\((Pvpz)7(U7¢z)) :(PU,O,,O) (12)
Proposition 4.4. The map A : T2(3) x V — vslam,(3)
defined by

)‘((Papi)a(vai)):: (U7((¢Xy)vayTVU)i)a (13)
where (y,2); = h((P,p;)) satisfies the lift condition (12).
Proof. Under the static landmark assumption p; = 0, the
optic flow ¢; = y; is given by

bi = QY — zi(I = yiy] Vo (14)
Let (A4, (AG,Aa)i) = A((Ppi), (U, ¢:)). Evaluating the
left-hand side of (12), one has

dT(P,pi)A((Papi)v (Ua ¢2))

= DT(P,pi) (ld)[(AAa ()‘227 )‘a)i)]7
= (P)\A; (_)\a(p_xp) + RPQ;\AR;(}?—(EP)
- RPAZJRTP([) - :Ep) + RPVU)i)~

This expression may be written in terms of (y,z); as
follows.

dT(P,pi))‘((Pvpi)a (U7 ¢l))
= (P)‘Pa (_)‘aRPZ_ly + RP(QXA - )\Z))Z_ly + RPVU)i)-

Multiply the landmark velocity terms by R} and substi-
tute in the values for A\ to obtain
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oz ty+ (Q%, - /\a)z_ly + Vi
=—yy'V+ 2 (Q - (o xy) )y + Vo,
=25y -2y e+ (T-yy")V,
=200y - 27 (Qy + 2 (- yay) Vo) + (T -yy")V,
= 0.

Hence dT(P,pi)A((Papi)a([L ¢i)) = (PAa, Rp0) = (PU,0)
as required.

The lifted velocity (U,(W,u);) = A(P,p;),(U,¢:)) in-
duces kinematics on the symmetry group that project
down to the state space trajectory. Since the group action
is not free, the stabiliser of Y is non-trivial, and there are
directions in vslam,,(3), in particular y; € s0(3), that are
not constrained by the lift requirement (12). The lift in
direction y € s0(3) is chosen to be zero without loss of
generality.

The lift A\ will enable us to go on and apply the observer
design methodology developed in (Mahony et al., 2013).

5. OBSERVER DESIGN

We approach the observer design by considering the lifted
kinematics of the system on the symmetry group and
designing the observer on VSLAM,,(3). Let =(t) =
(P(t),pi(t)) € Tn(3) be the ‘true’ configuration of
the SLAM problem, noting that Z(t) is defined rel-
ative to some arbitrary reference {0}. Let X(t) =
(A(t),(Q(t),a(t));) e VSLAM,,(3) and define the lifted
kinematics (Mahony et al., 2013)

%X(t) = XA(Y(X,Z(0)), (U, 1))

X(0) =id. (15)
Equation (15) evolves on the VSLAM group where
(U, ¢;) € V are the measured velocities and X is the lift
function (13).

Choose an arbitrary origin configuration
E° = (P°p;) € Tn(3).
If the initial condition X (0) ¢ VSLAM,,(3) of the lifted
kinematics satisfies T(X(0),Z°) = 2(0) then (15) induces
a trajectory that satisfies
=(8) = T(X(1),Z°) € Ta(3)
for all time (Mahony et al., 2013).

Let the observer be defined as
X = (4,(Q,a);) e VSLAM,,(3).
The lifted kinematics (15) provide the internal model for

the observer design. That is, the kinematics of the observer
are given by

%X(t) - XA(T(X? £°),(U,9i)) - AX,

X(0) =id, (16)
where A € vslam,,(3) is an innovation term to be assigned.
Note that A(T(X,Z°), (U, ¢;)) is shown in (13) to depend
only on the measured quantities y;, z;, U, ¢;, and therefore
can be implemented in the observer kinematics (16). The
configuration estimate generated by the observer is given
by

2= (Ppi)=T(X,E%) e T;(3)
given the reference Z° € T, (3).

Theorem 5.1. Consider the kinematics (15) evolving on
VSLAM,,(3) along with bounded outputs y = {(y, 2);} =
h(E(t)) € N,(3) given by (7). Fix an arbitrary origin
configuration E° = (P°,p?) and define the output error
e={(ey,e,)i} as

e=p(X7' {(y,2)i}) = p(E7{(y°,2°)i}) e Nu(3). (17)

where {(y°,2°);} = h(E°) and E = XX~ '. Consider the
observer defined in (16) and choose the innovation term
A= (A4, (Ag,A)") as follows:

Al = gy ey, X 47)" (18)

A = —ka, fe 2 (19)
€z

A= —ksAdy (QOA VOA) , (20)

()= (52 20)) (5(22)- (%)

where the gains k,,, kg, and ka are positive scalars (for
i =1,...,n), and the matrix inverse in the definition of
A 4 is assumed to be well-defined. Then the configuration
estimate =(t) = YT(X(t),2°) converges almost globally
asymptotically and locally exponentially to the true state
E(t) = Y(X(t),E°) up to a possibly time-varying element
in SE(3).

Proof. Let X(t) € VSLAM,,(3) satisfy the lifted kine-
matics (15) with Y(X(0),2°) = Z(0). It follows that
E(t) =Y (X(t),2°) (Mahony et al., 2013). Define

E=XX"1=(A,(Q,d);) e VSLAM,(3), (21)
with A := AA™, (Q.a); = (QQ",aa™),. Using (15) and
(16), it is straightforward to verify that

E=(-AAA, (-A0Q, -ALa):). (22)

Using the fact that E-' = (A1, (Q",a");) then each
element of equation (17) becomes

(eyi ) 621‘) = (nyv ailzg) . (23)
Based on (22), the error kinematics satisfy
(éyi7ézi) = (_AiQeywHAflezi) . (24)

We first prove almost-global asymptotic and local expo-
nential stability of the equilibrium (e, e.,) = (v5, 27) for
the error kinematics (24). Consider the following candidate
(positive definite) Lyapunov function £ : N, (3) —» R*,
1 n
£= 23 (lew =9 + (e = 2)%).

i=1

(25)
Differentiating £ and using (18) and (19), one gets:

‘C.: Z((eyz _yio)Téyi +(ezq' _Z;‘))ézi);

0= L

(_ (ey1 - y;)T AZQeyq + (627‘, - Z;)) Aiezi) )

i=1
n

- Z (ky1
i=1

The time derivative of the Lyapunov function is negative

definite and equal to zero when e,, = +y; and e,, = z;.
Direct application of Lyapunov’s theorem ensures that

2 2
eyixyﬂ +kzi(ezi_z1?) )
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the equilibrium (ey,,e.,) = (y;,27) is almost-globally
asymptotically stable® .
To prove local exponential stability of the observer it
suffices to split the Lyapunov function into two parts
L=Ly+L,

L.=2%0 (ez - 22)? and verify that £, < -2min(k,,)L.,
with £, converging exponentially to zero. Consider £, =
Yy Ly, with £y, = Le,, - yo|°. If there exists a positive
number e such that £,, <2 —¢, that is e,,(0) is not in the
opposite direction of y°(0), for all ¢ = {1,...,n}, then

L,, < -2min(ky,)eL,,
This demonstrates local exponential stability (in a large
domain) of the equilibrium (e, ,e,,;) = (¥5, 27)-

In the limit, at the stable equilibrium point (ey,,e,,) =
(y5,27)), (23) implies that

(:'972)7/ = (Q}yo,&zo)i = (Qgey?dez)i = (yaz)ia
for all 4 =1,...,n. This in turn implies

p(X, (y°,2%)i) = R(T(X,E%)) = h(T(X, E7))

= p(X, (47, 2°)1)
Regarding just the central equality, and noting that i only
preserves the relative pose on 7,7(3), it follows that
Z=T(X,2°)=T(X,2°) 2=
The symbol = indicates that Z = = up to the possibly
time-varying gauge transformation A. That is
(P.pi) = (AP, A7 (pi)) = (A7 P, R (ps - )

This concludes the proof of the almost-global asymptotic
and local exponential stability.

1>

Remark 5.2. Observe that the output error e is inde-
pendent of the SE(3) innovation A4 and the primary
stability analysis in Theorem 5.1 is undertaken on the
output space, not the state-space. This is a key property
of the VSLAM,,(3) symmetry and is intrinsic to the
invariance of the underlying SLAM problem discussed in
Section §3. The particular choice of innovation A4 in (20)
minimizes the least squares drift in the visual odometry
error as observed from direct measurements of landmark
coordinates and optical flow. This is only one of a family of
possible choices (for example, Mahony and Hamel (2017)),
however, further analysis of this question is beyond the
scope of the present paper.

6. SIMULATION RESULTS

The first simulation experiment was conducted to verify
the observer design in Theorem 5.1. A robot is simulated
to move in a circle with velocity Viy = (0.1,0,0) m/s,
Oy =(0,0,0.027) rad/s on the ground, with 10 landmarks
uniformly distributed in a 0.5-1 m band around the robot’s
path. The reference configuration £° of the observer is
randomly set, and the observer X is initialised to the
identity group element. All landmarks are assumed to
be measured at all times, and no noise is added to the
system. The gains of the observer are set to kg, = 0.05,
kq; = 0.02, k4 = 0.03 for all ¢ = 1,...,10. The observer
equations are implemented with Euler integration using a

I Tt is straightforward to verify that the equilibrium point ey; = ~Y;
is unstable.

time step of 0.5 s. Figure 2 shows the evolution of the
Lyapunov function (25) components for each landmark
over 100 s. The bearing storage refers to the component
I}, := ley, —y7|? and the inverse depth storage refers to the

component I := le., - 27|? for each landmark index i. The
top two plots show the value of these functions for each
landmark, and the bottom two plots show the log value
for each landmark. The plots clearly show the almost-
global asymptotic and local exponential convergence of the
observer’s error system.

Bearing Storage Inv. Depth Storage

Storage Value
Storage Value

50 100
Time (s)
Log Bearing Storage

Time (s)
Log Inv. Depth Storage

Log Storage Value

Log Storage Value

0 50 100 0 50 100
Time (s)

Fig. 2. The evolution of the individual components of the
Lyapunov function (25) for 10 landmarks over time.

Additional simulations were carried out to compare the
non-linear observer proposed in Theorem 5.1 with an
Extended Kalman Filter (EKF). A robot is simulated
to move in a circle with velocity Viy = (0.1,0,0) m/s,
Qu = (0,0,0.027) rad/s on the ground, with n landmarks
uniformly distributed in a 0.5-1 m band around the robot’s
path. The robot is modelled to have a sensor range of 1
m. The reference configuration £° is initialised without
any landmarks, and the observer group element is ini-
tialised to identity. When landmarks are first seen, their
inertial frame position is computed using the observer’s
current position estimate, and the reference configuration
is augmented with this value. When landmarks are not
within the sensing range, the observer equations cannot be
used, and the current observer estimate of the landmark
position is fixed until the landmark is next seen. All noise
added to the input velocities and output measurements is
drawn from zero-mean Gaussian distributions. The linear
velocity noise has variance 0.2, the angular velocity noise
has variance 0.1, the optical flow noise has variance 0.02,
the bearing measurement noise has variance 0.01, and the
inverse depth measurement noise has variance 0.4. The
EKF is implemented with the system equation (8), and
the measurement equations (7). The gains of the observer
are set to kg, = 0.25, kg, = 0.1, kg4 =0.1forall i =1,...,n,
and the observer equations were implemented using Euler
integration with a time step of 0.5 s.

Figure 3a compares the statistics of the RMSE of the
EKF and our observer for n = 50 landmarks after 100 s
over 500 trials. While the EKF has a slightly lower mean
RMSE, there are also more outliers due to linearisations
errors. Figure 3b shows the mean computation time of
the EKF and our observer for an increasing value of n
between 10 and 400 landmarks over 500 trials per number
of landmarks. While the processing time depends on the
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Accuracy of EKF vs. Ours

4 Processing Time of EKF vs. Ours
12 +

EKF

1 + — — —Ours

@

£o8
Bos i
=

o 0.4 [

S ==

0
0 0 100 200 300 400
EKF Ours Landmarks

+
Processing Time (:
S

(a) Boxplot of the RMSE of
EKF and our observer on 50
landmarks over 500 trials.

(b) Mean computation time of
EKF and our observer on 10-
400 landmarks over 500 trials.

Fig. 3. Results of the simulation experiments comparing
an EKF with the proposed observer.

implementation of the EKF and of our observer, the figure
clearly illustrates the quadratic complexity of the EKF and
the linear complexity of our observer.

7. CONCLUSION

This paper proposes a new symmetry for visual SLAM
and VIO problems. This geometry is exploited to develop
a visual SLAM observer and provide an almost global
asymptotic and local exponential stability proof. The
authors believe that the inherent simplicity and robustness
of the proposed approach makes it useful as a tool for
embedded robotics applications.
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