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Abstract: The paper revises properties of two identification/adaptation algorithms proposed
by Lion (1967) and Kreisselmeier (1977) more than 40 years ago to accelerate parametric
convergence under regressor persistency of excitation (PE) condition. First, being motivated
by paper Aranovskiy et al. (2017) it is demonstrated that these algorithms can provide
asymptotic (not exponential) parametric convergence under simple condition which is weaker
than requirement of PE. Second, it is shown that via some condition these schemes can be
used for generating the high order time derivatives (HOTD) of the adjustable parameters that
are necessary for solution of a wide range of problems of identification and adaptive control
including backstepping design procedure.

Keywords: Adaptive identification, Adaptive Control, Persistent Excitation Condition.

1. INTRODUCTION

In spite of the fact that the identification/adaptation algo-
rithms proposed by Lion (1967) and Kreisselmeier (1977)
are well known and widely used during last decades, in
the authors’ opinion these algorithms have some unre-
vealed properties which can be used in various practical
applications. The first property consists in asymptotic (not
exponential) convergence under simple condition which is
weaker than requirement of persistency of excitation (PE).
The second property is the ability to calculate the high or-
der time derivative (HOTD) of the adjustable parameters
that can be used, for example, in procedures of adaptive
backstepping.

The impetus for study of the first issue was inspired by
the recently published paper of Aranovskiy et al. (2017),
in which an identification algorithm called dynamic re-
gressor extension and mixing (DREM) was proposed. For
this algorithm the authors established a simple condition
for asymptotic (not exponential) parametric convergence.
This condition requires square nonintegrability of some
signals and is weaker than usual requirement of PE.
Moreover, under this condition DREM provides monotonic
convergence of each element of parametric error vector.
To demonstrate advantages of the proposed algorithm the
authors of Aranovskiy et al. (2017) presented a numerical
example in which asymptotic parametric convergence is
provided for a regressor which is not only not PE, but also
has components approaching zero. Effective applications
of DREM to different identification and control problems
were demonstrated in Ortega et al. (2018, 2019a); Gerasi-
mov et al. (2018); Ortega et al. (2019b).

In the present paper we demonstrate that similar asymp-
totic parametric convergence under weak condition can
be demonstrated for the Lion’s and Kreisselmeier’s al-
? This work was financially supported by Goverment of Russian
Federation (Grant 08-08).

gorithms (Lion (1967); Kreisselmeier (1977)). Initially
the Lion’s and Kreisselmeier’s algorithms were proposed
to improve parametric convergence under PE condition.
Namely, it was proved that under PE condition the rate
of parametric convergence can be made arbitrary fast by
increasing adaptation gain. However, simulation evidence
and some intuitive reasoning showed that the Lion’s and
Kreisselmeier’s schemes improved parametric convergence
not only under PE condition. Now we can rigorously ex-
plain this phenomenon by asymptotic (not exponential)
parametric convergence under some weaker condition.

The second issue was motivated by an idea of model
reference adaptive control with high order tuner presented
in Itamiya et al. (1999). In accordance with this idea,
analytical expressions for each HOTD of adjustable pa-
rameters are derived directly from the Kreisselmeier’s
scheme. Unfortunately, since these expressions are used
for calculation of each HOTD independently, the general
order of the adaptation algorithm increases dramatically.
As a result, in Gerasimov et al. (2020a,b) the authors,
in the framework of backstepping procedures, proposed
the closed-loop modification of the Kreisselmeier’s scheme
without increasing the order. In this paper we demonstrate
three modified algorithms based on the Kreisselmeier’s and
the Lion’s schemes and used for calculation the HOTD of
adjustable parameters.

The paper is organized as follows. In Section 2 we briefly
summarize the main properties of the algorithms consid-
ered. Section 3 contains the main result concerning asymp-
totic (alas, not exponential) convergence of the considered
algorithms and their new closed-loop representation gen-
erating the HOTD of adjustable parameters. Section 4
presents some simulation results. The conclusion is given
in Section 5.
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2. PRELIMINARIES: BASIC ADAPTATION
ALGORITHMS

2.1 Regression model

Consider the static regression model given by

ε = ω>θ̃ + σ, (1)

where ε ∈ R is the measurable control error, ω ∈ Rn is

the bounded regressor, θ̃ = θ̂ − θ is the parametric error,

θ̂ is a vector of adjustable control parameters, θ is a con-
stant vector of unknown “true” values for the adjustable
parameters, σ is an exponentially decaying term due to
nonzero initial conditions 1 . For example, the regression
(1) can represent the augmented error in the problem of
MRAC or identification error in corresponding problems
of identification (Ioannou and Sun (1996); Narendra and
Annaswamy (1989); Sastry and Bodson (1989)).

We also assume that we can measure the output variable

y = ω>θ (2)

or can directly calculated it as y = ω>θ̂ − ε.
We will use the following definition.

Definition 1. A bounded signal vector ω ∈ Rn is persis-
tently exciting (ω ∈ PE) if there exist T > 0 and α > 0
such that∫ t+T

t

ω(τ)ω>(τ)dτ � αI for ∀t ≥ 0.

It is well known that standard gradient-based algorithm
˙̂
θ = −γωε, (3)

where γ > 0 is adaptation gain, yields the following closed-
loop parametric error model

˙̃
θ = −γωω>θ̃ (4)

and ensures the following properties (Ioannou and Sun
(1996); Narendra and Annaswamy (1989)).

Proposition 1. Consider the regression model (1) and the
estimator (3).

P1.1 For any bounded ω, ω̇, the signals θ̂ and ε are bounded
and ε→ 0 as t→∞.

P1.2 If ω ∈ PE then the norm ||θ̃|| tends to zero exponen-
tially and there exists an optimal value of γ for which
the rate of convergence is maximum (see Subsection
4.2.1 in Narendra and Annaswamy (1987)).

It is worth noting that in the recent paper of Barabanov
and Ortega (2017) new necessary conditions for global
asymptotic stability of (4) as well as a new sufficient
(but not necessary) condition, that is strictly weaker
than the ones reported in literature, were established.
Unfortunately, these conditions are highly technical and
hard to verify in practical examples.

2.2 Lion’s scheme

In Lion (1967) it was proposed the simple idea to ex-
tend the dimension of the error and regressor in order
1 If ω is bounded, the term σ being the result of nonzero initial
conditions does not influence the stability of closed-loop system and
is usually neglected. However, as it is discussed in Remark 1, this
term can deteriorate overall transient performance.

to improve parametric convergence. To derive such an
algorithm, n − 1 different LTI causal dynamic operators
Hi{·}, i = 1, n− 1 (Hi{·} : L∞ → L∞) are introduced. In
particular case, the operators Hi{·} can be selected as the
first order filters:

Hi{·} =
αi

s+ βi
{·}, (5)

where βj > 0, βi 6= βj for i 6= j, and s = d/dt is the
differential operator.

Following the terminology proposed in Aranovskiy et al.
(2017); Ortega et al. (2020), Lion’s scheme generates a
dynamic regressor extension (DRE) as

Yd , [y, H1{y}, H2{y}, . . . , Hl−1{y}]>, (6)

W> , [ω, H1{ω}, H2{ω}, . . . , Hl−1{ω}]>. (7)

It is obvious that in this case

Yd = W>θ. (8)

This motivates the following form of estimation error:

E ,W>θ̂ − Yd = W>θ̃.

Then, the gradient-based algorithm with dynamically ex-
tended regressor

˙̂
θ = −γWE (9)

gives the following closed-loop error model
˙̃
θ = −γWW>θ̃. (10)

It can be shown that the parametric error equation (10)
has the following properties of convergence.

Proposition 2. Consider the regression model (2) and the
adaptation algorithm (9).

P2.1 For any bounded ω, ω̇, the signals θ̂ and ||E|| are
bounded and ||E|| → 0, ε→ 0 as t→∞.

P2.2 If ω ∈ PE, then the norm ||θ̃|| tends to zero exponen-
tially.

P2.3 If ω ∈ PE, then additionally to P2.2 the rate of
parametric convergence can be made arbitrarily fast
by increasing γ.

It is worth noting that the property P2.3 cannot be
ensured by the algorithm (3).

Remark 1. Strictly speaking, due to nonzero initial con-
ditions exciting the exponentially decaying term σ in (1)
arbitrarily fast convergence is achieved in theory after some
transient period only.

2.3 Kreisselmeier’s scheme

An alternative approach to improve the estimator conver-
gence was proposed by Kreisselmeier initially for design
of adaptive observers (see Kreisselmeier (1977)) and later
for MRAC (see Kreisselmeier and Joos (1982)). In accor-
dance with this approach we introduce a single LTI causal
dynamic operator L{·} such that L{ωω>} is bounded for
any bounded ω and is positive semidefinite. Then we apply
L{·} to obtain alternatively extended regression model

Ym = Ωθ, (11)

where Ym , L{ωω>θ̂−ωε} or Ym , L{ωy} is the extended
output and

Ω , L{ωω>}. (12)
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Regression (11) motivates the following gradient-based
adaptation algorithm

˙̂
θ = −γ

(
Ωθ̂ − Ym

)
, (13)

where γ > 0 is the adaptation gain.

The main distinguishing feature of the algorithm is to use
past history of matrix ωω> provided by the operator L{·}
to improve transient performance of θ̂. In this context,
following the terminology proposed in Gerasimov et al.
(2019); Ortega et al. (2020) we can say that L{·} is the
operator with “memory”, and hence the Kreisselmeier’s
scheme provides memory regressor extension (MRE). In
particular, the operator L{·} can be selected as the sim-
plest first order filter:

L{·} =
1

s+ 1
{·}. (14)

It can be shown that the estimator (13) yields the para-
metric error model

˙̃
θ = −γΩθ̃. (15)

It can be shown that the estimator (13) ensures the
following convergence properties.

Proposition 3. For the error model (1) the algorithm (13)
ensures the following properties:

P3.1 For any bounded ω the signals θ̂ and ε are bounded
and ε→ 0 as t→∞.

P3.2 If ω ∈ PE then the norm ||θ̃|| tends to zero exponen-
tially.

P3.3 If ω ∈ PE then additionally to P3.2 the rate of
parametric convergence can be made arbitrary fast
by increasing γ.

More detailed discussion on estimators with different LTI
filters L{·} can be found in Section 4.4.5 of Narendra and
Annaswamy (1989).

2.4 DREM

Recently, new scheme with improved parametric conver-
gence was proposed in Aranovskiy et al. (2017). This
scheme can be obtained from (9) with the following choice
of time-varying matrix adaptation gain γ:

γ = γ0 adj{W>}adj{W} � On×n, (16)

where adj{·} is the adjunct matrix, γ0 ∈ R+ is a constant.
Replacing this coefficient in (9) with the use of definition
of E and the identity adj{W}W = det{W}Im we get

˙̂
θ = γ0δ(δθ̂ − Y ), (17)

where Y,adj{W>}Yd, δ,det{W}. Since δ is a scalar,
algorithm (17) can be rewritten in the element-wise form

˙̂
θi = −γ0δ

(
δθ̂i − Yi

)
(18)

that yields the set of scalar error models

˙̃
θi = −γ0δ

2θ̃i, i = 1, n. (19)

The algorithm (18) is called DREM.

In Aranovskiy et al. (2017) based on the model (19) the
following properties are proved.

Proposition 4. For regression (1) the estimator (18) en-
sures the following:

P4.1 δ(t) /∈ L2 ⇔ limt→∞ θ̃(t) = 0 and θ̃i(t) tends to
zero monotonically.

P4.2 If ω ∈ PE the parametric errors θ̃i tend to zero
exponentially. Moreover, the rate of convergence can
be made arbitrary fast by increasing γ0.

2.5 Memory regressor extension and mixing

In the recent paper of Ortega et al. (2020) inspired by the
idea of the algorithm with DREM it was proposed to apply
”regressor mixing” to Kreisselmeier’s algorithm (13). That
is, to select for (13) time-varying adaptation gain

γ(t) = γ0 adj{Ω} � On×n. (20)

By applying identity adj{Ω}Ω = det{Ω}In we get the
adaptation algorithm

˙̂
θ = −γ adj{Ω}

(
Ωθ̂ − Y

)
(21)

that yields the following closed-loop error model:

˙̃
θi = −γδΩθ̃i, i = 1, . . . , n, (22)

where δΩ , det{Ω}. Notice that, due to the definition of
the matrix Ω in (12), δΩ(t) ≥ 0.

Using terminology proposed in Ortega et al. (2020) we
refer to the estimator (21) as memory regressor extension
and mixing (MREM).

The convergence properties of MREM are established by
Proposition 4 with replacement of condition δ(t) /∈ L2 by
δΩ(t) /∈ L1.

3. MAIN RESULT: PROPERTIES OF DRE AND MRE

In this section we present and discuss asymptotic prop-
erties of the schemes with MRE and DRE (i.e., Kreis-
selmeir’s and Lion’s schemes) and show that with some
choice of operators L{·} and Hi{·} these schemes can

generate the HOTD of adjustable parameters θ̂.

3.1 Asymptotic convergence

One interesting contribution of the paper of Aranovskiy
et al. (2017) is the answer to the question: is the condition
P4.1 (δ(t) /∈ L2) of DREM weaker or stronger than
ω(t) ∈ PE? To answer this question the authors give an
example of ω satisfying P4.1 and at the same time is not
PE. They consider particular case with n = 2 and

ω = [1 g + ġ]
>
, (23)

where g is a continuous function such that g, ġ ∈ L∞,
ġ /∈ L2 and

lim
t→∞

g(t) = lim
t→∞

ġ(t) = 0. (24)

It is obvious that in this case ω /∈ PE.

For example, function g(t) = sin(t)(1+ t)−
1
2 satisfies these

conditions and yields the following regressor

ω(t) =

[
1

sin(t) + cos(t)

(1 + t)
1
2

− sin(t)

2(1 + t)
3
2

]>
. (25)

It was proved that if H1{·} = 1
s+1{·} and W> =

[ω, H1{ω}]>, then

δ(t) = −ġ(t) /∈ L2.
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In this section, we use this numerical examples to illustrate
the asymptotic properties of Lion’s and Kreisselmeier’s
algorithms.

Kreisselmeier’s scheme (MRE). Before we consider
a particular example, we note that parametric error model
(15) yields the following differential inequality:

d

dt
||θ̃||2 = −2γθ̃>Ωθ̃ ≤ −2γλmin(t)||θ̃||2, (26)

where λmin(t) ≥ 0 is the minimum eigenvalue of matrix
Ω(t). Solution of (26) gives the upper bound of the squared

norm ||θ̃(t)||:

||θ̃(t)||2 ≤ e−2γ
∫ t

0
λmin(τ)dτ ||θ̃(0)||2. (27)

Later gives the condition for asymptotic parametric con-
vergence.

Proposition 5. Additionally to Proposition 3, algorithm
(13) provides

P3.4 Asymptotic convergence ||θ̃|| → 0 and ε → 0 as
t→∞, if λmin(t) /∈ L1.

Does the regressor (25) ensure this condition? In view of
(23) we have

ωω> =

[
1 g + ġ

g + ġ (g + ġ)
2

]
.

Then invoking operator (14) and neglecting exponentially
vanishing terms we calculate each element of the matrix
Ω:

Ω11 = L{1} =
1

s+ 1
{1} = 1,

Ω21 = Ω12 = L{g + ġ} =

1

s+ 1
{g + ġ} =

1

s+ 1
(s+ 1){g} = g,

Ω22 = L{(g + ġ)
2} =

1

s+ 1
{g2 + 2gġ + ġ2} =

1

s+ 1
(s+ 1){g2}+

1

s+ 1
{ġ2} = g2 + ġ2

H ,

where

ġ2
H =

1

s+ 1
{ġ2}.

Thus, we obtain that

Ω = L{ωω>} =

[
1 g
g g2 + ġ2

H

]
.

Consider the maximum eigenvalue and the determinant of
Ω given by

λmax(t) =
1

2

(
1 + g2(t) + ġ2

H(t)
)

+

1

2

√
(1 + g2(t) + ġ2

H(t))
2 − 4ġ2

H(t)

and

δΩ(t) = det Ω(t) = λmin(t)λmax(t) = ġ2
H(t),

respectively.

In order to verify the property λmin(t) /∈ L1 we establish
the following facts:

• Since g2(t) and ġ2
H(t) are nonnegative functions,

λmax =
1

2

(
1 + g2(t) + ġ2

H(t)
)

+

1

2

√
(1 + g2(t) + ġ2

H(t))
2 − 4ġ2

H(t) ≤
1

2

(
1 + g2(t) + ġ2

H(t)
)

+

1

2

√
(1 + g2(t) + ġ2

H(t))
2

= 1 + g2(t) + ġ2
H(t).

• From the last inequality we get

λmin =
δ

λmax
=

ġ2
H

λmax
≥ ġ2

H

1 + g2(t) + ġ2
H(t)

≥

ġ2
H

1 + sup(g2(t)) + sup(ġ2
H(t))

=
ġ2
H

C
,

where C > 0 is a constant, sup(·) is the supremum.
• Since ġ /∈ L2 and the operator L{·} is stable (L∞ →
L∞), it is seen from the last inequality and the
definition of ġ2

H that the eigenvalue λmin /∈ L1, i.e.

lim
t→∞

∫ t

0

λmin(τ)dτ =∞.

Thus, we have demonstrated that the regressor (25) used
in Aranovskiy et al. (2017) to illustrate asymptotic con-
vergence of DREM without PE also provides asymptotic
convergence for the Kreisselmeier’s scheme.

Lion’s scheme (DRE) Now consider the Lion’s algo-
rithm (9). It is easy to show that algorithm (9) ensures
asymptotic convergence of the norm of parametric error
if λW /∈ L1, where λW (t) is the minimum eigenvalue of
WW>.

Proposition 6. For regression (1) algorithm (9) provides:

P2.4 Asymptotic convergence ||θ̃|| → 0 as t → ∞ if
λW (t) /∈ L1.

This proposition can be illustrated again by the exam-
ple above taken from Aranovskiy et al. (2017) and ap-
plied to the algorithm (9). For the regressor (23) and
H1{·} = 1

1+s{·}, we (neglecting exponentially vanishing

transiences) can show that

W> =

[
1 g + ġ
1 g

]
, λW (t) ≥ ġ2, detWW> = ġ2.

Since ġ /∈ L2, we have λW /∈ L1.

3.2 High order tuners generating the HOTD of estimates

Now, we show that the Lion’s and Kreisselmeier’s algo-
rithms can be represented in the special forms allowing

one to obtain the HOTD of the adjustable parameters θ̂
up to some prescribed order.

Kreisselmeier’s scheme. For the algorithm (13) we
introduce the operator

L{·} , L(s){·} =
1

d(s)
{·}, (28)

where d(s) = sq + dq−1s
q−1 + · · · + d0 is a Hurwitz

polynomial of the order q. Now, taking into account the
structure of this operator we demonstrate three ways of

calculation of the HOTD of θ̂.
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1. Scheme with direct differentiation is obtained by
differentiation of (13):

θ̂(k+1) = −γ

 k∑
j=0

Ckj Ω(k−j)θ̂(j) − Y (k)
m

 , k = 0, q, (29)

where Ckj are the binomial coefficients,

Ω(k−j) =
sk−j

d(s)
{ωω>}, Y (k)

m =
sk

d(s)
{ωy}.

2. Closed-loop scheme #1 with swapping. We represent

the term Ωθ̂ in (13) by applying the swapping lemma (see
Appendix A of Ioannou and Sun (1996)):

Ωθ̂ = L(s)
{
ωω>

}
θ̂ = (30)

L(s)
{
ωω>θ̂

}
+ In ⊗ Lc(s)

{
In ⊗ Lb(s){ωω>} ˙̂

θ
}
,

where Lc(s) = Lc(s)/d(s),

Lc(s) = c>Ladj (Iqs−AL) , Lb(s) = (Iqs−AL)
−1
bL,

AL, bL, cL are the matrices implementing the minimal
realization of the transfer function L(s) = 1/d(s) =
c>L (Iqs − AL)−1bL, ⊗ is the Kronecker product operator.
Replacing (30) in (13) with the use of definition of Ym and
applying the operator d(s) to the both parts of expression
obtained we get:

θ̂(q+1) + dq−1θ̂
(q) + · · ·+ d0

˙̂
θ+ (31)

γL̄c(s)
{
Lb(s){ωω>} ˙̂

θ
}

= −γωε.

3. Closed-loop scheme #2 with differentiation. The
scheme is obtained by application of the operator d(s) to
the both parts of (13):

d(s){ ˙̂
θ + γΩθ̂} = γωy, (32)

Proposition 7. If the operator L{·} is defined by (28), then
additionally to Proposition 3.

P3.5 Algorithm (13) can be used for calculation of the

HOTD of θ̂ up to (q + 1)th order by one of three
schemes given by (29), (31) or (32).

Lion’s scheme. For the algorithm (9) we define Yd and
W as

Yd = L(s)H(s){y}, (33)

W> = L(s)H(s){ω>} (34)

with the transfer function L(s) given by (28) and the l×1
transfer matrix H(s) = col(1,H1(s), . . . ,Hl−1(s)).

Proposition 8. For extended output (33) and extended
regressor matrix (34), additionally to Proposition 2

P2.5 Algorithm (9) can be used for calculation of the

HOTD of θ̂ up to (q + 1)th order by one of the following
three schemes:

1. Scheme with direct differentiation :

θ̂(k+1) = −γ

 k∑
j=0

CkjW
(k−j)E(j)

 , k = 0, q, (35)

where Ckj are the binomial coefficients,

(W (k−j))> =
s(k−j)

d(s)
[ω, H1{ω}, H2{ω}, . . . , Hl−1{ω}]>,

E(j) =

j∑
l=0

Cjj (W (j−l))>θ̂(l) − Y (j)
d , (36)

Y
(j)
d =

s(j)

d(s)
[y, H1{y}, H2{y}, . . . , Hl−1{y}]>.

2. Closed-loop scheme #1 with swapping:

θ̂(q+1) + dq−1θ̂
(q) + · · ·+ d0

˙̂
θ = −γ

(
WE+ (37)

(In ⊗ Lc(s))
{
In ⊗ Lb(s)

{
W
}
Ė
})

,

where W
>

= H(s){ω>}, Ė is calculated using (36)
(assuming j = 1).

3. Closed-loop scheme #2 with differentiation:

d(s)
{

˙̂
θ + γWW>θ̂

}
= −d(s) {WYd} (38)

The proposition is proved by differentiating (9) (item (1)),
applying the swapping lemma to the term WE (item (2)),
applying d(s) to the both parts of (9) (item(3)).

4. SIMULATION RESULTS

Consider simulation results illustrating asymptotic prop-
erties of the algorithms with DRE (9) and MRE (13).

Fig.1a demonstrates the plots of
∫ t

0
det{Ω}(τ)dτ and∫ t

0
λmin(τ)dτ (λmin is the minimum eigenvalue of Ω).

Fig.1b demonstrates
∫ t

0
det2{W}(τ)dτ ,

∫ t
0
λW (τ)dτ (λW

is the minimum eigenvalue of WW>). Matrices Ω and W
are calculated for ω /∈ PE in accordance with (25).

As seen from the plots of Fig.1, inspite of the fact that ω /∈
PE we have: λmin, det{Ω} /∈ L1 and λW /∈ L1, det{W} /∈
L2. Thus, we can assume that both the algorithms provide
asymptotic parametric convergence even in the case of
“bad” regressor (25).

For all the experiments we select θ> = [−3, 3] and

θ̂(0) = 0. For comparison purposes Fig.3 demonstrates the

function ||θ̃(t)|| calculated from the conventional gradient-
based algorithm (3) with γ = 3 and γ = 10 (adaptation
gains and initial conditions are equal to those ones used in
Aranovskiy et al. (2017)).

Fig.3 shows the norm ||θ̃(t)|| provided by MRE algorithm
(13) with operator (14), while Fig.4 shows this function

given by DRE algorithm (9) with W =
[
ω, 1

s+1{ω}
]
. In

spite of the fact that ω /∈ PE, both figures demonstrate
asymptotic parametric convergence and potentials for con-
vergence acceleration by increasing γ.

5. CONCLUSION

Thus, in the paper we: 1) prove and demonstrate via a nu-
merical example that the Lion’s and Kreisselmeier’s adap-
tation algorithms can ensure asymptotic (not exponential)
parametric convergence under conditions weaker than the
PE one; 2) show that the Lion’s and Kreisselmeier’s algo-
rithms can be represented in the forms generating HOTD
of adjustable parameters.
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Fig. 1. Evolution of functions: a)
∫ t

0
λmindτ ,

∫ t
0
det{Ω}dτ ;

b)
∫ t

0
λW dτ ,

∫ t
0
det2{W}dτ .

Fig. 2. The norms ||θ̃(t)|| provided by gradient-based
algorithm (3).

Fig. 3. The norms ||θ̃(t)|| provided by MRE algorithm (13).

Fig. 4. The norms ||θ̃(t)|| provided by DRE algorithm (9).
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