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Abstract: This work proposes a speed tracking controller for a brush-less DC (BLDC) motor
in presence of plant parameters uncertainty and lack of current sensors. The designed controller
is based on singular perturbation and adaptive control methods. Singular perturbation method
is used to reduce the plant model order neglecting the current fast dynamics. Based on this
reduced order model, an adaptive control law that has no dependency of the phase currents
measurements, is formulated. The effectiveness of the proposed controller is demonstrated by
numerical simulations.
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1. INTRODUCTION

The importance of the motor control technology has resur-
faced recently because the high capabilities and better
heat management of motors, since their efficiency is closely
linked to the reduction of the petroleum dependency and
greenhouse gases as mentioned in Nam (2018).

According to Xiaojuan and Jinglin (2010) in the last
decades, permanent magnet synchronous motors (PMSM)
started to replace other famous traditional kinds of motors
such as Brushed DC motor or induction motor due to
their mechanical friction and electric erosion. Therefore,
the trend is to use high efficiency motors such as PMSM in
appliances such as refrigerators, air conditioners, washing
machines, etc., due to their low maintenance, long life and
low noise as Bender and Orszag (2013) mentioned in their
work.

A PMSM can be broadly classified into two categories
according to the patterns of their EMFs. One category
is characterized by having sinusoidal EMFs and the other,
by having trapezoidal patterns. The former are known as
permanent magnet brush-less DC (BLDC) motors.

BLDC motors are usually described as a three-phase
circuit consisting of inductors, resistors and EMFs in each
of its phases. However, unlike a conventional DC motor,
the switching of a BLDC motor is achieved electronically
by a controller. The importance of these controllers is well

? This work was supported by CONACYT, Mexico, under grant
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known, as stated in the work of Hinch (1991), in order for
BLDC motors to work correctly.

Controlling the BLDC motors speed is an important chal-
lenge since it allows to produce a desired torque to accom-
plish the specified task. Conventional control techniques
such as PID and PI have been used to control the rotor
speed of BLDC motors. Nevertheless, these controllers can
achieve only local stability, become slower in the pres-
ence of a time-varying output reference and, moreover,
uncertainty in the load torque affects the performance
considerably.

To overcome these problems, modern nonlinear controllers
were proposed in Xiaojuan and Jinglin (2010) and Hafez
et al. (2019). Unfortunately, to implement these con-
trollers, the measurements of all state variables are needed
as well as the knowledge of the plant parameters that
results in very complex controllers. However, in practice,
the plant parameters are usually unknown and, in many
cases, the only available sensors are Hall effect sensors from
which it can be obtained only the position and speed.

In this paper, we propose a solution to the motor speed
adaptive tracking problem under parametric uncertainty
and unknown load torque. This solution will be accom-
plished leaving out the current measurements, relying only
on position and speed measurements that can be obtained
from Hall Effect sensors. For this purpose, the singular
perturbation method is used to neglect the currents fast
dynamics and simplify the BLDC motor model. This sim-
plification leads to a reduced order system that has relative
degree equal to one with respect to the tracking error. This
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permits to design a simple adaptive control law that has
no dependency on the phase currents measurements. This
controller is suitable for the real time implementation for
a wide range of BLDC motors of various power without
accurate knowledge of the parameters.

The work is organized as follows. Section 2 describes the
BLDC motor model. Section 3 presents a basic insight on
singular perturbation theory. In Section 4, the singular
perturbation method is applied to obtain a BLDC motor
reduced order model. Based on this model, an adaptive
control law is then formulated. Section 5 shows the effec-
tiveness of the proposed controller by numerical simula-
tions. Last, Section 6 draws some conclusions.

2. BLDC MOTOR MATHEMATICAL MODEL

In this section, we present the dynamic model for a three-
phase (a, b, c) BLDC motor with a concentrated full-pitch
symmetric Y-connected winding equipped with three Hall
sensors placed symmetrically at intervals of 120o electrical
degrees under the following assumptions, Xia (2012) and
Nam (2018):

Assumption 1. The inner rotor has a non-salient pole
structure.

Assumption 2. The core saturation is ignored, as well as
the eddy current losses and the hysteresis losses.

Assumption 3. The reaction of the armor is ignored, and
the distribution of the air-gap magnetic field is a trape-
zoidal wave with a flat top width of 120o electrical degrees.

Assumption 4. Conductor distribution is continuous and
even on the surface of the armature.

Thus, the dynamical behavior of the BLDC motor is given
by [

va
vb
vc

]
= R

[
ia
ib
ic

]
+
d

dt
Ψ (1)

Ψ =

[
Laa Lab Lac
Lab Lbb Lbc
Lac Lbc Lcc

][
ia
ib
ic

]
+N

[
φa(θ)
φb(θ)
φc(θ)

]
(2)

where va, vb, vc and ia, ib, ic are the voltages and currents
of phases a, b, c, respectively, Ψ corresponds to the mag-
netic flux linkages in the stator windings, Laa, Lbb, Lcc and
Lab, Lac, Lbc are the self and mutual inductances, respec-
tively, and φa, φb, φc are the flux linkages of the permanent
magnets induced by the rotor to each phase in relation to
the electrical angle θ.

Substituting (2) into (1), yields[
va
vb
vc

]
= R

[
ia
ib
ic

]
+
d

dt

{[Laa Lab Lac
Lab Lbb Lbc
Lac Lbc Lcc

][
ia
ib
ic

]}
+N

d

dt

[
φa(θ)
φb(θ)
φc(θ)

]
(3)

where N d
dt [φa(θ) φb(θ) φc(θ)]

T
represents the EMF in

each phase according to the Faraday induction law (Serway
et al. (2005)) and can be rewritten as

N
d

dt

[
φa(θ)
φb(θ)
φc(θ)

]
= N

∂

∂θ

[
φa(θ)
φb(θ)
φc(θ)

]
dθ

dt
. (4)

In addition, BLDC motors are synchronous motors accord-
ing to Krishnan (2017), so the rotor speed ωr is defined
as

ωr :=
2

P

dθ

dt
(5)

where P is the number of rotor poles.

π/3 2π/3 π 4π/3 5π/3 2π 3π 4π

1

0

-1

-

Fig. 1. Trapezoidal function ∂φ(θ)
∂θ (dotted) and its normal-

ization f(θ) (continuous) of one phase.

By Assumption 3, the vector ∂
∂θ [φa(θ) φb(θ) φc(θ)]

T
has

trapezoidal wave form as shown in Fig. 1. Moreover, for
symmetrical Y-connected BLDC motors each trapezoidal
wave form can be represented as

∂

∂θ

[
φa(θ)
φb(θ)
φc(θ)

]
= ψM


f(θ)

f(θ − 2π

3
)

f(θ +
2π

3
)

 (6)

where ψM is the maximum magnitude of the trapezoidal
wave form and f(θ) is described in Table 1.

Table 1. f(θ) with respect to the electrical angle θ

Electrical angle θ f(θ)

θ ∈ [0, π
3

) 1

θ ∈ [π
3
, 2π

3
) 1

θ ∈ [2π
3
, π) − 6

π
θ + 5

θ ∈ [π, 4π
3

) -1

θ ∈ [4π
3
, 5π

3
) -1

θ ∈ [5π
3
, 2π) 6

π
θ − 11

Taking into account equations (4)-(6) the EMF vector
[ea eb ec] is defined as follows

[
ea
eb
ec

]
:=

P

2
Ke


f(θ)

f(θ − 2π

3
)

f(θ +
2π

3
)

ωr, Ke = NψM . (7)

Using now (7), the equations (3) become[
va
vb
vc

]
= R

[
ia
ib
ic

]
+
d

dt

{[Laa Lab Lac
Lab Lbb Lbc
Lac Lbc Lcc

][
ia
ib
ic

]}
+

[
ea
eb
ec

]
. (8)

In Xia (2012), it was mentioned that, under Assumption 1,
the flow is isotropic in all directions and therefore, self and
mutual inductances will not vary over time. In addition,
since the three-phase stator windings are symmetrical, the
self-inductances will be equal to each other, as well as the
mutual-inductances, i.e.

Laa = Lbb = Lcc = L

Lab = Lac = Lbc = M.
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Therefore, the equations (8) are changed to[
va
vb
vc

]
= R

[
ia
ib
ic

]
+

[
L M M
M L M
M M L

]
d

dt

[
ia
ib
ic

]
+

[
ea
eb
ec

]
. (9)

Using Kirchhoff’s law (Mia+Mib = −Mic), the equations
(9) can be reduced to[

va
vb
vc

]
︸ ︷︷ ︸
V

= R

[
ia
ib
ic

]
︸︷︷︸
I

+(L−M)
d

dt

[
ia
ib
ic

]
+

[
ea
eb
ec

]
. (10)

R

R

R

Laa

Lbb

Lcc

Lab

Lbc

Lac

+ -

+ -

+ -

ea

eb

ec

va

vb

vc

Fig. 2. Equivalent circuit for a 3-phase Y-connected BLDC
motor.

To complete the mathematical model of the BLDC motor,
Newton’s second law is used to describe the rotational
motion as

Te − Tl = J
d

dt
ωr + βωr (11)

where Tl, J and β are the load torque, the moment of
inertia and the coefficient of viscous friction, respectively.
The electrical torque Te and its equation can be deduced
from an energy balance perspective, where the power
transferred to the rotor (electromagnetic power) is equal
to the sum of the product of the currents and the EMFs
of the three phases, i.e.

Pe = [ea eb ec]

[
ia
ib
ic

]
. (12)

Ignoring mechanical losses, all electromagnetic energy be-
comes kinetic energy, then Pe = Teωr using the equations
(7) and (12) finally, Te is described by

Te =
P

2
Ke

[
f(θ) f(θ − 2π

3
) f(θ +

2π

3
)

]
︸ ︷︷ ︸

FT

[
ia
ib
ic

]
. (13)

3. SINGULAR PERTURBATION

The aim of this section is to provide a basic insight
on singular perturbation theory. For deeper and formal
definitions on perturbation methods please refer to Hinch
(1991), Nayfeh (2008), Bender and Orszag (2013).

Singular perturbation methodology is an analytic approx-
imation strategy to find solutions for systems of the form

d

dt
x = f(t, x, z), x(t0) = x0 (14)

ε
d

dt
z = g(t, x, z), z(t0) = z0 (15)

where x ∈ Rn, z ∈ Rm, the functions f(·) and g(·) are
continuously differentiable in all its arguments; ε is a small

parameter such that when ε = 0 causes a structural change
in the dynamic properties of the system given that the
differential equation (15) degenerates into an algebraic
equation

0 = g(t, x, z). (16)

Suppose that the equation (16) has an isolated solution

z = h(t, x). (17)

Substituting (17) in (14) results in the following reduced
n-dimensional system called slow motion system:

d

dt
x = f(t, x, h(t, x)). (18)

Now, define the following change of variable to ensure the
origin to be an equilibrium point:

y := z − h(t, x).

System (14) - (15) in new variables (x, y) is now given by

d

dt
x = f(t, x, y + h(t, x)) (19)

ε
d

dt
y = g(t, x, y + h(t, x), )− ε∂h

∂t
(20)

− ε∂h
∂x
f(t, x, y + h(t, x)).

Defining now a new time

τ := tε−1 =⇒ dτ

dt
= ε−1 (21)

and setting ε = 0 in (20) results in the following fast
dynamics:

d

dτ
y =g(t, x, y + h(t, x)) (22)

which is called also the boundary layer system where x, t
are treated as fixed parameters.

Then, if we can find a solution x̂(t, ε) for the reduced
system (18) and the origin of the boundary layer system
(22) is exponentially stable equilibrium point, uniformly in
the fixed parameters, then the solutions for the full order
system (14) - (15) x(t, ε) and z(t, ε) meet that

x(t, ε)− x̂(t) = O(ε)

z(t, ε)− h(t, x̂(t))− ŷ(τ) = O(ε)

for some small value ε, where ŷ(τ) is the solution of the
boundary layer system (22).

These results are presented formally in Khalil (2002).

4. CONTROL DESIGN PROCEDURE

In this section, the aim is to analyze the dynamic model
that describes the behavior of a BLDC motor with the
purpose of finding an adaptive control law which forces
the rotor speed ωr to track a given smooth reference
signal ωref . This analysis will be accomplished under the
following assumptions:

Assumption 5. None of the plant parameters are known.

Assumption 6. Phase currents ia, ib, ic are not available
for measurement.

Assumption 7. Load torque Tl is unknown and varies slow,
thus d

dtTl = 0.

Assumption 8. The reference signal ωref and its derivative
d
dtωref are bounded continuous known functions.
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For this purpose, the singular perturbation analysis will
be used to find a reduced order system (slow dynamics)
eliminating the phase currents ia, ib, ic fast dynamics.

In general, BLDC motors are constructed so that L and
M are small, that leads to the intuition that the motor
model can be simplified, approximating it by a minor
order system, as it was shown in Section 3. This implies
that is possible to analyze only the speed differential
equation, since the phase currents differential equations
will become algebraic equations by setting L − M = 0.
Such simplification will make possible to find an adaptive
control law that depends only on the speed measurement.
This kind of simplification is not always feasible, so it is
necessary to verify that the boundary layer system (fast
dynamics) is exponentially stable before designing the
controller using the reduced order system (slow dynamics).

We will start by defining the speed error eω as the
difference between the actual rotor speed ωr and the
smooth reference signal ωref as follows

eω := ωr − ωref . (23)

Differentiating (23) with respect to time and using (11),
the dynamics of the error are given by

d

dt
eω =

PKe

2J
FT I − Tl

J
− β

J
(eω + ωref )− d

dt
ωref (24)

where FT denotes
[
f(θ) f(θ −

2π

3
) f(θ +

2π

3
)

]
and I denotes

[ia ib ic]
T

.

To simplify the notation, define a new variable ζ as follows

ζ :=
PKe

2J
I. (25)

Using the new variable (25), equation (24) can be written
as

d

dt
eω = FT ζ − Tl

J
− β

J
(eω + ωref )− d

dt
ωref , (26)

whereas the dynamic equation for (25) can be obtained
using (10), thus

(L−M)

R

d

dt
ζ = −ζ − P 2K2

e

4RJ
F (eω + ωref ) +

PKe

2RJ
V (27)

where V denotes [va vb vc]
T

.

Let

α1 :=
Tl

J
, α3 :=

(L−M)

R
, α5 :=

P 2K2
e

4RJ
,

α2 :=
β

J
, α4 :=

PKe

2RJ
,

then the system (26) - (27) can be written as

d

dt
eω = FT ζ − α1 − α2(eω + ωref )− d

dt
ωref (29)

α3
d

dt
ζ = −ζ − α5F (eω + ωref ) + α4V. (30)

It is worth to note that the system (29) - (30) has the form
of (14) - (15), so using α3 as a perturbation parameter, we
now proceed with the boundary layer analysis shown in
Section 3.

4.1 Boundary layer analysis

By setting α3 = 0 equation (30) becomes

0 = −ζ − α5F (eω + ωref ) + α4V. (31)

Then, it can be found that (31) has a unique real root
given by

ζ∗ = −α5F (eω + ωref ) + α4V.

Now, proceeding with the analysis shown in Section 3, let
Γ be

Γ := ζ − ζ∗. (32)

Then, the system (29)-(30) in terms of the new vari-
able (32) is stated as

d

dt
eω =FTΓ− α5||F ||2(eω + ωref )− α1 (33)

− α2(eω + ωref )− d

dt
ωref + α4F

TV

α3
d

dt
Γ =− Γ− α3{−α5

P

2
(eω + ωref )2

∂

∂θ
F (34)

− α5F (
d

dt
eω +

d

dt
ωref ) + α4

d

dt
V }.

Defining a new time variable τ to analyze the boundary
layer

τ = tα−13 =⇒ dτ

dt
= α−13 ,

and setting α3 = 0, the equation (34) can be rewritten as

d

dτ
Γ =− Γ. (35)

Thus, the fast dynamics are described by the linear system
(35) that is exponentially stable. Therefore, system (29)
- (30) can be approximated by the reduced order slow
motion model (36).

4.2 Adaptive control design with reduced model

In this subsection, an adaptive control law will be designed
based on the reduced slow dynamics described by (33)
when Γ = 0, i.e.

d

dt
ẽω =− α5||F ||2(ẽω + ωref )− α1

− α2(ẽω + ωref )− d

dt
ωref + α4F

TV.

(36)

To stabilize the tracking error system (36), the control law

V = V (ẽω, θ̂, t) is formulated of the form

V (ẽω, θ̂, t) =
F

||F ||2
η(ẽω, θ̂, t),

η(ẽω, θ̂, t) = θ̂1||F ||2(ẽω + ωref ) + θ̂2 + θ̂3ωref

+θ̂4
d

dt
ωref − λẽω

(37)

where λ > 0 is a control design gain and θ̂i, i = 1, ..., 4, cor-
responds to the estimation of the parameters θ1 = α−14 α5,
θ2 = α−14 α1, θ3 = α−14 α2 and θ4 = α−14 respectively, with
adaptation laws given by

d

dt
θ̂1 =− γ1||F ||2ẽω(ẽω + ωref ),

d

dt
θ̂3 =− γ3ẽωωref ,

d

dt
θ̂2 =− γ2ẽω,

d

dt
θ̂4 =− γ4ẽω

d

dt
ωref

(38)
where γ1, γ2, γ3 and γ4 are positive constants.

It is important to note that there is no singularity in (37)
since 2 ≤ ||F ||2 ≤ 3 as it can be seen in Table 1.
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Proposition. A solution of the closed-loop system (36)-
(38) is bounded and the tracking error ẽω(t) asymptoti-
cally tends to zero. i.e.

limt→∞|ẽω(t)| = 0.

Proof. Define parameter estimation errors as

θ̃1 = θ1 − θ̂1, θ̃3 = θ3 − θ̂3,
θ̃2 = θ2 − θ̂2, θ̃4 = θ4 − θ̂4.

(39)

Then, using (39), the closed-loop system (36) - (38) is
represented as

d

dt
ẽω =− α4{(θ3 + λ)ẽω + θ̃1||F ||2(ẽω + ωref )

+ θ̃2 + θ̃3ωref + θ̃4
d

dt
ωref},

(40)

d

dt
θ̃1 =γ1||F ||2ẽω(ẽω + ωref ), (41)

d

dt
θ̃2 =γ2ẽω, (42)

d

dt
θ̃3 =γ3ẽωωref , (43)

d

dt
θ̃4 =γ4ẽω

d

dt
ωref . (44)

Recalling that all θi, i = 1, ..., 4 are positive combinations
of constant parameters, and following adaptive backstep-
ping methodology (Krstic et al. (1995)), the function

v =
1

2
(θ4ẽ

2
ω + γ−1

1 θ̃21 + γ−1
2 θ̃22 + γ−1

3 θ̃23 + γ−1
4 θ̃24) (45)

is proposed as a Lyapunov function candidate. Calculating
the time derivative of (45) and using (40), yields

d

dt
v =ẽω{−(θ3 + λ)ẽω − θ̃1||F ||2(ẽω + ωref )

− θ̃2 − θ̃3ωref − θ̃4
d

dt
ωref}+ γ−1

1 θ̃1
d

dt
θ̃1

+ γ−1
2 θ̃2

d

dt
θ̃2 + γ−1

3 θ̃3
d

dt
θ̃3 + γ−1

4 θ̃4
d

dt
θ̃4.

(46)

Grouping similar terms, equation (46) can be rewritten as
d

dt
v =− (θ3 + λ)ẽ2ω

+ θ̃1(−||F ||2ẽω(ẽω + ωref ) + γ−1
1

d

dt
θ̃1)

+ θ̃2(−ẽω + γ−1
2

d

dt
θ̃2) + θ̃3(−ẽωωref + γ−1

3

d

dt
θ̃3)

+ θ̃4(−ẽω
d

dt
ωref + γ−1

4

d

dt
θ̃4).

(47)

Substituting (41) - (44) in (47), results in

d

dt
v =− (θ3 + λ)ẽ2ω ≤ 0. (48)

This implies that

v(t) ≤ v(t0), ∀t ≥ t0.
Therefore, the solutions ẽω(t) and θ̃i(t) with i = 1, ..., 4 of
(40) - (44) are bounded for all t > t0.

Moreover, taking the time derivative of (48) yields

d2

dt2
v =2α4(θ3 + λ)ẽω{(θ3 + λ)ẽω

+ θ̃1||F ||2(ẽω + ωref ) + θ̃2 (49)

+ θ̃3ωref + θ̃4
d

dt
ωref}.

Recalling that ||F ||2 ≤ 3, and ẽω(t), θ̃i(t) with i =
1, ..., 4 are bounded; then, under Assumption 8, it can be

conclude that (49) is also bounded. Hence, the Lyapunov
function derivative (48) is uniformly continuous. Thus,
all conditions from Barbalat’s lemma (Marino and Tomei
(1996)) are satisfied, resulting in limt→∞|ẽω(t)| = 0 . 2

5. NUMERICAL SIMULATIONS

This section shows the behavior of the complete mathe-
matical model, obtained for the BLDC motor in Section
2, closed by the adaptive control law (37) proposed in
Section 4 from the reduced model (36). In addition, a
sharp change in the load torque Tl from 0Nm to 20Nm at
t = 1.5s has been added as a disturbance in order to see
how the controller rejects it and observe how non-modeled
dynamics affect the performance of this controller. In order
to have a significant feedback that it is able to track an
output reference rejecting Tl disturbances, the proposed
adaptive control (37) is compared with the one published
in Bayardo and Loukianov (2018) that uses the complete
BLDC model. The parameters used for the simulation are
presented in Table 2.

Table 2. Parameters used for simulation

Motor Parameters Value

Number of poles P 12

Moment of inertia J 0.18 Kgm2

Damping coefficient β 0.05

Self inductance L 10.63e-3 H

Mutual inductance M 5.13e-3 H

Resistance R 2.02 Ω

Back EMF constant Ke 0.06 V/Rad/s

Fig. 3 shows the reference and the response of both
controllers, the Complete Model Control (CMC) and the
Reduced Model Control (RMC). We can appreciate that
both, CMC and RMC, track the reference and successfully
reject the load torque disturbance.

Fig. 3. Rotor speed response of the BLDC motor with both
controllers exposed to a load torque change at t=1.5s

Even though RMC lacks the information of the current
phases, Fig. 4 shows that the square error, from equation
(23), has almost the same behaviour as CMC. On the other
hand, the electrical torque Te in RMC is affected by the
non-modeled dynamics, as shown in Fig. 5. However, in
traditional PID and PI controls the torque ripple (Tripple)
can be up to 50% of the average torque (Tavg), as addressed
in Lin and Lai (2011). RMC improves this indicator, given
that Tripple computed for this controller never exceeds the
25%.

Tripple =
Tmax − Tmin

Tavg
(50)
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Fig. 4. Square error comparison between both controllers.

where Tmin, Tmax are the minimum and maximum values
of the torque waveform.

Fig. 5. Torque behaviour comparison

Fig. 6. Reduced order controller estimation parameters

The performance of the adaptive laws can be seen in Fig. 6,
where the adapted parameters reach a steady state value,
approximately, at time t = 0.75s. Even in the presence of
disturbances the adapted parameters take less than 0.5s
to reach the steady state again. Finally, Fig. 7 presents
voltage and current phases of the RMC.

Fig. 7. Reduced order controller voltage and current in
each phase

6. CONCLUSION

An adaptive tracking control law for the BLDC motor was
designed without the dependency on the phase currents
measurements or any parameter of the model. This control
law was accomplished by a simplification of the BLDC

motor model that was justified by the analysis of the plant
fast dynamics using singular perturbation method.

As shown in Section 5, the simplifications on the math-
ematical model had no negative effects on the tracking
error, as a matter of fact, the behavior of the proposed
adaptive controller, when compared with a previous work
that uses the complete model, demonstrated similar re-
sults and showed great performance in the tracking of
the reference signal ωref , even when the load torque Tl
presented sudden changes. But this reduction brought an
undesirable behavior in the electrical torque Te, presented
as ripple Tripple. Nevertheless, this ripple remains less than
the incurred by conventional PID controllers. Therefore,
this controller is a good option when the situation requires
to track a reference with parametric uncertainty, unknown
load torque and no current measurements available. The
implementation of the RMC controller is considered as
future work.
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