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Abstract: Robust control of uncertain nonlinear systems subject to constrants often leads to
conservatism. Such behaviors can be improved by updating the model of the uncertainty with the
data collected during the operation time or by bounding the parameters. This paper proposes
an approach to robustly control the discrete-time Lur’e system subject to states and input
constraints, where the unknown memoryless nonlinearity is sector-bounded and its Lipschitz
constant is assumed to be given. In the first phase of operation, when no data has been
collected, a robust MPC controller obtained from solving linear matrix inequalities is used.
This formulation is also used to compute the safe region, in which the system can operate
safely. After sufficient data has been collected, an upper and lower bound of of the nonlinearity
can be constructed by using the Lipschitz constant. A controller based on tube-based MPC is
used, which results in less conservatism and provides more flexibility. Data of the nonlinearity
can be further updated to reduce uncertainty, and hence, to decrease the size of the tube. Under
additional conditions, the controller can safely explore the region outside the safe regions to
collect more data of the unknown nonlinearity to improve performance and region of attraction.

Keywords: Lur’e systems, learning, constrained model predictive control, robustness,
uncertainty.

1. INTRODUCTION

Nonlinear model predictive control (NMPC) has received
great attention over the last decades thanks to its flex-
ibility to efficiently handle systems with constraints, its
capability of using preview information, the direct consid-
eration of nonlinear systems, and a coherent implementa-
tion of multiple hierarchical layers, see e. g. Rawlings et al.
(2017), Findeisen et al. (2007), Lucia et al. (2016)). The
fundamental idea of predictive control is to solve at each
time step an optimal control problem which predicts the
future system behavior based on the current state infor-
mation. The first part of the resulting optimal trajectory is
then applied and the process is repeated at the next step.

In spite of its significant progress, the control of uncertain
nonlinear systems using predictive control still faces chal-
lenges. Numerous approaches, spanning from worst case
and tube based formulations (Rakovic et al., 2012; Mayne
et al., 2011), to scenario based methods (Lucia et al.,
2013), as well as stochastic model predictive control formu-
lations (Mesbah, 2016) have been studied so far. Besides,
there exist several approaches to analyze the robustness of
predictive control, see e.g. (Grimm et al., 2004; Findeisen
et al., 2007). Most of the existing robust predictive control
approaches for MPC often lead to conservatism, which in
general can have adverse influence on the performance of
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the controller by excessively reducing the feasible solution
space of the optimization problem. One of possible solution
to reduce the conservatism of robust approaches is to use
the data collected during the past operation to learn the
uncertainty model, resulting in the reduction of a uncer-
tainty bounds.

One of the robust controller for uncertain Lur’e system
is proposed in Böhm et al. (2009) in which the solution is
obtained by recasting the problem as the search for a linear
feedback law, where the feedback matrix can be calculated
efficiently due to a reformulation in an LMI form. The
derived linear feedback law is applied continuously and
recalculated at the following discrete sampling times. This
approach was improved by Nguyen et al. (2018), in which
the optimization problem in the form of LMIs is modified
by adding new data collected during operation. Since
the problem is formulated as LMIs, the computation
cost is decreased. However, this approach results in a
small feasible set for optimal solutions. Additionally, the
controller is not flexible for tasks such as path following.

Nevertheless, safety must be ensured during the process of
collecting data for learning, especially for critical systems,
in which any violation of constraints may damage the sys-
tem. Several learning methods like reinforcement learning
(e.g. Lewis and Vrabie (2009)) or Gaussian process (e.g.
Liu et al. (2018) and references therein), are promising
but in practice are unlikely to guarantee safety since they
do not consider constraints. Furthermore, the free-model
approach of reinforcement learning needs a large amount
of data to work. Gaussian processes use a stochastic ap-
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proach, resulting a stochastic guarantee, which may not be
suitable for critical systems. Besides, it is also crucial that
during the process of collecting data, where the model ac-
curacy may be not sufficient, the safety is also guaranteed.

From above discussion, Model Predictive Control com-
bined with set-based approaches shows advantages, since
all constraints are well integrated in the formulation of the
optimization problem. Also, the first principles and prior
knowledge of the system can provide a good-enough initial
model for control, avoiding the need for large amount of
data for learning. The approach proposed in this paper ex-
ploits the prior knowledge, namely the Lipschitz constant
and sector bound, as an initial approximate information,
but during its operation, more data are collected and are
used to refine the model to reduce uncertainty.

Specifically, the initial controller based on solving opti-
mization problem as LMIs is used due to the large uncer-
tainty, which leads to a small feasible set, but it guaran-
tees safety during operation and data collection process.
The LMIs formulation also provides a safe robust control
invariant set for the system, which can play the role of
the terminal set for a second controller. By assuming that
all the states of the system are observable and the infor-
mation is re-constructable and the measure error bound
is given, based on the collected data, an upper and lower
bound function of the unknown nonlinear function are con-
structed (see, for example, in Beliakov (2006) or Calliess
(2016)). The maximum difference between the upper and
lower bound function can be reduced by collecting more
data. Accordingly, a nominal nonlinear function can be
chosen and the system can be consider as a nominal system
with a bound disturbance. With more appropriate data,
the bound of disturbance can be reduced. When data are
sufficient, a tube-based MPC controller is utilized, which
can be less conservative and more flexible. This controller
can be used to explore the region outside the safe region.

The paper is structured as follows. Section 2 describes the
considered class of Lur’e system and the control problem.
Section 3 provides a way to obtain robustly stabilizing
linear feedback with in form of LMIs. Section 4 outlines
the tube-based MPC scheme and its usage for exploring
the region outside the safe region. In Section 5 the results
are illustrated with the help of simulation example that
considers a flexible link robotic arm. Finally, conclusions
are provided in Section 6.

2. PROBLEM SETUP - SAMPLED-DATA MPC OF
UNCERTAIN CONTINUOUS TIME LUR’E SYSTEMS

In this section, the description of the nonlinear system is
given and the control task is outlined.

We consider nonlinear Lur’e systems, which are given by

x(k + 1) = Ax(k) +Gγ(z(k)) +Bu(k),
z(k) = Hx(k),

(1)

(for example see Khalil (2002)). Here A ∈ Rn×n, B ∈
Rn×m, G ∈ Rn×1 and H ∈ R1×n are constant matrices.
The mapping γ(z) : R → R is a nonlinearity satisfying
the following assumption:

Assumption 1. (Sector bounded Lur’e system) The nonlin-
earity γ(z) satisfies a sector-bound condition, described in
the form

(βz − γ(z))T γ(z) ≥ 0, ∀z ∈ R. (2)

It should be noted that, this work can also be applied for
a more general case, in which β ∈ [β1, β2], as with a simple
loop transformation, the nonlinearity can be transformed
into (2), cf. e.g. Khalil (2002). Moreover, this approach
can be extended to the case where the system has multiple
nonlinearities.

Assumption 2. (Lipschitz continuity) The nonlinearity is
Lipschitz continuous, i.e. there exists a real number L ≥ 0
such that, for all z1 and z2

‖ γ(z1)− γ(z2) ‖≤ L ‖ z1 − z2 ‖ ∀z1, z2 ∈ R, (3)

and L is known.

The system (1) is controlled while state and inputs are
subject to constraints

x(k) ∈ X, u(k) ∈ U, ∀k ≥ 0.

Assumption 3. (Input and state constraints) The con-
straint sets X,U are convex polytopes

X = {x ∈ Rn : c̃Tι x ≤ 1, ι = 1, 2, ..., rx}
U = {u ∈ Rm : d̃Tκu ≤ 1, κ = 1, 2, ..., ru}

,

in which c̃ι ∈ Rn, d̃κ ∈ Rm, and rx, ru are the number of
the state and input constraints, respectively.

The sets X and U can be combined in one constraint set

C = {[xT uT ]T ∈Rn+m :cTi x+ dTi u ≤ 1, i = 1, ..., r}, (4)

where r = rx + ru.

In the next section we outline how the optimal control
problem can be solved efficiently using an LMI formulation
which leads to the linear feedback matrix Kk to apply to
the system each time step.

3. LMI-BASED CONTROLLER FOR COLLECTING
DATA

In this section, the linear feedback control law u =
Kkx is designed to guarantee that the system (1) is
robustly asymptotically stabilized while the state and
input constraints are taken into account. The infinite
horizon problem is solved using LMIs. The approach leads
to smaller feasible set but guarantees stability for the
system. During this time, data is safely collected and
later incorporated in the model, resulting in a better
performance. For computational reasons, we focus on
finding at each time step a linear control law

u = Kkx, (5)

which minimizes the infinite horizon cost functional

J =

∞∑
k

xT (k)Qx(k) + uT (k)Ru(k). (6)

The weight matrices Q ∈ Rn×n and R ∈ Rm×m are
positive definite, and (6) is minimized subject to the
system dynamics (1) and the constraints (4).

Furthermore, the constraint set (4) can be written as
follows

C = {x ∈ Rn : (cTi + dTi K)x ≤ 1, i = 1, 2, ..., r}. (7)

The following lemma will be exploited to guarantee the
satisfaction of the constraint (7).
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Lemma 4. The ellipsoid E = {x ∈ Rn : xTPx ≤ α} is
contained in the set (7) if and only if

(cTi + dTi K)(αP−1)(cTi + dTi K)T ≤ 1, i = 1, 2, ...r. (8)

Proof. See Boyd et al. (1994) or Chen and Ballance
(1999).

Lemma 4 implies that if the condition (8) is satisfied, then
the E-neighborhood of a state x lies in the constraint set
C, hence satisfying the state and input constraints. The
condition (8) will be later written in form of an LMI.

Furthermore, the sector-bounding condition (2) can be
written in matrix form as follows (see e.g. Boyd et al.
(1994)): [

x
γ

]T  0 −1

2
HTβT

−1

2
βH I

[xγ
]
≤ 0. (9)

Incorporating (8) and (9) guarantees constraint satis-
faction and robustness. However, the resulting feedback
u = Kkx will be conservative, since no knowledge of the
nonlinearity γ is used.

Ensuring a stable Linear Feedback Law

To guarantee stability of the resulting feedback we add
a Lyapunov condition. We choose a quadratic Lyapunov
function V (x) = xTPx where P > 0. Asymptotic stability
of the feedback u = Kx is guaranteed if

V (x(k + 1))− V (x(k)) + x(k)TQx(k) + u(k)TRu(k) < 0,
(10)

From the dynamics (1) and the control law (5), the
condition is equivalent to[

x
γ

]T [ (AT +KTBT )P (A+BK)
−P +Q+KTRK

]
?

GTP (A+BK) 0

[x
γ

]
≤ 0. (11)

The condition (11) needs to hold for all [xT γT ]T that
satisfy (9). Applying the so-called S-procedure (e.g. Boyd
et al. (1994)), it follows that[

x
γ

]T [ (AT +KTBT )P (A+BK)
−P +Q+KTRK

]
?

GTP (A+BK) + τβH −τI

[x
γ

]
≤ 0.

(12)

Changing the variables to P = αN−1
1 ,K = N2N

−1
1 , where

α > 0 is a constant number, 0 < N1 = NT
1 ∈ Rn×n, and

applying the Schur complement, we obtain
N1 ? ? ? ? ?
S ατI αGT ? ? ?
M αG N1 ? ? ?
0 0 0 I ? ?

Q
1
2N1 0 0 0 αI ?

R
1
2N2 0 0 0 0 αI

 ≥ 0. (13)

where M = AN1 +BN2, S = −τ
2
βHN1.

Combining all conditions leads to the following Theorem.

Theorem 5. (Stability of the separate feedback laws) Con-
sider the system (1) satisfying Assumption 1 and 2. Sup-
pose that there exist matrices 0 < N1 = NT

1 ∈ Rn×n and
N2 ∈ Rm×n, and constants τ ∈ R+ and α ∈ R+ such

that the inequality (13) holds for M = AN1 + BN2, S =

−τ
2
βHN1. Then, for P = αN−1

1 and K = N2N
−1
1 , the

control input u = Kx asymptotically stabilizes the system
(1). Moreover, at time k, x(k)TPx(k) is an upper bound
of the infinite horizon cost functional (6).

Proof. By construction, if the inequality (13) is satisfied,
then clearly V (x) = xTPx is a Lyapunov function and
consequently the system (1) is asymptotically stable with
the control law u = Kx. Furthermore, if we take the sum
of both side of inequality (10) from t to ∞, we obtain

x(k)TPx(k) >

∞∑
k

xT (k)Qx(k) + uT (k)Ru(k)

since x(k) → 0 when k → ∞, which shows that
x(k)TPx(k) is an upper bound of the infinite horizon cost
functional (6).

The following algorithm explains how we use LMI based
controller.

Algorithm 1. (for controlling and collecting data)
1. At k ∈ Z+, measure the state x(k) and construct
information of γ(z).
2. Solve the following optimization problem for fixed τ :

min
αk,N1k,N2k

αk (14)

subject to [
1 xT (k)

x(k) N1k

]
> 0, (14a)


N1k ? ? ? ? ?

S ατI αGT ? ? ?
M αG N1k ? ? ?
0 0 0 I ? ?

Q
1
2N1k 0 0 0 αI ?

R
1
2N2k 0 0 0 0 αI

 ≥ 0. (14b)

[
1 ciN1k + diN2k

(ciN1k + diN2k)T N1k

]
≥ 0. (14c)

3. Compute Kk = N2kN
−1
1k and apply the input

u(k) = Kkx(k), ∀k ≥ 0. (15)

4. Set k := k + 1 and go to step 1.

The following theorem guarantees the feasibility of the
method.

Theorem 6. (Repeated feasibility and stability with offline
learning) Consider the system (1) satisfying Assumption
1 and 2 controlled by using Algorithm 1. The following
properties are guaranteed:
a. If the optimization problem (14) is feasible at the time
k, it is also feasible at time k + 1.
b. If the optimization problem (14) is feasible initially, the
origin is asymptotically stable.

Proof. Hier the sketch of the proof is given. The solution
of the optimization problem at the time k also satisfies
(14b), (14c) at the time k + 1. The constraint (14a) is
satisfied because xT (k + 1)Pkx(k + 1) < xT (k)Pkx(k) <
αk ∀k.
Therefore, all states in stay in the ellipsoid Ek = {x ∈
Rn : xTPkx ≤ αk}. From Lemma 4 and (14c), which is
equivalent to (cTi + dTi Kk)(αP−1

k )(cTi + dTi Kk)T ≤ 1, i =
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1, 2, ...r., it is clear that for each time k, the ellipsoid Ek is
contained in the constraint set (7). Since it holds for every
k, it follows that the constraints are satisfied for all k ≥ 0.

4. TUBE-MPC FOR CONTROLLING AND
EXPLORING NEW DATA

In this section, we outline the method to integrate the data
we collect of the function γ(z) to reduce the conservatism
of the controller. Without loss of generality, let us consider
the function γ(z) with z > 0. On the other half of the
plane, where z < 0, the same conclusions apply. Assume
to measure l data points in the form (zi, γi) where i =
1, 2, . . . , l and 0 < z1 < z2 < · · · < zl. Let ε denote the
measurement error and assume that the upper bound of
this error, denoted as ε, is known, which means that εi < ε
for all i = 1, 2, . . . , l.

Let γ(z), γ(z) : R→ R denote the upper and lower bound
of the function γ(z), which can be constructed by utilizing
the data set (zi, γi)

l
i=0 (which is denoted as the set D)

and the assumption that the Lipschitz constant L of the
function γ(z) is given. The method used to construct these
functions can be found in Beliakov (2006) and Calliess
(2016). Let us pick an arbitrary function γ̃(z) as a nominal
function such that γ(z) ≤ γ̃(z) ≤ γ(z) for all z ∈ Rp

and j ∈ [0, p]. From how upper and lower bound function
are constructed and how the nominal function is chosen
it follows that the difference of γ̃(z) and the real function
γ(z) is always bounded by

‖γ̃(z)− γ(z)‖ ≤ 2Ld+ 2ε, (16)

where d = minzi∈D ‖z − zi‖. Denote d̃ = maxzi∈D ‖zi+1 −
zi‖ ∀i ∈ [1, 2, 3, ..., l − 1], obviously d ≤ d̃ for all ‖z‖ ≤
maxi∈[0,l] ‖zi‖. Therefore, the error between the nominal
and the real function is always bounded by

‖γ̃(z)− γ(z)‖ ≤W, (17)

where W = 2Ld̃ + 2ε. Accordingly, by making the set D
denser (by collecting data), the error w is reduced and for
a certain data set D, w is known.

Control in the known region with tube MPC

We now use the standard approach of MPC to control the
system. When a nominal nonlinear fuction γ̃(z) is chosen,
the corresponding nominal system is

x̃(k + 1) = Ax̃(k) +Gγ̃(z̃(k)) +Bũ(k),
z̃(k) = Hx̃(k),

(18)

The cost function can be chosen as

F (x̃, ũ) := x̃TQx̃+ ũTRũ, (19)

with the weighting matrix Q,R ∈ Rn×n and Q,R � 0.
The terminal cost is defined as

E(x) := x̃TPx̃, (20)

where P ∈ Rn×n and P � 0. P is determined by
solving the optimization problem (14). The optimal control
problem of the proposed approach is given by

min
ũ(k)

N∑
k

F (x̃(k), ũ(k)) + E(x̃(k +N)), (21)

subject to

x̃(k + 1) = Ax̃(k) +Gγ̃(Hx̃(k)) +Bũ(k), (21a)

x̃(k) ∈ X	R(k), (21b)

ũ(k) ∈ U	KeR(k), (21c)

x̃(k +N) ∈ E	R(k +N). (21d)

Hereby, the nominal states have to satisfy the shrink-
ing constraints obtained by subtracting the original con-
straints with the tubes R(k). Likewise, the terminal set,
which is used to guarantee the recursive feasibility, is also
shrunk by the tubes. The construction of the tubes is
elaborated in the next section. The terminal set can be
chosen as the ellipsoid computed from section 3.

Robust constraint satisfaction and recursive feasibility

The difference between the real states and the nominal
states are denoted as

e(k) = x(k)− x̃(k).

The input is chosen in the form of

u(k) = ũ(k) +Kee(k), (22)

which has two terms. The term ũ(k) comes from solving
the optimization problem (21), while the term Kee(k)
is used to stabilize the error dynamics. Thus, it can be
written as

e(k + 1) = (A+BKe)e(k) +Gd(k), (23)

where d(k) = γ(z(k))− γ̃(z̃(k)) and can be bounded by

‖γ(z)− γ̃(z̃)‖ ≤ ‖γ(z)− γ(z̃)‖+ ‖γ(z̃)− γ̃(z̃)‖,
for each time k. The first term of the right hand side in
(4) can be bounded by using the Lipschitz constant in
Assumption 2

‖γ(z)− γ(z̃)‖ ≤ L‖z − z̃‖ ≤ L‖H‖x− x̃‖ = L‖H‖‖e‖,
while the second term is bounded by using (17) as follows

‖γ(z̃)− γ̃(z̃)‖ ≤W.
Therefore, we have

‖d(k)‖ ≤ L̃‖e(k)‖+W. (24)

where L̃ = L‖H‖e. To find the suitable Ke and the
minimum robust positively invariant set of (23) with
respect to the disturbance (24), we can use the method in
Löfberg (2003). In short, we need to find an ellipsoid EΩ

such that ek+1 ∈ EΩ for all ek ∈ EΩ and d that satisfies
(24). The problem becomes finding Ω ∈ Rn×n, Ω ≥ 0 and
Θ ∈ R1×n such that

τ1W̃ + τ2 ≤ 1, (25)
τ2Ω ? ? ?
0 τ1I ? ?

AΩ +BΘ G Ω ?√
2τ1L̃Ω 0 0 I

 ≥ 0. (25a)

where W̃ = 2W 2, τ1 and τ2 are constants coming from
S-procedure and Ke is computed by

Ke = ΘΩ−1. (26)

The following theorem guarantees the constraints satisfac-
tion and recursive feasibility for the real system.

Theorem 7. If there exists a feasible solution κi(x(k0)) for
the problem and if the states of the nominal model (18)
satisfy the constraints (21b), then the states of the real
system (1) robustly satisfy the real constraints (X,U)

Proof. This results are direct results from standard tube-
based MPC approach, see for example Mayne et al. (2011).
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Exploring the unknown region

The ellipsoid safe region E can be the computed from
solving the optimization (14) and the procedure of collect-
ing data for the function γ(z) can be done from method
discussed above. Also, zl denotes the largest value of z we
have collected in the data set D and the upper and lower
bound γ, γ have been constructed for 0 < z < zl. In this
part, we discuss how to safely explore the region outside
of ellipsoid E . Assume that we need to steer the system to
the state xl+1 corresponding to the value zl+1 so that we
can measure the value γl+1, which can help update the the
nonlinear functions γ(z) and γ(z) to the value of zl+1.

The problem of safe exploration is that, on the one hand,
we must ensure that the system can safely be driven from
the state xl to the state xl+1, which means there exists
always at least a control input u ∈ U that can take
the system to the state xl+1 such that x ∈ X. In other
words, xl+1 must lie inside the reachable set of the system
with the initial condition xl. On the other hand, when the
system is at the state xl+1, it should be able to come back
to the so-called known set, denoted as set S, which includes
the safe set E and all points that have been explored, which
means there exist at least a control input u ∈ U that can
take the system to the set S such that x ∈ X. That is to
say, the intersection set of the set S and the reachable set
of the system with the initial condition xl+1 is non-empty.

In the case of systems with a bounded uncertainty, the
problem is more complicated because even though the
state is xl+1 is fixed and the nominal system can reach
xl+1, the state of the real system lies in a bounded set
that surrounds xl+1, denoted as Xl+1. If the set Xl+1 is
computable, then in order to make sure that the system
can travel back to the set S, we have to check that
condition for all the points in the set Xl+1. Additionally,
since the problem is formulated as a tube-based MPC
problem, the necessary condition is that the set of state
constraints X	R(k) in (21b) is not empty, in which the set
R(k) depends on the distance ‖xl+1−xl‖. In general, this
is not a trivial problem for a nonlinear system. However,
we can exploit the structure of the nominal system (18)
and limit to computations of reachable sets in one step
ahead to come up with a simpler approach as follows.

As long as zl+1 > zl, the system can obtain new data
to construct the bounds for the nonlinear function, so the
option for zl+1 is not unique. One possible way is to choose
xl+1 such that zl+1− zl = minzi∈D ‖zi+1− zi‖ := d, which
guarantees the condition that X 	 R(k) in (21b) is not
empty. After, zl+1 is picked, x̃l+1 must satisfy

Hx̃l+1 = zl+1. (27)

Here note that x̃l+1 is the state that the nominal system
is planned to reach, while the real system, due to the
disturbance, will arrive at the state xl+1 ∈ x̃l+1⊕W where
W = {w : ‖w‖ ≤ 2Ld + 2ε}. In order to guarantee that
the nominal system can reach x̃l+1 in one step, x̃l+1 must
belong to the set

x̃l+1 ∈ [(Axl +Gγ̃(zl))⊕BU] ∩ [X	W]. (28)

If the optimization problem is feasible, then one xl+1 can
be chosen. The next step is to check if the system can be
driven back to the safe set from all the points in the set
x̃l+1 ⊕W. Consider

xl+2 = Axl+1 +Bu+Gγ̃(zl+1) + w. (29)

where xl+1 ∈ x̃l+1 ⊕ W and zl+1 ∈ [z̃l+1 − d, z̃l+1 + d].
By finding the minimum Γ and maximum Γ of γ̃(zl+1)
over [z̃l+1 − d, z̃l+1 + d], we have γ̃(zl+1) ∈ [Γ,Γ], denoted
as the set Γ. From (4), since it is a linear combination of
all polytopes, we only need to check the condition on the
boundaries.

5. SIMULATION EXAMPLE

In this section we illustrate the proposed approach with
a flexible link robot arm modelwhich is similar the one in
Böhm et al. (2008), Böhm et al. (2009). The simulations
were run using the python toolbox do-mpc (Lucia et al.,
2017). The robot is given in form of (1) with the matrices

A =

 1 0.05 0 0
−2.43 0.9375 2.43 0

0 0 1 0.05
0.975 0 −0.835 1

 , B =

 0
1.08

0
0

 ,
GT = [0 0 0 −0.1665] , H = [0 0 1 0] .

The considered nonlinear function γ takes the form γ(z) =
0.25(sin(z) + z). The following input and state constraints
need to be satisfied

u(k) ∈ [−2, 2], x1(k), x3(k) ∈ [−π
2
,
π

2
] ∀k ≥ 0.

The control task is to steer the robotic arm to the
origin. The weighting matrices in (6) are chosen as
Q = 0.01diag(1, 0.1, 1, 0.1), R = 0.01. First, the system
is controlled with LMI-based controller. The parameters
are set to τ = 1. We first consider the initial condi-
tions x0 = [1.1, 0.2, 0, 0]T . The problem is feasible and
the trajectory is shown in Fig. 1. However, if x0 =
[1.2, 0.2, 0, 0]T , the problem becomes infeasible. We start
from different initial conditions where the problem is fea-
sible to collect more data to build the upper and lower-
bound functions. The gain Ke = [−4.9,−1.19, 2.58,−0.5]
is computed by (26). The constraints becomes ũ(k) ∈
[−1.26, 1.26], x1(k), x3(k) ∈ [−1.41, 1.41]. The tube-
based approach can find solution from x0 = [1.2, 0.2, 0, 0]T

as shown in Fig. 2, which shows that it slightly reduces
conservatism. This result still can be improved by using a
better computational method for computing R(k) and a
better choice of Ke.

6. CONCLUSIONS

In this paper we proposed a set-based robust model
predicted control combined with learning for controlling
Lur’e systems with unknown sector-bounded nonlinear-
ity. The data collecting phase is conducted by using an
LMI-based controller which guarantees stability and con-
straints. These points are used to construct upper and
lower bound functions of the unknown nonlinerity by
using the Lipschitz constant, and the error between the
real nonlinear function and the nominal one is bounded.
The measurement error is also taken into account in the
problem formulation.

The proposed approach can be improved as follows.
Firstly, the rough initial estimation of Lipschitz constant
may be re-estimated and improved over time from the
data. Second, a strategy to pick up a suitable Ke that
introduces less conservatism to the method can be consid-
ered. Third, the exploration strategy can only be applied

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7203



Fig. 1. The flexible link robotic arm controlled by LMI-
based controller.

Fig. 2. The flexible link robotic arm controlled by tube-
based controller.

for one step ahead computation due to the complexity of
the computation of forward and backward reachable sets.
To decrease the computational burden one could exploit
the structure of Lur’e system and obtain an appropriate
approximation of the sets.
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