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Abstract: Control of robots manipulating objects using only the sense of touch is a challenge.
In-hand motion of the manipulated object highly depends on the friction forces acting at the
contact surfaces. Soft contacts allow torsional frictions as well as friction forces, therefore robots
can perform more complex manipulation abilities, like object pivoting. Control of the pivoting
sliding motion is very difficult especially without any visual feedback. The paper proposes a novel
method to control the sliding velocity of the object by using a simple parallel gripper endowed
with force/tactile sensors only. The strategy is based on a nonlinear observer that estimates the
sliding velocity from force/torque measurements and a model of the sliding dynamics.

Keywords: Robotic manipulators, Robot control, Friction, Nonlinear systems, Observers.

1. INTRODUCTION

The ability of robots to manipulate objects of various
shapes and materials is crucial for broadening their use in
service robotics. For a number of years researchers focused
their efforts in devising complex robotic hands with many
degrees of freedom (Piazza et al., 2019). However, recent
approaches proposed the adoption of more simple devices
and the exploitation of external aids to enhance the gripper
dexterity (Dafle et al., 2014). A typical task that can be
performed even by a simple parallel gripper to change the
pose of the grasped object without a re-grasping maneuver
is the so-called object pivoting. It consists in allowing a
controlled rotation of the grasped object subject to gravity
by suitably acting on the grasping force. The task has
been performed in different ways, e.g., by using both visual
and tactile sensors by Vina et al. (2016) or even by using
tactile sensors only by Costanzo et al. (2018). The first
approach allows to control the object orientation owing
to the visual feedback, while the tactile sensor is used to
control the grasp force. In the second paper, force sensors
on the fingertips are used for both grasp force control and
for executing the pivoting maneuver with the limitation
of the a priori knowledge of the initial orientation of the
grasped object. Performing the pivoting task using the
sole tactile feedback is very challenging even for a human
and an accurate control of the object orientation is not
possible. However, under some assumptions, clarified in
the present work, it is possible to track a given velocity
profile of the sliding motion, hence indirectly controlling
the object angular position. However, the actual velocity
can only be estimated from the tactile measurements
and thus the accuracy in the final pose will be affected
by the accuracy of some model parameters. Indeed, the
control approach is based on a dynamic model of the
object motion described as a pure rotational motion about

* This work was supported by the European Commission within the
H2020 REFILLS project, ID n. 731590.

Copyright lies with the authors

the instantaneous center of rotation (CoR). Modelling
friction torques is thus crucial and to this aim we adopt
the soft contact dynamic model proposed by Costanzo
et al. (2020). In that paper an Extended Kalman filter
was used to estimate the sliding velocity with its usual
convergence problems, which were solved by an accurate
tuning of the filter covariance matrices and by resorting
to a computationally demanding digital implementation
based on the Runge-Kutta numerical integration method.
Here, the velocity is estimated via a nonlinear observer
with proved convergence. Experiments carried out on a
Kuka LBR iiwa equipped with a sensorized gripper show
the effectiveness of the nonlinear observer in estimating
the sliding velocity as well as of the control strategy to
track a given velocity profile.

2. DYNAMIC MODELING

This paper adopts the dynamic model proposed by
Costanzo et al. (2020), it will be briefly described in this
section highlighting some minor differences.

Consider a planar slider on which a hemispherical soft pad
applies a friction force with components laying on a plane;
the magnitude of the friction force can be controlled by
acting on a force normal to the plane. Define a contact
frame with the z axis normal to the contact surface in
the direction of the normal load and the y axis along the
direction of the tangential load. The origin of the contact
frame is located in the Center of Pressure (CoP) of the
contact area, that is circular in view of the soft pad shape.
The pressure distribution is assumed axisymmetric with
respect to the z axis.

Under such assumptions, the instantaneous rotational mo-
tion can be described by a twist vector with components
in the contact frame

t=[vs vy w17, 1)
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where v, and v, are the components of the linear velocity
and w, is the component of the angular velocity. Hence, as
shown by Lynch and Park (2017), the CoR has position

077, 2)

PCoR = [_vy/wz 'Um/wz
that is orthogonal to ¢.

By kinetostatic duality, the friction load acting on the soft
pad can be represented by the three-dimensional wrench

w=[0 fi 7], 3)
with f; and 7, the tangential and torsional load, respec-

tively. In view of the particular choice of the reference
contact frame, the following constraints hold

ft207f7l>07-§07 (4)

- bl n >
where f, is the normal load, which is also the control input
signal available to control the motion of the planar slider.

Under the assumption of axisymmetric pressure distribu-
tion, the CoR position is orthogonal to the direction of
the wrench and thus v, = 0 (Howe and Cutkosky, 1996).
Therefore, the CoR position has components [¢ 0 0]
with

c=—vy/w,. (5)
Moreover, in view of the load motion inequality (Goyal
et al., 1991), ¢ and 7,, have always opposite signs.

Since the instantaneous motion of the slider can be de-
scribed as a pure rotation about the CoR, its dynamics
can be described by the Euler equation

J(Uz = —01W,; — Tf + Te, (6)
where J is the inertia moment of the slider about the CoR,
o1 is the viscous friction coeflicient, 7¢ is the dry friction
torque and 7. is the external torque acting on the slider.

The dry friction is modeled with the well-known LuGre
model by Canudas de Wit et al. (1995), i.e

Z=w, —

ﬁzw (7)
. (8)

where z is the LuGre state variable, i.e., the displacement
of the micro asperities, g(fn,c) is the maximum dry
friction torque that can be applied to the slider and o
is the stiffness of the micro asperities. The classical LuGre
model was devised for translational friction, while the
slider considered in this paper is subject to both linear
forces and torsional moments since the slider is subject
to a soft distributed contact. Therefore, a new method to
compute the maximum dry friction torque as a function of
the normal force is necessary. A well-known approach to
address this problem is the one based on the Limit Surface
(LS) concept by Goyal et al. (1991).

The LS is the locus of the points (fi, o, 7Tn,) identified
by the maximum tangential and torsional friction loads
that can be withstood at the contact. The LS is usually
represented normalized with respect to the maximum
tangential and torsional friction loads that can be applied
before slipping. These are related to the normal load
through the relationships (Xydas and Kao, 1999)

Jtmax = WJn (9)
T = HEOLTTY, (10)
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Fig. 1. Typical graphs (uniform and Hertzian pressure
distributions) of f;, . and 7,, . as functions of ¢.

where p is the friction coefficient, ¢ is a parameter de-
pending on the pressure distribution on the contact area,
while § and v are parameters, depending on the soft pad
material, which relate the radius of the contact area p to
the normal load as (Xydas and Kao, 1999)

p=0f,. (11)
A point on the normalized LS can be computed accord-
ing to the integrals (Xydas and Kao, 1999; Howe and
Cutkosky, 1996) in polar coordinates (r, )

2w
7(7 cosd — ¢)
= drdf (12
s / / \/1"2 + ¢2 — 2¢F cos ) (12)
2 o
Fars = / / (7 —2c0s0) _4iap, (13)
& \/r2 + ¢% — 2¢r cos B

where the function p'(7) = 7Tp2/fnp( )|r=p# is proportional
to the pressure dlbtrlbutlon p(r) in the normalized vari-
ables 7 = r/p and ¢ = ¢/p. It can be shown that p’(7) does
not depend on f,.

Given the pressure distribution, the normalized tangential
and torsional loads are functions of ¢. Hence, they can
be computed only once by resorting to any universal
approximator. Taking into account their typical shapes
reported in Fig. 1, it is convenient to use a superposition of
sigmoidal functions for f;, . (¢) and of Gaussian functions
for 7,,, 4 (¢), which are both radial basis functions, i.e.,

. B n 2

fros(6) = lefi (1 4 ewi(E=myg) 1) (14)
1=
n _ (e—mr;)?

7~—an (6) = Zwﬂe 2] ’ (15)
=1

where the weights wy,, w;, and the parameters a;, my,,
mr,;, $; of the sigmoidal and Gaussian functions can
be estimated via a nonlinear optimization based on the
numerically computed integrals in (12) and (13). Note
that all pressure distributions defined by Xydas and Kao
(1999) are such that the functions f;,, and 7,,, have
graphs contained within the two reported in Fig. 1. This
demonstrates the weak sensitivity of both functions with
respect to pressure distribution. This method to compute
the LS through approximators is the main difference of the
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static model proposed here compared to that presented
by Costanzo et al. (2020) and it will be used to compute
the maximum static friction torque given the normal load.

The dynamic model describes the motion as a pure instan-
taneous rotation about the CoR. Thus, it is important to
estimate the CoR position ¢ (or equivalently ¢). By using
the approximators (14)-(15), given a load (f¢, ), ¢ is the
solution of the following nonlinear equation

o= ‘fth (5) |’Y+1Sign(fth (5))

~ )

Taps(€)

& f™
p T

(16)
It can be solved by resorting to any nonlinear solver,
e.g., Newton’s method. Note that the |- | and the sign(-)
functions are needed to make the functions f;, ,(¢) and
Tn, s (€) compatible with the constraints (4).

where o =

In summary, the maximum dry friction torque that can be
produced at the contact surface given the normal load f,
and the instantaneous CoR position ¢ can be computed
by summing up the pure torsional moment 7,,, ; with the
moment of the tangential force f;, , about the CoR

9(fn:€) = Tnps| +lcfirs!- (17)
Note that g > 0 since 7,,, and f;, ; cannot be both
zero provided that f, > 0. Computing ¢ in (17) requires
computation of f;, . and 7,, . according to the procedure

e Compute the CoR position ¢ by solving the nonlinear
equation (16)

e Compute f;,, and 7,,, , using (14) and (15)

e Denormalize using (9) and (10)

3. CONTROL OF THE SLIDING VELOCITY
3.1 Control objective and preliminaries

The control objective is to follow a given velocity profile
w4(t) by acting on the normal force and thus on the friction
torque 7¢. First of all, such objective can be achieved
only in presence of an external torque such that |7.| > g,
where the arguments of the function g have been omitted
for brevity. To prove this, we start by computing the
equilibrium points of the system (6) and (7), i.e., with 7
and g constant values. With a disturbance torque |7.| < g
the only equilibrium point is

()=(.5)

In fact, any other solution would imply o9z = gsign(w.),
resulting in sign(w,) = sign(r./g — sign(w;)), that is
impossible when |7.|/g < 1.

(18)

When the disturbance torque is such that |7.| > g, then
we have two equilibrium points. One is still (18), and the
other one is

(wz ) _ ( (Te — gsign(7e)) /o1 )

z ) gsign(7e) /oo :
The equilibrium point (18) of the dynamic system (6)
and (7) can be shown to be asymptotically stable for any
|7e| < g. The proof, based on the Lyapunov method, is out
of the scope of this paper, which focuses on the situation

where the slider moves, i.e., w, # 0. Nevertheless, this
result means that controlling the velocity is meaningful

(19)

only for |7.| > g. In such a case, the state (18) is still an
equilibrium, but it can be shown to be unstable.Whereas,
the equilibrium (19) is proved to be locally asymptotically
stable in the following proposition.

Proposition 1. The equilibrium point (19) of the dynamic
system (6) and (7) is locally asymptotically stable for any
|7e] > g.

Proof. We will present the proof for 7. < —g and thus
@, < 0, which is the case considered in the experiments of
Section 4, but the case 7, > ¢ is similar. The jacobian of
the linearized system around the equilibrium is

—0’1/J —Uo/J
(1 +00Z/g —O'Q(I)ZVQ)
_ —0’1/J —0’0/J
- ( 0 —oolre +g|/(901)) ’
that is trivially Hurwitz.

A generalization of this result is obtained by considering a
time varying external torque 7.(¢) but such that |7.(¢)| >
g, Vt > 0. Note that this assumption implies that the 7.(t)
has constant sign, denote the sign(7.) with s,. Under such
assumptions and with the initial condition

(bc;(((%)) _ (90/"3‘;;) , with wy > 0,

the solution of the system can be immediately obtained by
observing that

(20)

Z=g/opss (21)
satisfies the second equation (7) and the initial condition.
Hence, substituting it in the first equation (6) yields

w, = —o1/Jw, + 1/J(7e(t) — gs:),
which is linear and has the closed-form solution

t
@, (t) = e/ Ttugs, + 1/J/ e/t (r (o) — gs,)da
0

(23)
that is obviously of the same sign s, of 7.(t) and it
is limited if the external torque is limited since (22)
is asymptotically stable. Denote this limit with €. The
following proposition holds.

Proposition 2. The solution Z(t) as in (21), @, (t) as in (23)
of the dynamic system (6) and (7) with initial condi-
tions (20) is locally asymptotically stable for any |7.(t)| >

gVt >0if Q < 7L

(22)

Proof. We will present the proof for s, = —1 (thus
@,(t) < 0Vt > 0), which is the case considered in the
experiments of Section 4, but the case s, = +1 is similar.
The jacobian of the linearized system around the nominal

solution is
_(—o1/J —0o/J
A@—<o mm&w>

In view of the assumption |w, ()| < Q < 7L,

40100/ (Jg)|@. (t)] — 02 /J <0, ¥Vt >0
and thus

it is

ANT +A@t) <0, vt >0.
Therefore, in view of Theorem 7.2 in (Rugh, 1996), the
linearized system is uniformly asymptotically stable and
thus the nominal solution of the nonlinear system is locally
asymptotically stable.
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Remark 3. Considering the typical values of the param-
eters of such a model (see Tab. 1 in Section 4), the as-
sumption on the bound of @, (t) is not conservative at all.
Moreover, in case of time varying maximum torque g(¢), if
it is sufficiently smooth, the solution Z(t) = g(t)/og is very
close to the actual solution, the closer the larger is og.

In conclusion, the control problem is solvable only if
|Te(t)] > g(t) V&t > 0 and the desired velocity profile wq(t)
has to be selected with a sign equal to that of 7.(t).

3.2 Nonlinear observer

The control strategy discussed in the next subsection is
aimed at designing a suitable normal force f, such that the
given velocity profile wy(t) is followed as close as possible.
We assume that no other sensor is available except a
force/torque sensor able to measure the full contact wrench
in (3). Therefore, it is necessary to estimate the angular
velocity w,(t). This problem can be solved only if the
observability condition holds for the dynamic model (6)
and (7) with the output equation

y = h(w;, z) = 00z + 01w, (24)
that is the total friction force measured by the sensors on

the fingertips. A property of the dynamic system at hand
will be necessary, the so-called boundedness property.

Proposition 4. For any 7. such that |7.| < g, the rectangle
z={@a e < L o< £}
g0 01

is positively invariant (i.e., all the solutions starting
in Z remain in Z) and asymptotically attractive, i.e.
T)T’

(25)

limy o0 ‘(wZT, z = 0, while for any bounded |7.| > ¢
z
the rectangle

Z, = {(wz,z) eER?: 2| < id
a0

g1

-
el <L
is positively invariant.

Proof. Define the quadratic function

1
Viw:2) =3 ("702:2 + wg) (27)

that is positive definite and proper, so it can be used as

Lyapunov function candidate. Its time derivative along the
trajectories of the system (6) and (7) is

2.2
Viws, z) = _03; |w.| + Tjewz — %wg.

[Tel

In the case |7.| > g, V is negative both when |z| >

[Tel

and when |w.| > =,
attractive. The case |7.| < g is analogous.

and in this case Z is asymptotically

We are now ready to prove observability.

Proposition 5. Let M C R? = {(w,,2) € R? : w, >
0}, then the system (6), (7) and (24) is locally weakly
observable (Hermann and Krener, 1977) at any initial state
(w;(0), 2(0)) € M.

Proof. The thesis holds if and only if the following matrix
has rank 2 V(w,,z) € M (Nijmeijer and van der Schaft,

1990) dh(w,, 2)
@(Wm Z) = (L}dh(zjzv Z) )

where dh represents the gradient of the function h(w., z)
and L”J} is the Lie derivative operator of order i along the
vector function f(w,, z) whose components are the second
members of the equations (6) and (7). This matrix for

(wy,2) € M is
01 Jo
— 2 2
G(WZaZ)_ _ﬂ + o9 1_@2 _@Ul_ﬂwz
J g J g
that is full rank for w, > 0 owing to the boundedness

property. In fact, its determinant is

—Jg - crg/g(crlwz + 002)

that cannot be zero since w, < g/oq1 and z < g/op. The

same result holds for w, < 0 by considering the domain
M ={(w,2) €R?: w, < 0}.

Given the observability property, the nonlinear observer

B:= 5 (~00Z ~ 1B: ), 1> 0 (28)
2=0, - D20, (29)
/y\: 0’0,2\+ 01(32. (30)

can be used to estimate the velocity w,. The structure of
the observer is the same of the original dynamic system
with the measured output y playing the same role of the
external torque 7., but with an inertia moment scaled by
the observer gain [. The higher the gain, the faster is the
convergence. As soon as |y| > g, the observer has the
same stability properties of the system. Note that y is the
generalized measured torque w.r.t. the CoR and can be
computed from finger sensor as (Costanzo et al., 2020)

y:Tn_cft- (31)
3.8 Control law

The idea at the basis of the control law consists in reducing
the normal force to allow a controlled motion of the slider
while avoiding falling of the manipulated object at the
same time, i.e., executing the so-called pivoting maneuver,
but with the objective to follow a given velocity profile.

The design is based on the dynamic model presented so
far. Assuming that the object has been grasped in a con-
figuration such that an external torque, the gravity, has
constant sign, and that the normal force f, is designed
in a way such that || > g(fn,c), then we know from
Section 3.1 that w, has constant sign as well and that
00z = gsign(w,). Thus the dynamic system is reduced to
the first order equation (22), where the control input is in
the argument of g and the dependence is nonlinear. There-
fore, we consider the dynamics of the system linearized
around the nominal motion (21) and (23). To compute
the jacobian of equation (17) with respect to f,, in view
of (9) and (10), it can be re-written in the form

9(fas€) = O fY T (EFups| + 18feps]) = nESFITE (32)
assuming that ¢ << 1, that means also 7,,; ~ 1. In
other words, we are assuming that moments are prevailing
on linear forces, that is a necessary for execution of the
pivoting maneuver.

Thus, the new control input u is the variation with respect
to a constant normal force f,, which is the minimum
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Fig. 2. Experimental setup: before sliding (left) and after
sliding (right).

grasping force which does not allow slipping and it is com-
puted according to the model presented in Section III.B
of (Costanzo et al., 2020). The linearized dynamics, with
a slight abuse of notation, is

W, = —o1/Jw, + B/Ju+1/J7., (33)
where 5
_ Y99 _ 7
5= 3f| _, =Ha T (34)

The design of the control algorithm has to take into
account also some implementation details, such as the
digital interface of the gripper that has a sampling rate
of 50Hz and the lag time introduced by the low-level
force control, that is approximately 0.120s. Then a simple
loop shaping method is adopted to obtain good stability
margins. The resulting control algorithm is a simple PID-
like, i.e., the transfer function,
C(s) = ke 1+ 8T, 1—i-8TQ17

s 1 + STlg 1 + ST22

with k. > 0, Tij > 0.

(35)
In conclusion, assuming a negative desired velocity (case
sy = —1), the normal force is computed as

fn = f_n'f'c(wd_(;)z)a (36)
where C' is the integro-differential operator corresponding

to the transfer function in (35). Note that if a positive
desired velocity is set (s, = +1), k. should be negative.

4. EXPERIMENTS

To show the effectiveness of the velocity observer and the
control law, two experiments have been carried out.

Figure 2 shows the experimental setup. The experiments
are carried out by using an industrial gripper WSG-50
by Weiss Robotics equipped with the SUNTouch six-
axis force/tactile sensors described in (Costanzo et al.,
2019) and based on the technology originally proposed
by De Maria et al. (2012). The sensor can measure the
full contact wrench and it has a serial interface with
a sampling frequency of 500Hz for all six components.
The gripper is force-controlled via a feedback loop closed
on the normal load f,, measured by the sensors that
controls the velocity of the fingers. The digital control loop
can run only at 50Hz due to the limitation imposed by
the communication architecture of the gripper. Moreover,
the low-level velocity control loop is not able to actuate
reference velocities lower than 5 mm/s, hence affecting the
performance of the overall control system.

The gripper is used to grasp a resin block far from its CoG
such that the gravity moment is about 0.015Nm. An ST
iNemo Inertial Measurement Unit (IMU) is attached to
the block to measure the actual angular velocity w,.
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Fig. 3. Experiment 1: Desired, measured and estimated
velocities (top) and angular positions (bottom).
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Fig. 4. Experiment 1: Control input f, (left-axis) and
measured external torque (right-axis).

In both experiments, the objective is to let the object
rotate in-hand to reach the position in Fig. 2 right. To
do that, a trapezoidal velocity profile is used as reference
velocity wy for the control law described in Section 3.3.
Moreover, at the same time, the angular velocity is mea-
sured by the IMU and estimated by the nonlinear observer
described in Section 3.2. The model parameters used in the
experiments, and shown in Tab. 1 together with the chosen
control parameters, have been experimentally identified.

System Control

Parameter | Value Parameter | Value
J 3.77 - 10~ T kgm? ke 20 N/rad
oo 50 Nm/rad Ti1 2.639s
o1 0.02 Nms/rad Tio 8.681s
o 0.58 T2 5.081-10"1s
~ 0.3 Too 7.53-10725s
6 0.004 m /N7

Table 1. Experimentally identified system pa-
rameters and control parameters.

In the first experiment, the controller (36) is closed directly
on the velocity measured by the IMU. In other words (36)
is computed by using w, instead of w,. Figure 3 shows
the result. The top plot shows the reference trajectory wy,
the real and estimated velocity w, and @,. The bottom
plot shows the angular positions (computed as integral of
the velocities). Finally, Fig. 4 shows the control signal f,,
the force component f, and the external torque measured
by the tactile sensor 7, that goes towards lower values
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Fig. 5. Experiment 2: Desired, measured and estimated
velocities (top) and angular positions (bottom).
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Fig. 6. Experiment 2: Control input f,, (top-plot left-axis)
and measured external torque (top-plot right-axis);
relation between the maximum dry friction torque g
and the generalised measure y (bottom)

during the experiment. f, is kept constant during the
pivoting maneuver and it is updated when the reference
wq goes to zero. The experiment clearly shows how the
observer is able to capture the velocity measured by the
IMU. The large initial tracking error is caused by the
5mm/s threshold of the low-level velocity control loop.
Nevertheless, the error of the observer keeps limited. Thus,
using the estimated velocity to close the loop is reasonable.

In the second experiment, the estimated velocity @, is used
to close the control loop. Figures 5 and 6 show the results,
that are very similar to those of the previous experiment.
This demonstrates how the algorithm is still stable when
using &, in the control loop. Figure 6 (bottom) shows
the relation between the maximum dry friction torque g
and the generalised measure y defined in (31). When g is
greater than y (in terms of absolute values), no velocity
is generated by the observer because the dry friction can
counteract the external torque. Instead, between 4 and 9

seconds, g is lower than y, thus the observer generates the
observed velocity shown in Fig. 5 (top).

5. CONCLUSION

The paper presented a control strategy to allow robots
equipped with parallel gripper and tactile sensors to ro-
tate objects in hand without re-grasping maneuvers. The
method regulates the grasping force based on an sliding
velocity estimated via a nonlinear observer. Applications
can be envisaged in the pick-and-place tasks.
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