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Abstract: The paper presents new passivity conditions for square linear time varying (LTV) output 

feedback systems. The new conditions enable the formulation of a new simple test for almost strict 

passivity, which is necessary for the closed loop to be output strictly passive. The new test requires the 

solution of an algebraic Riccati equation in the linear time invariant (LTI) case and the solution of a 

forward differential Riccati equation in the LTV case. The proposed test simplifies the synthesis and 

design of output strictly passive systems. The examples discussed in the paper demonstrate the efficiency 

of the test. 
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I. INTRODUCTION 

Passive systems play a significant role in the design of 

adaptive systems [10], [11]. A closed loop output feedback 

system is output strictly passive (OSP) [1] if the controlled 

plant is almost strictly passive (ASP) [10]. Using simple 

adaptive control (SAC) methodology [3], it is shown in [11] 

that ASP conditions in nonstationary and nonlinear systems 

are sufficient to guarantee that the closed loop system with 

output feedback is stable, robust with disturbances, and has 

asymptotically perfect tracking in ideal conditions. This result 

motivates the derivation of a new simple ASP test for closed 

loop output feedback LTV systems.  
 

     In LTI systems, the strict passivity (SP) [1] of the system 

coincides with the strict positive realness (SPR) [1, 2] 

property. Strict positive realness is proved to be a very 

desirable and important feature of systems with applications 

in various fields, such as control, adaptive control and 

networks.  
 

   It has been shown that closed-loop stability with 

nonstationary control can be guaranteed in those special LTI 

systems that can become SPR via constant output feedback. 

Because only a constant output feedback separates such 

systems from being strictly positive real, they have been 

called ‘almost strictly positive real’ (ASPR) in the LTI case 

[3, 4], or ‘almost strictly passive’ (ASP) [10] in the more 

general case. The ASP feature has played a crucial role in 

systems with uncertainty [5–7], and in adaptive control [3, 8, 

and 9] of LTI systems.  
 

The ASPR lemma [15] is the basis for design and synthesis of 

parallel feedforward compensator (PFC). The PFC renders the 

controlled plant to be ASPR and its design is the main design 

issue in the implementation of simple adaptive control. 

References [18], [19], [20], [21], and [22] deal with the design 

of parallel feedforward compensator in LTI systems. 

Reference [10] presents the non-stationary and nonlinear 

version of the ASPR lemma and implements it in the design 

of robotic manipulator. Reference [23] uses the non-stationary 

and nonlinear ASP lemma of [10] in the design of entry 

capsules.  

   The existing output strictly passive (OSP) conditions for 

linear time varying (LTV) system are presented in [12] and 

stated below.   
 

 

OSP conditions for LTV systems 

Assume that the system {F(t), G(t), 𝐻𝑇(𝑡) }is completely 

controllable and completely observable.  

Then the system is OSP if there exist continuous, bounded 
 

𝑃(𝑡) = 𝑃𝑇(𝑡) > 0   and  𝑄(𝑡) = 𝑄𝑇(𝑡) > 0 such that 
 

�̇�(𝑡) + 𝑃(𝑡)𝐹(𝑡) + 𝐹𝑇(𝑡)𝑃(𝑡) = −𝑄                       (1a) 
            

𝑃(𝑡)𝐺(𝑡) = 𝐻(𝑡)            (1b) 

See Lemma 2, Corollary IV.2 of reference [12].   
 

Observe that (1b) leads to  
 

 𝐺𝑇(𝑡)𝑃(𝑡)𝐺(𝑡) = 𝐺𝑇(𝑡)𝐻(𝑡) = 𝐻𝑇(𝑡)𝐺(𝑡) > 0. 
 

   These existing OSP conditions are composed of two parts: 

one is the differential Lyapunov equation and the other is the 

structural constraint 𝑃𝐺 = 𝐻. The new OSP conditions 

derived in this paper contain forward differential Riccati 

equation similar to the one used in filtering, and the structural 

constraint 𝑃−1𝐺 = 𝐻.             
   As already mentioned, the application of SAC in LTI 

systems is based on the Almost Strictly Positive Real (ASPR) 

lemma. In the case of LTV systems the equivalent lemma is 

the ASP lemma. The two lemmas are stated below. These 

lemmas are the basis for the existing ASPR and ASP tests.  
 

ASPR lemma for LTI systems  

 Any linear minimum-phase plant {F, G, 𝐻𝑇} with 𝐻𝑇𝐺  

Positive Definite Symmetric is ASPR. 

 See reference [15], 1
st
 ed. pp.55, Lemma 1. 

ASP lemma for LTV systems  

The linear time varying system {F(t), G(t), 𝐻𝑇(𝑡)} with 

continuous and uniformly bounded matrices is ASP if: 

(i) It is minimum phase, which means that it has "stable 

zero dynamics”. (See the next subsection for details)  

(ii) The product 𝐻𝑇(𝑡)𝐺(𝑡) is uniformly positive definite 

symmetric. 
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The ASP lemma is a direct corollary of Theorem 2 in [10]. 

Under these assumptions the system can be made ASP via 

static output feedback.  
           

Zero Dynamics in LTV Systems  

Consider  the  LTV system  {F(t), G(t), 𝐻𝑇(𝑡)} where F(t)  is 

n x n, G(t) is n x m, 𝐻𝑇(𝑡) is m x n, and all the system 

matrices are uniformly bounded. The system {F(t), G(t), 

𝐻𝑇(𝑡)}  is defined to be minimum-phase if its zero dynamics 

is  uniformly asymptotically stable [10]. 

 Following [16] and [17], the ‘zero dynamics’ of this system is 

defined by [10] as 
 

�̇� = [�̇�(𝑡)𝑀(𝑡) + 𝑁(𝑡)𝐹(𝑡)𝑀(𝑡)]𝑧(𝑡)            (2) 
  

where 𝑀𝑛,𝑛−𝑚(𝑡), 𝑁𝑛−𝑚,𝑛(𝑡) assumed to exist, are the 

solution of  
 

𝐻𝑇(𝑡) 𝑀(𝑡) = 0𝑚,𝑛−𝑚            (3) 
 

𝑁(𝑡)𝐺(𝑡) = 0𝑛−𝑚,𝑚            (4) 
 

𝑁(𝑡)𝑀(𝑡) = 𝐼𝑛−𝑚            (5) 
 

The ‘zero state’ z(t) is defined via 
 

𝑥(𝑡) = 𝑀(𝑡)𝑧(𝑡)              (6) 
 

and satisfies 
 

𝑧(𝑡) = 𝑁(𝑡)𝑀(𝑡)𝑧(𝑡) = 𝑁(𝑡)𝑥(𝑡)            (7) 
 

Remarks 

1. In LTI systems, the SP property coincides with the SPR 

property. 
2. Observe that any SISO transfer function (not necessarily 

stable) with relative degree 1, which is minimum phase, is 

ASPR. 

3. The calculation of M and N for LTI systems is well defined 

in  [16]. In the LTI case the system zeros are the eigenvalues 

of the matrix NFM. The system is minimum phase if these 

zeros lie in the left half plane. 

4. Lemma 2 of [10] states that if a system cannot become SP 

via static output feedback, no dynamic feedback can render it 

to be SP. 

5. In the LTI case the ASPR test is clearly defined via the 

eigenvalues of the matrix NFM and the matrix product 𝐻𝑇𝐺. 

In the LTV case the existing ASP test requires the calculation 

of the matrices M(t) and N(t) and a proof of stability for the 

zeros differential equation. 
  

   The present paper derives a new ASP test for LTV systems. 

The new test is simple and can also be used as an alternative 

ASPR test.  
 

   The contribution of the paper is the derivation of a new ASP 

test for LTV systems which requires the solution of a forward 

differential Riccati equation in the LTV case, and an algebraic 

Riccati equation in the linear time invariant (LTI) case. 
 

   The paper proceeds as follows: Statement of the problem is 

given in Section II. Section III is devoted to preliminaries. 

Section IV.A defines new closed loop OSP conditions for 

LTV systems in terms of a forward differential Riccati 

equation. Section IV.B deals with the synthesis of OSP 

systems and presents a new ASP test. Two examples which 

demonstrate the efficiency of the test are discussed in Section 

V. The conclusions are summarized in Section VI.  Appendix 

A presents the proof of Theorem 1 appeared in section IV.A  

II. STATEMENT OF THE PROBLEM 

Given the square linear time varying (LTV) system 

�̇� = 𝐹(𝑡)𝑥 + 𝐺(𝑡)𝑢𝑐  ,    𝑥(𝑡0) = 𝑥0                                        (8a) 
𝑦 = 𝐻𝑇(𝑡)𝑥                                                                         (8b) 

where 𝑥 ∈ ℝ𝑛 ,   𝑢𝑐 ∈ ℝ𝑚,   𝑦 ∈ ℝ𝑚, 𝑢 ∈ ℝ𝑚  and 𝐹(𝑡), 𝐺(𝑡), 
𝐻(𝑡) are continuous and uniformly bounded matrices with 

appropriate dimensions over the time interval of interest. It is 

also given that the pair 𝐹(𝑡), 𝐺(𝑡) is completely controllable 

and the pair 𝐹(𝑡), 𝐻𝑇(𝑡) is completely observable. 

Find sufficient conditions for system (8) to be ASP  such that 

the closed loop output feedback system presented in Fig. 1 

and described by 
 

�̇� = 𝐹𝑥 + 𝐺𝐾𝑒                                                                    (9a)       

𝑦 = 𝐻𝑇𝑥                                                                             (9b)   

𝑒 = 𝑢 − 𝑦                                                                           (10)  

𝑢𝑐 = 𝐾𝑒                                                                              (11) 
                          

is Output Strictly Passive (OSP) [1]. 
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Figure 1: Output feedback system under consideration 

 
 

III. PRELIMINARIES 

   The preliminary material includes two lemmas. Lemma 1 

deals with a condition, in terms of energy function, that a 

system should satisfy if it is OSP. Lemma 2 deals with the 

parameterization of 𝑃 that satisfies 𝑃𝐺 = 𝐻.  
 

 Lemma1  

Lemma 1 is Corollary 2.3 of Theorem 2.2 in [1]. 

 Assume that there exist a continuously differentiable function 

𝑉(∙) ≥ 0 and a measurable function 𝑑(∙) such that 

∫ 𝑑(𝑠)𝑑𝑠 ≥ 0
𝑡

0
 for all 𝑡 ≥ 0. Then a system with input 𝑢(𝑡) 

and output y(t) is output strictly passive (OSP) if there exists 

𝜀 > 0  such that  �̇� ≤ 𝑦𝑇(𝑡)𝑢(𝑡) − 𝜖𝑦𝑇(𝑡)𝑦(𝑡) − 𝑑(𝑡)  for all 

𝑡 ≥ 0 and all functions 𝑢(∙). 
 

 
 

 Lemma 2 
Lemma 2 is Lemma 3 of [13]. 

Suppose that 𝐺 and 𝐻 are full rank. Then there exists a matrix 

𝑃 = 𝑃𝑇 > 0 that satisfies (1b) if and only if 

𝐺𝑇𝐻 = 𝐻𝑇𝐺 > 0  (12)    

Furthermore, when (12) holds, all solution of (1b) are given 

by 
 

𝑃 = 𝐻(𝐺𝑇𝐻)−1𝐻𝑇 + 𝐺⊥𝑋𝐺⊥
𝑇                     (13) 

 
  

where X is an arbitrary positive definite matrix with proper 

dimensions and 𝐺⊥is the orthogonal null space of 𝐺.  
 

Note that  𝐺⊥
𝑇𝐺 = 0,   [𝐺, 𝐺⊥] is invertible and 𝐺⊥

𝑇𝐺⊥ = 𝐼.  
 

Also note that 𝑃𝐺 = 𝐻(𝐺𝑇𝐻)−1𝐻𝑇𝐺 + 𝐺⊥𝑋𝐺⊥
𝑇𝐺 = 𝐻 
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IV. MAIN RESULTS 

A  CLOSED LOOP OSP CONDITIONS 

The theorem below defines new closed loop OSP conditions 

for LTV systems in terms of a forward differential Riccati.  

Theorem 1 

If: 

(i) 𝐹, 𝑄 and 𝑅−1 are uniformly bounded and 𝑅−1 > 0, 

 𝑄 ≥ 0 are symmetric matrices 

(ii) [𝐹, 𝐻𝑅−1 2⁄ ] is uniformly completely observable 

(iii) There exists a continuous, uniformly bounded 

  symmetric positive definite 𝑃(𝑡) such that  

�̇�(𝑡) = 𝑃(𝑡)𝐹𝑇(𝑡) + 𝐹(𝑡)𝑃(𝑡) − 𝑃(𝑡)𝐻(𝑡)𝑅−1(𝑡)𝐻𝑇(𝑡)𝑃(𝑡) +
𝑄(𝑡)   ;  𝑃(𝑡0) = 𝑃0                                    (14a) 
  

𝑃−1(𝑡)𝐺(𝑡) = 𝐻(𝑡)                                                                 (14b) 

(iv) The closed loop gain 𝐾 is determined by 𝐾 = 𝛼𝑅−1 

 where 𝑅−1 is a parameter and 𝛼 < 1 2⁄   

Then the closed loop system of Fig. 1 is OSP. 

Proof 

The proof uses Corollary 2.3 of Theorem 2.2 in [1] (see 

Lemma 1of section III) together with the energy function  

𝑉(𝑥, 𝑡) =
1

2
𝑥𝑇𝑃−1𝑥  where 𝑃 is uniformly bounded 

symmetric positive definite matrix that simultaneously 

satisfies equations (14a) and (14b). The details of the proof 

are presented in Appendix A. 
 

Remarks: 

1. Equation (14a) is identical to the covariance matrix 

equation associated with Kalman filter state estimation error. 

This equation is a forward differential Riccati equation in 

opposite to the backward differential Riccati equation usually 

used in optimal control. 

2.  Conditions (i) and (ii) imply that the solution 𝑃(𝑡) of the 

forward differential Riccati equation is continuous and 

uniformly bounded symmetric positive definite matrix. 

3.  The OSP conditions are given in terms of the solution 

𝑃(𝑡) of a differential Riccati equation. The simultaneous 

solution of equations (14a) and (14b) is derived via the 

parametrization of 𝑃−1(𝑡) that satisfies equation (14b). By 

using the parameterization of Lemma 2 of section III, the 

simultaneous solution of (14a) and (14b) can be obtained as a 

solution of an additional differential Riccati equation. See 

Theorem 2 in the next section. 

4.  In the case of linear time invariant system the new OSP 

conditions are defined by the steady state value of 𝑃(𝑡). 
 

B. SYNTHESIS OF OSP LTV SYSTEMS 

The synthesis of OSP linear time varying output feedback 

systems is based on Theorem 1 of the previous section. It is 

required to find a continuous, uniformly bounded symmetric 

positive definite solution 𝑃(𝑡) that simultaneously satisfies 

equations (14a) and (14b). The simultaneous solution of 

equations (14a) and (14b) is derived via the parametrization 

of 𝑃−1(𝑡) that satisfies equation (14b).  

The first step of the parameterization is to rewrite (14a) in 

terms of  𝑃−1(𝑡). 

−
𝑑(𝑃−1)

𝑑𝑡
= 𝑃−1�̇�𝑃−1 

                   = 𝑃−1(𝑃𝐹𝑇 + 𝐹𝑃 − 𝑃𝐻𝑅−1𝐻𝑇𝑃 + 𝑄)𝑃−1 

           = 𝐹𝑇𝑃−1 + 𝑃−1𝐹 − 𝐻𝑅−1𝐻𝑇 + 𝑃−1𝑄𝑃−1 
Using the notation 

𝑃 = 𝑃−1 ; 𝑃0 = 𝑃0
−1                                                           (15) 

then 
 

−�̇� = 𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑅−1𝐻𝑇 + 𝑃𝑄𝑃     ; 𝑃(𝑡0) = 𝑃0     (16a)  
 

𝑃𝐺 = 𝐻 ; 𝑃0 = 𝑃0
−1                                                 (16b) 

 

The second step of the parameterization is to apply Lemma 3 

of [13] (see Lemma 2 of section III) to equation (16b). 

Assume that 𝐺 and 𝐻 are full rank. Then there exists a matrix 

𝑃 = 𝑃
𝑇

> 0 that satisfies (16b) if and only if 

𝐺𝑇𝐻 = 𝐻𝑇𝐺 > 0                        (17) 

Furthermore, when (17) holds, all solutions of (16b) satisfy 

𝑃 = 𝐻(𝐺𝑇𝐻)−1𝐻𝑇 + 𝐺⊥𝑋𝐺⊥
𝑇                      (18) 

where X is an arbitrary positive definite matrix with proper 

dimensions and 𝐺⊥ is the orthogonal null space of 𝐺.  

By using the notation 

𝑃𝑖 = 𝐻(𝐺𝑇𝐻)−1𝐻𝑇                       (19)         

equation (18) can be expressed as 

𝑃 = 𝑃𝑖 + 𝐺⊥𝑋𝐺⊥
𝑇                                                                (20)   

Observe that under the assumption 𝐺𝑇𝐻 = 𝐻𝑇𝐺 > 0 the 

matrix 𝑃𝑖 is symmetric. 

Substitution of (20) in (16a) leads to an additional forward 

differential Riccati equation as described in the following 

theorem.  

Theorem 2 

Assume that each of the equations (14a) and (14b) has 

positive definite symmetric solution. Then the simultaneous 

solution X̅ of (14a) and (14b), if exists, is the solution of the 

following forward differential Riccati equation 
 

�̇� = 𝑋 𝐹
𝑇

+ 𝐹 𝑋 − 𝑋 𝐻 𝑅
−1

𝐻
𝑇
𝑋 + �̅� ; 𝑋(𝑡0) = 𝑋−1(𝑡0)        (21)   

 

where 

−�̇� = 𝐹
𝑇
𝑋 + 𝑋𝐹 − 𝐻  𝑅

−1
 𝐻

𝑇
+ 𝑋𝑄𝑋                           (22a) 

 

𝑋(𝑡0) = 𝐺⊥
𝑇(𝑡0)[𝑃(𝑡0) − 𝑃𝑖(𝑡0)]𝐺⊥(𝑡0)                         (22b) 

 

𝑋 = 𝑋−1                                                                             (23)              
 

𝐹 = 𝐺⊥
𝑇(𝐹 + 𝑄𝑃𝑖)𝐺⊥ + �̇�⊥

𝑇𝐺⊥                                         (24a) 
 

Assuming that 𝑆 below is a symmetric matrix, then  
 

𝑆 = 𝐻𝑅−1𝐻𝑇 − (𝑃𝑖𝐹 + 𝐹𝑇𝑃𝑖) − 𝑃𝑖𝑄𝑃𝑖 − 𝑃𝑖
̇
 

    = 𝐿𝐷𝐿𝑇                                                                                  (24b) 
 

 𝑃𝑖 = 𝐻(𝐺𝑇𝐻)−1𝐻𝑇                                                          (24c)  
 

𝐻 =  𝐺⊥
𝑇𝐿𝐷1 2⁄                                                                  (24d) 

 

𝑅 = 𝐼                                                                                (24e)  

 
 

 

 

𝑄 = 𝐺⊥
𝑇𝑄𝐺⊥                                                                      (24f) 

 

Proof 

Substitution of (20) in (16a), multiplication by 𝐺⊥
𝑇  from the 

left and by 𝐺⊥ from the right and using the fact that   𝐺⊥
𝑇𝐺⊥ =

𝐼 lead to equations (21) to (24) where the initial value of 𝑋 is 

determined  via equation (20). 
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Remarks: 

1. Any bounded, square and symmetric 𝑆 can be decomposed 

as  𝐿𝐷𝐿𝑇 where 𝐷 is diagonal, the diagonal entries are the 

eigenvalues of 𝑆, and the columns of 𝐿 are the corresponding 

eigenvectors. The matrix 𝐿 is orthogonal and satisfies 

𝐿𝑇 = 𝐿−1 i.e. 𝐿𝑇𝐿 = 𝐿𝐿𝑇 = 𝐼. Therefore square and 

symmetric matrix 𝑆 can be decomposed as 

𝑆 = (𝐿𝐷1 2⁄  )(𝐿𝐷1 2⁄ )
𝑇
. 

 

2.  Assuming square and symmetric 𝑆, then 𝑆 = 𝐿𝐷𝐿𝑇. The 

condition D ≥ 0 guarantees that 𝑆 ≥ 0 and that the solution 

𝑋, if exists, is positive definite. However, a positive definite 

solution may exists for  𝑆 which is not semi-positive definite.  
 

3.  The matrix S is symmetric in each of the following cases. 

However, there are more special cases in which 𝑃𝑖
̇
 is 

symmetric and as a result  S is also symmetric. 
 
 

Case 1: The matrices 𝐹, 𝐺 and 𝐻 are time invariant. In this 

case, since �̇� = �̇� = 0 then 𝑃𝑖
̇ = 0 and S is symmetric. 

 

Case 2: The matrices 𝐺 and 𝐻 are time invariant and the 

matrix 𝐹(𝑡) is time varying. In this case S is symmetric since 

𝑃𝑖
̇ = 0.  

 

Case 3: The case of SISO systems where 𝐺𝑇𝐻 = 𝐻𝑇𝐺 is a 

scalar. In this case 𝑃𝑖
̇
 is symmetric if  �̇� = 0. In this case S is 

symmetric since  𝑃𝑖
̇
 is symmetric and the matrices 𝐹(𝑡) and 

𝐺(𝑡) remain time varying. 
 

Theorem 3 
If 

(i) 𝐺 and 𝐻 are full rank and satisfy 𝐺𝑇𝐻 = 𝐻𝑇𝐺 > 0 

(ii)  The square matrix 𝑆 is symmetric and can be  

       decomposed as 𝐿𝐷𝐿𝑇  with 𝐷 ≥ 0 

(iii)  𝐹, 𝑄 and 𝑅
−1

 are bounded and  [𝐹, 𝐻 𝑅
−1 2⁄

]  is 

         uniformly completely observable.                

Then the solution 𝑋(𝑡) of (22) and 𝑋(𝑡) of (21) are positive 

definite bounded matrices and the system of Fig. 1 is OSP 

with  𝐾 = 𝛼𝑅−1 and   𝛼 < 1 2⁄    . 

Proof 

Following Lemma 3.2 of [14], if 𝐹, 𝑄  and 𝑅
−1

 are 

bounded, and if [𝐹, 𝐻 𝑅
−1 2⁄

]  is uniformly completely 

observable, then 𝑋(𝑡) and 𝑋(𝑡) are positive definite 

bounded matrix. Following Theorem 1 and Lemma 2 of 

section III, if 𝑃(𝑡) is a common positive definite bounded 

solution of equations (14a) and (14b), and if   

𝑋 = 𝐺⊥
𝑇(𝑃 − 𝑃𝑖)𝐺⊥ = 𝐺⊥

𝑇[𝑃−1 − 𝐻(𝐺𝑇𝐻)−1𝐻𝑇]𝐺⊥              

is positive definite bounded matrix then the system of Fig. 1 

with 𝐾 = 𝛼𝑅−1 and   𝛼 <
1

2
   is OSP. 

 

Remarks: 

1.  If for specific values of  𝑅−1 and  𝑄 the matrix 𝑋  is 

positive definite bounded matrix then the closed loop system 

is OSP.  

2.  The range of 𝑅−1 indicates the range of the gai𝑛 𝐾 for 

which the closed loop system is OSP.  

 

3. The matrix  𝑄 affects the matrix  𝐹 of  (24a)  and hence the 

observability of   [𝐹, 𝐻 𝑅
−1 2⁄

]. 

4.  In linear time invariant system the differential Riccati 

equation of (21) is reduced to the algebraic Riccati equation . 
 

   Theorem 4 and Theorem 3 lead to Theorem 4 below which 

constitutes the new ASP test for LTV systems 
 

Theorem 4  
If 

(i) 𝐻𝑇𝐺 is positive definite symmetric matrix i.e.,  

𝐺𝑇𝐻 = 𝐻𝑇𝐺 > 0  

(ii) 𝐹, 𝑄 and 𝑅−1 are uniformly bounded and 𝑅−1 > 0, 

  𝑄 ≥ 0 are symmetric matrices 

(iii) [𝐹, 𝐻𝑅−1 2⁄ ] is uniformly completely observable 

(iv)  The solution  �̅�  of equation (21) is positive definite 

symmetric matrix. 

 Then system (8) is ASP 

 

Proof 

This is a direct consequence of Theorem 2, Theorem 3 and 

the definition of ASP system [10], [11]. 
 

 

V. EXAMPLES 

Example 1: 

 

The system under test is the LTI system described by  

𝐺(𝑠) =
𝑠2 + 𝑠 + 1

𝑠3 + 1.1𝑠2 + 1.1𝑠 + 1
 

 

This transfer function is minimum phase with zeros at 

−0.5 ± 𝑗 √3 2⁄  and relative degree 1. 

 

A minimal realization of 𝐺(𝑠) is 

 

𝐹 = [
0 1 0
0 0 1

−1 −1.1 −1.1
]  ;   𝐺 = [

0
0
1
]  ;  

 

𝐻𝑇 = [1 1 1] 
 

Hence 
 

𝐺𝑇𝐻 = 𝐻𝑇𝐺 = 1 

𝑃𝑖 = 𝐻(𝐺𝑇𝐻)−1𝐻𝑇 = [
1 1 1
1 1 1
1 1 1

] 

G⊥ = [
0 −1
1 0
0 0

] 

 

The steady state solution 𝑋 of equation (22a) is obtained via 

equation (21)  where  𝑋 = 𝑋
−1

 
 

Let 𝑅−1 = 1 and 𝑄 = 0.01 I3. Then the ARE solution 𝑋  is 

 

𝑋 = [
52.6125 14.6246
14.6246 10.7986

] > 0 
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With 𝑅−1 = 1000 and 𝑄 = 0.01 I3 the solution 𝑋 is still 

positive definite. 

 

𝑋 = [
228.5620 −138.8339

−138.8339 282.9816
] > 0 

 

The closed loop system with 𝐾 = 𝛼𝑅−1 where   𝛼 < 1 2⁄    is 

OSP. Observe that for the tested range of 𝑅−1 the range of 𝐾 

is  0.5 < 𝐾 < 500. 

 

Remarks: 

1. Following the ASP theorem [10], [15, 1st ed. pp.55,   

Lemma 1], any linear minimum-phase plant {𝐹, 𝐺, 𝐻𝑇} with 

𝐻𝑇𝐺 Positive Definite Symmetric is ASPR. The transfer 

function of this example is minimum phase with 𝐻𝑇𝐺 

Positive Definite Symmetric and therefore it is expected to be 

ASPR. As a result that the closed loop is OSP. 

2. Example 1 deals with LTI system. In this case �̇� = 0 since 

the ARE solution is applied. By using equation (18) we find 

that  �̇� = 𝐺⊥
𝑇𝑃

̇
𝐺⊥. Observe that �̇� = 0 implies that 𝐺⊥

𝑇�̇�𝐺⊥ = 0 

and hence �̇�, calculated from equations (18) and (16a), 

doesn’t  have to be zero.  

 

Example 2: 

      

The system under test is the LTV system described by 
 

𝐹 =

[
 
 
 
 
2 (𝑡𝑓 − 𝑡)⁄

0
0
0
0

0
−41.667
1.000

0
0

0
−466.667

0
1.000

0

2666.667 (𝑡𝑓 − 𝑡)⁄

−666.667
0
0
0

0
0
0
0

−5 6⁄ ]
 
 
 
 

 

 

𝐺 =

[
 
 
 
 

0
3.5
0
0

1 6⁄ ]
 
 
 
 

    ;    𝐻𝑇 = [1 0 0 0 1] 

𝐺𝑇𝐻 = 𝐻𝑇𝐺 =
1

6
> 0 

The system is tested in the time interval 𝑡 ∈ [0 , 𝑡𝑓 − 0.02] 

where 𝑡𝑓 = 5 𝑠𝑒𝑐. Note that since �̇� = �̇� = 0  then  

𝑃𝑖
̇ = 0   and  S of (24b) is symmetric. 

Let 𝑄 = 0.01 I5  and  𝑋(t0) = 𝐺a⊥
𝑇 [𝐼5 + 𝑃𝑖]

−1
Ga⊥. Then 

the solution 𝑋 of equation (22) is obtained via equation 

(21) where 𝑋 = 𝑋
−1

. The minimal value of the 

eigenvalues of  𝑋  as a function of time, for 𝑅−1 = 1 and  

𝑅−1 = 105, are presented in Fig. 2. For both values of 𝑅−1 

the matrix 𝑋 has real positive eigenvalues and is 

symmetric positive definite. Observe that for the tested 

range of 𝑅−1 the range of 𝐾 is    0.5 < 𝐾 < 50,000. 

VI. CONCLUSIONS 

The paper presents new passivity conditions for square LTV 

output feedback systems which enable the formulation of a 

simple test for almost strict passivity (ASP). The existing 

ASP test requires the calculation of the associated zero 

dynamics matrices M(t) and N(t) and a proof of stability for 

the zeros differential equation. The new test requires the 

solution of a forward differential Riccati equation in the LTV 

case, and the solution of an algebraic Riccati equation in the 

linear time invariant (LTI) case. The proposed test simplifies 

the synthesis and design of output strictly passive systems. 

The examples discussed in the paper demonstrate the 

efficiency of the test. 
 

 
 

Figure 2: The minimal value of the eigenvalues of  𝑋  as a 

function of time, for 𝑅−1 = 1 and  𝑅−1 = 105 
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APPENDIX A 

Proof of Theorem 1 

   The conditions for which the system is OSP are derived by 

using Lemma 1of section III and the energy function 
 

𝑉(𝑥, 𝑡) =
1

2
𝑥𝑇𝑃−1𝑥                                                            (A1) 

 

where 𝑃 is  a continuous, uniformly bounded symmetric 

positive definite matrix that satisfies equation (14a) and 

(14b). Following Lemma 3.2 of [14] if 𝐹, 𝑄 and 𝑅−1 are 

bounded, and if [𝐹, 𝐻𝑅−1 2⁄ ]  is uniformly completely 

observable, then 𝑃(𝑡) of  (14a)  is bounded.  

Differentiation of 𝑉(𝑥, 𝑡) yields 

�̇� =
1

2
(�̇�𝑇𝑃−1𝑥+𝑥𝑇

𝑑

𝑑𝑡
(𝑃−1)𝑥 + +𝑥𝑇𝑃−1�̇�) 

     =
1

2
(2𝑥𝑇𝑃−1GKe + 𝑥𝑇𝐻𝑅−1𝐻𝑇𝑥 − 𝑥𝑇𝑃−1𝑄𝑃−1𝑥) 

 
 

Since 𝑃 satisfies 
 
 

𝑃−1𝐺 = 𝐻                                                                         (A2) 
 

then 

�̇� = 𝑦𝑇𝐾𝑒 +
1

2
𝑦𝑇𝑅−1𝑦 −

1

2
𝑥𝑇𝑃−1𝑄𝑃−1𝑥 = 

= 𝑦𝑇𝐾(𝑢 − 𝑦) +
1

2
𝑦𝑇𝑅−1𝑦 −

1

2
𝑥𝑇𝑃−1𝑄𝑃−1𝑥 

 = 𝑦𝑇𝐾𝑢 + 𝑦𝑇 (𝐾 −
1

2
𝑅−1) 𝑦 −

1

2
𝑥𝑇𝑃−1𝑄𝑃−1𝑥  

 

If   𝐾 =∝ 𝑅−1 and   𝛼 < 1 2⁄    then 
 

�̇� = 𝛼𝑦𝑇𝑅−1𝑢 − 𝑦𝑇 (
1

2
− 𝛼)𝑅−1𝑦 −

1

2
𝑥𝑇𝑃−1𝑄𝑃−1𝑥  

 
 

Redefining the energy function V as 
 

𝑉 =
𝑉

𝛼
 = 

1

2𝛼
𝑥𝑇𝑃−1𝑥                                                            (A3) 

 
 

leads to 
 

�̇� = 𝑦𝑇𝑅−1𝑢 − 𝑦𝑇 (
1

2𝛼
− 1) 𝑅−1𝑦 −

1

2𝛼
𝑥𝑇𝑃−1𝑄𝑃−1𝑥     (A4)      

Given that 𝑅−1 is uniformly bounded symmetric positive 

definite matrix then 
 

0 < 𝛽1𝐼 ≤ 𝑅−1 ≤ 𝛽2𝐼 < ∞ 
 

where 𝛽1  and 𝛽2 are constant positive scalars. Thus 
 
 

𝑦𝑇𝑅−1𝑢 = 𝑢𝑇𝑅−1𝑦 ≤ 𝛽2 𝑢
𝑇𝑦 

 

𝑦𝑇𝑅−1𝑦 ≥ 𝛽1 𝑦
𝑇𝑦 

 

and therefore 
 

�̇� ≤ 𝛽2 𝑢
𝑇𝑦 − (

1

2𝛼
− 1)𝛽1 𝑦

𝑇𝑦 −
1

2𝛼
𝑥𝑇𝑃−1𝑄𝑃−1𝑥  

  

Let �̃� be defined as 

 

�̃� =
𝑉

𝛽2
=

1

2𝛼𝛽2
𝑥𝑇𝑃−1𝑥                                                 (A5) 

Then 
 

�̇̃� ≤  𝑢𝑇𝑦 − (
1

2𝛼
− 1)

𝛽1

𝛽2
 𝑦𝑇𝑦 −

1

2𝛼𝛽2
𝑥𝑇𝑃−1𝑄𝑃−1𝑥          (A6)  

                                                                                

Equations (A5), (A6) satisfy the conditions of Lemma 1 of 

section III where 
 

�̃� =
1

2𝛼𝛽2
𝑥𝑇𝑃−1𝑥 ≥ 0 ; d(t) =

1

2𝛼𝛽2
𝑥𝑇𝑃−1𝑄𝑃−1𝑥 ≥ 0 ; 

 

ϵ = (
1

2𝛼
− 1)

𝛽1

𝛽2
> 0  

 
 

Q.E.D 
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