
Swarm Optimized Simple Adaptive
Controller for Spacecraft Proximity

Operations Trajectory Tracking

Andriy Predmyrskyy ∗ Steve Ulrich ∗∗

∗ Carleton University,Ottawa, ON K1S 5B6 (e-mail:
AndriyPredmyrskyy@cmail.carleton.ca).

∗∗ Carleton University,Ottawa, ON K1S 5B6 (e-mail:
SteveUlrich@cunet.carleton.ca)

Abstract: Adaptive control design allows for the management of systems with time varying
or unknown dynamics. Despite their versatility, few well defined design techniques exist for
some classes of adaptive controller. Without analytical techniques it is difficult to prove the
efficacy of an adaptive controller design. One solution to this issue is the application of
parametric search techniques to adaptive controller design. This paper explores the application
of differential evolution on the simple adaptive control law formulation and compares its
solution to one found using particle swarm optimization. Afterwards, variations on these
techniques, namely the selection particle swarm optimization and self-adaptive differential
evolution, are implemented and their results compared. The final swarm-optimized controller is
compared to a classical Linear Quadratic Regulator (LQR) controller, and a manually designed
simple adaptive controller for precision trajectory tracking control of spacecraft proximity
operations. Parametric search techniques are able to determine controller parameters that
produce a superior control response. Swarm-optimization techniques determine controllers with
parameters drastically different from manually designed efforts.

Keywords: Adaptive Control, Parameter Optimization, Satellite control, Optimal Search
Techniques, Model Reference, Spacecraft.

1. INTRODUCTION

Space activities hold high scientific and economic value,and
often occur in the vicinity of other objects or spacecraft.
Debris in low earth orbit are becoming a threat to the
safety of future space missions (Palla (2016)), and will
require active debris de-orbiting techniques. On-orbit ser-
vicing will dramatically increase their lifespan of mis-
sions (Sellmaier (2010)). Asteroid resource extraction may
become a market as space capabilities increase(Brophy
(2012)). Each of these orbital activities requires accurate
trajectory tracking in close proximity to a target while
conserving fuel. Spacecraft proximity operations will be-
come a growing part of space-based activities as the need
to autonomously perform tasks around a target in orbit
increases.
One particular area of interest includes operations around
uncooperative targets. Due to the nonlinearity of the
kinematics and dynamics equations governing rendezvous
and docking motion, nonlinear control methodologies have
been developed to improve trajectory tracking perfor-
mance. Some of these techniques, including feedback lin-
earization or gain scheduling, were inspired by linear con-
trol theories, while others, such as sliding mode control
or state-dependent Riccati equation-based control were
motivated by Lyapunov’s stability theory of nonlinear
systems. These model based methods and are not suited
for rendezvous and docking with uncooperative target,

however. Once a rigid connection is established between
the target and chaser spacecraft, the combined system has
a drastically altered total mass, centre of mass location,
and moments of inertia from the original which cannot be
readily determined beforehand. Adaptive controllers offer
an algorithmic approach to ensure stability even under
large uncertainties and disturbances.
Simple Adaptive Control (SAC) is a direct adaptive con-
trol technique that has been recommended for spacecraft
proximity operations (Ulrich (2014)) which makes use of
an ideal model and gain updates to make the control
response approach the ideal response (Barkana (2013))
and has been demonstrated to track trajectories during
spacecraft proximity operations to a high degree of accu-
racy under parametric uncertainty and unknown external
perturbations (Ulrich (2007)). Despite these successes,
however, it is still unknown how to determine a “well-
tuned” SAC. In particular the requirement for accuracy
and low control activations within spacecraft proximity
operations puts particular emphasis on the selection of
optimal controller parameters.
In many cases the choice of SAC parameters reverts to
the “guess-and-check” method until values with sufficient
performance are found. Ulrich (2007) ensures the accuracy
and robustness of determined SAC gains using a Monte-
Carlo simulation, and Takagi (2017) show that the swarm-
based Differential Evolution (DE) optimization technique

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 3851

can be used to determine control parameters that improve
the quadratic cost of a second order single-input single-
output system controlled by a SAC.
Several swarm-based optimization techniques are com-
pared here to determine what improvements can be made
to the design of a SAC for the spacecraft proximity
problem. A two-dimensional Newtonian motion simula-
tion is created to simulate control of a chaser spacecraft
around a target. A Linear Quadratic Regulator (LQR)
controller is developed to track a trajectory around the
target spacecraft, which is then compared to a manually
designed SAC for the same problem. A linear quadratic
cost function is used in tandem with swarm-based opti-
mization methods to determine new control parameters
for a SAC. Differential evolution (Takagi (2017)) and
particle swarm optimization (Ouyang (2015)) are tested,
along with strategy-adaptive differential evolution (Qin
(2009)) and selection particle swarm optimization (Ange-
line (1998)) which have been identified as well-performing
swarm-optimization techniques (Wahab (2015)).
Section 2 covers background concepts in SAC design, while
Sec. 3 presents several swarm-optimization parametric
search techniques. Section 4 describes the implementation
of parametric search techniques and controller simulation
in MATLAB & Simulink and highlights the results. Fi-
nally, Sec. 5 briefly discusses the results, as well as ways
forward. 2. SIMPLE ADAPTIVE CONTROL

A SAC is composed of the adaptive controller and the ideal
model (Barkana (2013)). The number of system inputs is
equal to the number of outputs l, and the ideal model is
of order n. The error between the ideal model and the
adaptive controller is defined as

ey = ymdl − y (1)

where ey ∈ Rl is the model reference error, y is the
measured system output and ymdl the output of the model.
The total control response u is formed from three control
terms,

u = Keey +KuUm +KxXm (2)

where Ke ∈ Rl×l is a matrix of error gains, Ku ∈ Rl×l

is the matrix of command gains multiplied by Um ∈ Rl

the matrix of ideal model inputs, and Kx ∈ Rl×n is the
matrix of model states gains multiplied by Xm ∈ Rn the
matrix of ideal model states. The gain matrices Ke, Ku,
and Kx are adapted following

K̇e(t) =ey(t)e
T
y (t)Γei (3)

K̇u(t) =ey(t)U
T
m(t)Γui (4)

K̇x(t) =ey(t)X
T
m(t)Γxi (5)

where Γei ∈ Rl×l, Γui ∈ Rl×l, and Γxi ∈ Rn×n are called
the adaptation parameters and are chosen by the designer.
Equations (3) through (5) adapt similarly to an integral
gain, and a proportional gain analogue is used to improve
convergence following

Kep(t) =ey(t)e
T
y (t)Γep (6)

Kup(t) =ey(t)U
T
m(t)Γup (7)

Kxp(t) =ey(t)X
T
m(t)Γxp (8)

In Eqs. (6) through (8) Kep ∈ Rl×l, Kup ∈ Rl×l,
and Kxp ∈ Rn×n are the proportional gains for error,
command, and model states, respectively, with Γep ∈
Rl×l, Γup ∈ Rl×l, and Γxp ∈ Rn×n being new learning
parameters to be designed. The final gains are given by

Ke(t) =Kep(t) +

∫ t

0

K̇e(t)dt (9)

Ku(t) =Kup(t) +

∫ t

0

K̇u(t)dt (10)

Kx(t) =Kxp(t) +

∫ t

0

K̇x(t)dt (11)

The matrix product ey(t)e
T
y (t) is positive definite and

causes issues in real systems due to noise, system lag,
or other factors that cause K̇e to stay positive unless
perfect tracking is achieved. A degradation parameter σ is
added to allow for negative K̇e values, producing the new
adaptation equation

K̇e(t) = ey(t)ey(t)
TΓei − σKe (12)

It is common for Γ matrices to be symmetric and diagonal,
or of the form Γ = Il×γ for some constant γ and identity
matrix of size l× l. There are seven variables to be chosen
by the designer; Γei, Γui, Γxi, Γep, Γup, Γxp, and σ.

3. OPTIMIZATION TECHNIQUES

Particle Swarm Optimization (PSO), Differential Evolu-
tion (DE), Selection Particle Swarm Optimization (SPSO),
and Strategy-adaptive Differential Evolution (SaDE) are
considered for a search of SAC designs. The DE, PSO,
SaDE and SPSO search techniques all incorporate multi-
ple agents testing points in a cost function. Agents within
each algorithm hold individual states which are then up-
dated to produce a new test position. Information on the
cost of the test locations is incorporated into the next set
of points tested by the algorithm.
Position is used to refer to a single combination of param-
eters within the search space as an analogy. The subscript
i is used to refer to a parameter specific to an individual
agent within the swarm, while the subscript d is used to
refer to a given dimension within one of the agent’s values.

3.1 Optimization Objective

The objective of optimization will be to minimize the value
J of a linear quadratic cost function over the simulation
period. The cost to be minimized is given by the equation

J(t) =

∫ t

0

xT (t)Qx(t) + uT (t)Ru(t) dt (13)

where x is the vector of system states or errors, and u
is the control action made by the controller. The design
parameters Q and R are weight matrices that define
the importance of minimizing x or u. The cost function
described in Eq. (13) is used to determine the fitness of
the any given controller design for all four of the search
techniques considered. The simplicity of the cost function,
as well as the ability to compare cost values with a simple
LQR controller for the system is desirable and will clarify
characteristics of SAC design.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3852

3.2 Particle Swarm Optimization:

To begin a PSO search (Ouyang (2015)) with designed
velocity dampening factor ω, agent optima attraction ϕp,
and global optima attraction ϕg:
(1) Randomly assign an initial position x for each agent

in the search space.
(2) Set the best position p for each agent to x.
(3) Determine the cost for each agent’s position, called

j, and set the swarm’s minimum cost g to the lowest
cost (g =min(j)), with an associated best position
q.

(4) Determine the initial velocity v of each agent as a
random vector.

(5) Repeat iteratively until the completion criteria are
met, for each agent i:
(a) Pick random values rp and rg between 0 and 1.
(b) Update the agent’s velocity as:

v′i = ωvi + ϕprp(pi − xi) + ϕgrg(q − xi) (14)
(c) Update the agent’s position following:

x′
i = xi + vi (15)

(d) Check the cost of the new position x′
i.

(e) If the new cost is lower than the agent’s best cost
ji, make the agent’s new best position pi equal
to the current position.

(f) If the new cost is lower than the swarm’s best cost
g, make the swarm’s best position q the current
agent’s position and make the new best cost g
equal to the current agent’s cost ji.

3.3 Differential Evolution:

To perform a DE search (Takagi (2017)) with designed
crossover rate δ and scaling factor F :
(1) Initialize each agent with a random position p within

the search space.
(2) Determine the cost of each agent j at position p.
(3) Determine which agent’s position has the lowest cost,

marking it as q, and saving the lowest cost as g.
(4) Repeat iteratively until the completion criteria are

met, for each agent i:
(a) Pick two random integers from 1 to the swarm

population that are not identical and not i,
calling them a1 and a2.

(b) Produce a mutated vector M from the ath
1 and

ath
2 agent following:

M = q + F (pa1 − pa2) (16)
(c) Choose an integer b at random from 1 to the

dimensionality of the problem.
(d) Create a trial vector by checking the following

for each dimension d using the design parameter
δ:
(i) Pick a random value ρ from 0 to 1.
(ii) The trial vector u is defined for each dimen-

sion d as:

ud =

{
Md, d = b or ρ < δ

pd, otherwise (17)

(e) Determine the current cost of the trial vector u.
(f) If the cost of u is lower than the current posi-

tion cost ji, the agent’s best known position pi
becomes equal to the trial vector u.

(g) If the cost of u is lower than the best global cost
g, the global best known position q becomes the
trial vector u.

3.4 Selection Particle Swarm Optimization:

To begin an SPSO search (Angeline (1998)):
(1) Initialize similarly to PSO steps (1) through (4)
(2) Iteratively until the completion criteria are met:

(a) Sort the population by cost and mark the half
of the agents with the highest cost for selection.
Replace the current positions x of each agent
marked for selection randomly with one of the
agents not marked for selection. Replace the cur-
rent velocity v of each agent marked for selection
randomly with one of the agents not marked for
selection. Keep the best known position p of each
agent unchanged.

(b) Proceed with the optimization identically to the
iterative steps in the PSO search from step (5a)
through (5f).

3.5 Strategy-Adaptive Differential Evolution:
Many mutation strategies exist for DE. A pool of mutation
strategies is kept by SaDE and used to improve the search.
Strategies that are more likely to result in success are more
likely to be chosen in future. A success is recorded as any
time a strategy produces a trial vector that decreases the
best cost of an agent, with the total success of the kth

strategy during the current iteration m being denoted by
sk,m. When the cost does not decreased it is recorded as
a failure, denoted by fk,m.
To begin a SaDE search with K trial vector generation
function strategies, and learning period LP (Qin (2009)):
Initialize similarly to DE steps (1) through (3), then
repeat iteratively, calling the iteration number n, until the
completion criteria are met:
(1) If the current iteration number n is greater than the

designed learning period LP then:
(a) Calculate the success fraction S of each strategy

throughout the learning period following:
Sk,m =

Σm
t=m−LP sk,t

Σm
t=m−LP sk,t +Σt

t=m−LP fk,t
+ ϵ (18)

Values for sk,t and fk,t are recorded later. A
small number ϵ is added for numerical stability.

(b) Determine the probability of choosing the kth

strategy Pk,m following

Pk,m =
Sk,m

ΣK
t=1St,m

(19)

(c) Determine the new crossover ratio median δm as
the average of crossover ratios that resulted in
successful trial vectors over the last LP itera-
tions.

(2) If n < LP , set the probability for each trial vector
generation function Pk,m to be equal, such that each
function has an equal likelihood of being chosen.

(3) For each agent i:
(a) Use probabilities Pk,m to randomly choose a

strategy k.
(b) Choose Fi and Gi as normal random values with

a standard deviation of 0.3 and median of 0.5.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3853

(c) Choose δi as a normally distributed random
value with median of δm and standard deviation
of 0.1, ensuring 0 < δi < 1.

(d) Use the kth strategy to create the trial vector ui.
(e) Determine the current cost of the trial vector ui.
(f) If the cost of ui is lower than ji, set ji to

the current cost, and set pi = ui. Increase the
number of successes sk,i for the chosen strategy
k by one and add the crossover ratio δi used to
the list of successful crossover ratios. If the cost of
ui was not lower than the current cost ji, increase
the number of failures fk,i for the strategy k by
one.

(g) If the cost of the trial vector ui is lower than the
best global cost g, the global best known position
q becomes the trial vector ui.

The four strategies used are outline in Eqs. (20) through
(23). When used in parallel the methods require five
random distinct integers a1, a2, a3, a4, a5 with values from
1 to the swarm population that correspond to indices of
members of the population that are not the agent being
considered. These strategies also require an integer b be-
tween 1 and the dimensionality of the problem, a random
value ρ between 0 and 1, the previously determined Fi, Gi,
and δi values, the value of any ith agent’s position in the
dth dimension pi,d and the best known position in that
dimension qd. The strategies and their names are listed
below.
(1) DE/rand/1/bin: For each dimension d:

ui,d =

{
pa1,d + F (pa2,d − pa3,d), ρ < δi or d = b

pi,d, otherwise
(20)

(2) DE/rand-to-best/2/bin: For each dimension d:

ui,d =

pi,d +F (qd − pi,d) + F (pa1,d − pa2,d)

+F (pa3,d − pa4,d), ρ < δi or d = b

pi,d , otherwise
(21)

(3) DE/rand/2/bin: For each dimension d:

ui,d =

pa1,d +F (pa2,d − pa3,d)

+F (pa4,d − pa5,d), ρ < δi or d = b

pi,d , otherwise
(22)

(4) DE/current-to-rand/1:
ui = pi +G(pa1 − pi) + F (pa2 − pa3) (23)

4. NUMERICAL SIMULATIONS

The local spacecraft tracking problem was used to test
the validity of parametric search techniques on SAC
parameter selection. A chaser spacecraft is made to track
a trajectory relative to a target spacecraft within the same
orbital plane. This scenario is representative of several
rendezvous and proximity operations that occur in space.
Simulations were performed for position control of a 2-
DOF spacecraft with a mass of 16.95 kg, and thrusters
with a maximum force of 0.425 N allocated by a pulse-
width-modulation (PWM) scheme. No disturbances or
measurement noise were present in simulation. The non-
linear saturation and PWM allocated thrust cannot be
considered by the LQR design, but affect both the SAC

0.5 1 1.5 2 2.5 3
x position (m)

0

0.5

1

1.5

2

y
po

si
tio

n
(m

)

Desired Trajectory
LQR
SAC

(a) Trajectory

0 50 100 150 200
Time (s)

0

0.2

0.4

0.6

0.8

1

Po
si

tio
n

E
rr

or
 (

m
)

LQR
SAC

(b) Position Error

Fig. 1: LQR and Manually Tuned SAC Performance

and LQR controller responses. The SAC controls each axis
independently to create a two-input two-output controller.
Rotation was not considered. A standard 2nd order state-
space model was used for the continuous position dynam-
ics of the spacecraft with saturation limits on the thrust
output. The linear state-space model for the system is
given by the equations and states

A =

[
0 1
0 0

]
, b =

[
0

1/16.95

]
, C =

[
1 0
0 1

]
, #»x =

[
x
ẋ

]
(24)

which are repeated for the x and y directions. Stability
can be guaranteed for the linear system using SAC since
it is almost strictly positive real (Barkana (2013)).
A LQR and a manually designed SAC are made to
follow a commanded time varying position in space. The
response of the adaptive controller is then optimized
using parametric search techniques in order to yield an
optimized controller. A Simulink file was used to run
the simulation necessary for cost function calls during
optimization. The cost of each SAC controller response to
a step input was used for optimization, while a sinusoidal
command was used for validation given by the equations

xcmd(t) = R cos(ωt) +H sin(Kωt) (25)
ycmd(t) = R sin(ωt) +H cos(Kωt) (26)

with values of 3 for K, 1.4286 for R, 1 for H, and 0.035
for ω to produce a track command resembling a four lobed
leaf visible in Fig. 2a.
A LQR minimizes the cost function demonstrated in
Eq. (13) in linear systems and is developed as a compar-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3854

0.5 1 1.5 2 2.5 3
x position (m)

0

0.5

1

1.5

2
y

po
si

tio
n

(m
)

Desired Trajectory
DE
SaDE

(a) Trajectory

0 50 100 150 200
Time (s)

0

0.2

0.4

0.6

0.8

1

Po
si

tio
n

E
rr

or
 (

m
)

DE
SaDE

(b) Position Error

Fig. 2: DE and SaDE Optimized SAC Performance

ison for the SAC responses. The weight matrices chosen
were

Q =

[
1000 0
0 1000

]
, R =

[
1 0
0 1

]
(27)

For the linear system approximation and states #»x , LQR
formulations determined an optimal gain matrix K for
each axis of

K = [31.6 45.5] (28)

The SAC controller ideal model is composed of a second
order transfer function with a damping ratio ζ of 1 and
a large natural frequency ωn of 40 rad/s in order to
allow for apt comparison of the SAC and LQR, since the
SAC follows the reference model, and the LQR tracks
the command. The same ideal model was used for the
development of all SAC controllers. Since a second order
model was used, two Γ values are used for the state
learning parameter values. The final gamma matrices
are in the form ΓeP = diag(I2Γxp1, I2Γxp2) and Γei =
diag(I2Γxi1, I2Γxi2).
Manual tuning of a SAC was performed using the familiar
“guess-and-check” technique. Each controller parameter
would be varied while until no increase in performance
could be found. Optimization of the controller was then
performed using DE, SaDE, PSO, and SPSO algorithms.
A script incorporating the search techniques presented in
Sec. 3 was implemented in MATLAB, with Simulink calls
to run the spacecraft proximity operation simulation and
determine a cost. During operation each search algorithm
determined a combination of controller design parameters

0.5 1 1.5 2 2.5 3
x position (m)

0

0.5

1

1.5

2

y
po

si
tio

n
(m

)

Desired Trajectory
PSO
SPSO

(a) Trajectory

0 50 100 150 200
Time (s)

0

0.2

0.4

0.6

0.8

1

Po
si

tio
n

E
rr

or
 (

m
)

PSO
SPSO

(b) Position Error

Fig. 3: PSO and SPSO Optimized SAC Performance

Table 1: SAC Parameters

Variable Designed DE PSO SaDE SPSO
SAC

Γep 100 4.394×105 7.007×104 4.938×105 1.225×105

Γei 1×105 0 1.277×105 0 4.513×105

Γup 100 614.5712 1.582×105 0 5.345×105

Γui 1 0 0 0 0
Γxp1 100 0 2.079×104 867.9 2.580×105

Γxp2 100 1.000×106 1.672×104 4.851×105 3.833×105

Γxi1 1 0 0 0 0
Γxi2 1 1.000×106 5.827×104 2.421×105 9.998×105

σ 0.4 0.93 0.21 0.54 0.02
Cost 3338.6 1283.5 3337.6 1405.9 3184.0

to test. The controller response to a step input over 100
seconds was used to determine the cost.
All four algorithms were run for 100 iterations with 100
agents. Values of ω = 0.2, ϕg = 0.1, and ϕr = 1.0
were chosen for the PSO search. The DE search was
performed using values of 0.9 and 0.8 for the crossover
rate and scaling factor, respectively. For SPSO, 50% of
the agents were used to provide updated positions of the
other 50% of agents. In the SaDE search the four trial
vector generation functions described in Sec. 3.5 were used
in strategy adaptation.
The designed SAC controller gains and their optimized
counterparts are demonstrated in Table 1, along with the
final cost of each controller. The results for the designed
LQR and SAC controllers are shown in Figs. 1 through 3.
The designed LQR controller achieved similar transient
behaviour as the manually designed SAC, but was unable
to reach zero error.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3855

It can be seen that all optimization methods were able
to find parameters that improve the response when com-
pared with a manually designed SAC. The DE and SaDE
searches were able to determine significantly lower cost
controllers than the PSO and SPSO searches.
While the designed controller contains mostly feedback
error adaptation, The DE determined controller contains
mostly state adaptation. The DE controller converges on
the model response very quickly, which is reflected in the
cost. Optimization significantly improved the controller
cost. It is likely that the absence of disturbances and
measurement noise caused the optimization to ignore error
adaptation Γei since adequate control could be achieved
with only state adaptation.
The SPSO search produced very similar results to the
PSO search, using high error and state adaptations to
improve the tracking of the hand-designed controller. The
use of selection in SPSO likely increased convergence by
moving high cost agents closer to the lower cost agents and
more quickly refining the determined control parameters
(Angeline (1998)). The faster convergence of PSO and
SPSO techniques compared to DE and SaDE may have
contributed to the higher final cost of their designs, due
to lower exploration of the design space.
Generally it was found that convergence and exploration
behaviour of the techniques matched those presented in
Wahab (2015), with SPSO having the fastest convergence
time, at the expense of exploration, followed by PSO,
SaDE, and finally DE which more thoroughly explored
the search space at the expense of convergence. The
explicit attraction of PSO to the determined minimum
increases convergence when compared to DE, with se-
lection pressure further increasing convergence in SPSO.
The mutations present in DE encourage exploration but
reduce convergence behaviour, and the use of multiple
strategies in SaDE increase the convergence behaviour of
DE somewhat.
The simulation used in this survey did not include any
measurement noise or disturbances. It is possible that due
to the lack of complicating factors in simulation that some
of the determined controller parameters may not be useful
in practice. For example, although the DE controller has
the lowest cost, it does not make use of error adaptation at
all, and may have a higher cost response than a controller
including these terms when implemented in hardware.
Similarly, all controllers used very large values for many of
the adaptation terms, which may cause instability if the
simulated system response is faster than the true system
response.
Finally, since several parameter configurations were able
to produce similar costs for the controller, it is likely that
even for quadratic cost functions there exists a complex
cost landscape for parameter selection in SACs. Wahab
(2015) suggests that DE has the best performance of
swarm-based techniques for multimodal cost functions,
which may be the case for many SAC designs.

5. CONCLUSIONS

Several swarm-optimization techniques were used to de-
termine if an optimal adaptive controller could be found

for the local spacecraft trajectory tracking problem. Opti-
mized controllers were compared to a manually designed
effort, as well as to a standard LQR controller. It was
found that swarm-optimization techniques were success-
fully able to determine adaptive control parameters that
lowered the cost of a linear quadratic cost function. The
designed controllers are shown to increase performance
when compared with manually designed efforts.
Future work in this field may include research into the
structure of cost functions used in conjunction with adap-
tive controllers. The standard quadratic cost function may
be difficult to optimize for the SAC architecture. The two
distinct response types found by the four particle swarm
algorithms presented here suggest that several local min-
ima exist despite the simple cost function used. In future,
techniques to minimize the search space or determine
characteristics of the cost function applied may greatly
improve search speeds and results or may suggest other
avenues of research.

REFERENCES
P. Angeline, “Using Selection to Improve Particle Swarm

Optimization,” IEEE World Conference on Computa-
tional Intelligence, Anchorage, USA, 1998.

I. Barkana, “On Robustness and Perfect Tracking with
Simple Adaptive Control in Nonlinear Systems,” 20th

IFAC World Congress, Vol. 50 No. 1 pp. 4258-4263 2017.
I. Barkana, “Simple Adaptive Control: The Optimal

Model Reference - Short tutorial,” 11th IFAC Interna-
tional Workshop on Adaptation and Learning in Control
and Signal Processing, Caen, France, 2013.

J. R. Brophy et. al., “Asteroid Retrieval Feasibility,” 2012
IEEE Aerospace Conference, Montana, USA, 2012.

P. Ouyang, and V. Pano, “Comparative Study of DE, PSO
and GA for Position Domain PID Controller Tuning,”
Algorithms, Vol. 8 No. 3 pp. 697-711, 2015.

C. Palla, J. Kingston, “Forecast Analysis on Satellites
that need De-orbit Technologies: Future Scenarios for
Passive De-orbit Devices,” CEAS Space Journal, Vol. 8
No. 3 pp. 191-200, 2016.

A. Qin, “Differential Evolution Algorithm With Strategy
Adaptation for Global Numerical Optimization,” IEEE
Transactions on Evolutionary Computation,Vol. 13
No. 2 pp. 398-417, 2009.

F. Sellmaier et. al., “On-Orbit Servicing Missions:
Challenges and Solutions for Spacecraft Operations,”
SpaceOps 2010 Conference, Alabama, USA, 2010.

T. Takagi, M. Ito, and I. Mizumoto, “Parameter optimiza-
tion of simple adaptive control via differential evolu-
tion,” 2017 6th International Symposium on Advanced
Control of Industrial Processes (AdCONIP), Taipei,
Taiwan, 2017.

M. Wahab et al., “A Comprehensive Review of Swarm
Optimization Algorithms,” Plos One Vol. 10 No. 5 ,
2015.

S. Ulrich et. al., “Simple Adaptive Control for Spacecraft
Proximity Operations,” AIAA Guidance, Navigation,
and Control Conference, Maryland, USA, 2014.

S. Ulrich, and J. de Lafontaine, “Autonomous Atmo-
spheric Entry on Mars: Performance Improvement Us-
ing a Novel Adaptive Control Algorithm,” The Journal
of the Astronautical Sciences, Vol. 55 No. 4 pp. 431-449,
2007.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3856

