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Georges-Köhler-Allee 102, 79110 Freiburg, Germany. (e-mail:

jonas.schlagenhauf@imtek.de, diehl@imtek.de).
∗∗Kiteswarms GmbH, 79427 Eschbach, Germany. (email:

peter@kiteswarms.com, thilo@kiteswarms.com,
reinhart@kiteswarms.com).

Abstract: In this paper we present a cascaded control approach using nonlinear model-
predictive controllers for both stages. Using a quadrotor platform as an exemplary target plant
with fast nonlinear dynamics, a realtime capable design is proposed that does not require the
plant dynamics to exhibit clearly separable time constants as in classical cascaded control.
In contrast to similar work we employ NMPC for the inner control loop instead of classical
control approaches such as PID control, allowing to keep predictive properties as well as explicit
constraint handling. We demonstrate via Monte-Carlo simulations that our design is able to
achieve a significantly better position tracking performance of the quadrotor while being equally
computationally expensive compared to monolithic position tracking NMPC.

Keywords: model predictive control, cascaded control, realtime control, modeling for control
optimization, quadrotor control

1. INTRODUCTION

Modern control systems are increasingly integrated into
applications that require accurate realtime control of a
multitude of coupled variables under a wide variety of
constraints. Advances in realtime optimal control promise
highly-dynamic closed-loop behavior of complex systems,
that were infeasible to control only a few decades back.
Common examples are autonomous driving, power system
control and aerospace applications.
While the sophistication of control approaches increases
steadily, actual implementations suffer from increasingly
unmaintainable complexity and thus development cost.
Advanced control methods have worsened this trend rather
than the opposite. Expensive computation, interdependent
effects and couplings make it hard for control engineers to
design a monolithic realtime controller for many complex
use cases.
A solution to this was already applied as early as the 1960s
in the form of cascading control: designing two separate
controllers for specific aspects of the plant dynamics that
achieve the overall control objective together. An inner
control loop regulates fast-changing aspects of the plant
whereas an outer control loop treats the inner loop as
part of its plant dynamics, generating reference values for
the inner loop. Cascading control shares the benefits with
other distributed control approaches: modular structure,
better controller design due to a tighter design focus for
each module, shorter transmission delays, distributed com-
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putation loads and scalability.
Formulating a cascaded control structure is however a non-
trivial task. While the underlying plant dynamics usually
set the context for the appropriate structure, many design
details are left to the control engineer, an aspect that is
only amplified with the increased design freedom of mod-
ern control theory. Compared to a single-stage controller
where the inputs and outputs are dictated by physical cir-
cumstances of the plant, the interface between the stages
of cascaded controllers can be chosen much more freely. If
the abstraction of the subsystems however neglects impor-
tant cross-couplings, the local control performance can be
heavily degraded by the actions of the other control loop.
Optimal control approaches such as (nonlinear) model pre-
dictive control (NMPC) lend themselves to be applied in
cascaded control systems due to their flexibility in formula-
tion of inputs and outputs and explicit constraint handling
compared to classic control methods. It is however a non-
trivial task to properly translate explicit constraints and
correct predictive behavior into a cascade structure, where
extra care has to be taken to ensure consistency in con-
straint satisfaction and prediction by possibly conflicting
behavior between the stages.
In this work we propose a cascaded control structure using
nonlinear model predictive control for both stages, tackling
the outlined problems of cascade structure design and
constraint handling, which, to the best of the authors
knowledge, has not been proposed before. Using a faster-
sampling inner cascade makes it possible to outperform
a comparable monolithic controller at the same or lower
total computational cost. We challenge the assumption
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made for classical cascades having clearly separable time
constants and introduce a resampling approach better
suited for predictive cascades.
Using a quadrotor platform as an example target plant, we
demonstrate via simulation that this approach produces
a cascaded control structure able to perform accurate
reference tracking for a highly dynamic, unstable system
with higher tolerances against unmodeled disturbances
compared to a monolithic NMPC implementation while
keeping similar, realtime capable computation times. Us-
ing unit quaternion representations of rotations we allow
arbitrary orientations without encountering singularities.
The presented design is realized as a realtime-capable
implementation exploiting on-the-fly linearization of the
quadrotor rotation dynamics for speedups of the inner
control loop.

2. RELATED WORK

Similar work has emerged predominantly in context where
large-scale plants occur.
Ulbig et al. (2011) proposed a linear MPC cascade struc-
ture for managing different time scales of a power system
where a monolithic optimal control approach would be
infeasible.
A different kind of hierarchical structure was designed and
realized by Touretzky and Baldea (2014). Here a slow,
long-term scheduler was used to provide set points to an
inner loop MPC with economic costs, applied to a building
heating system.
In contrast, Vermillion et al. (2011) proposed a hierarchical
MPC structure for a plant where the subsystems do not
possess a strong time scale separation. On basis of this
approach stability proofs were derived using a tank stirring
problem as a benchmark problem, using the inner MPC to
control the actuator dynamics.
Luchini et al. (2017) employed a similar strategy by using
a mixed-integer-MPC formulation for interfacing the ac-
tuators of an ice box, having a slow, long-term outer loop
MPC for generating cooling reference values.
Barcelli et al. (2011) proposed a decentralized hierarchy
of local stabilizing controllers without explicit constraint
handling, relying on the supervising MPC controllers to
provide feasible reference values.
A cascaded NMPC approach for a simplified quadrotor
platform was presented by Liu et al. (2014). A two-rotor,
partially fixed, 3DoF setup was used as a target plant, per-
forming real-world experiments while keeping the model
dynamics complexity low.
Aiming for full quadrotor dynamics, Chen and Wang
(2013) designed a dual MPC cascade with the goal of
providing convenient set points for the inner control loop
to employ linear control methods for faster control rates.
Nguyen et al. (2017) developed a control structure similar
to the approach presented in this paper. Using a two-
stage cascade (called ”layers”) consisting of a trajectory-
tracking MPC and a torque-controlling MPC combined
with a feedback linearization through CTC. They validate
the trajectory tracking performance of their design in
simulation in nominal and wind-disturbed conditions. The
possibility of sampling the inner casade with a faster rate
was however not addressed.
Neunert et al. (2016) presented a sequential-linear-quadratic

(SLQ) MPC formulation to perform fast trajectory track-
ing in realtime. Two target plants, a quadrotor and a
balancing robot, are used to demonstrate the stabilization
and trajectory tracking performance. While the proposed
approach relies on a lower cascade to apply the computed
trajectories to the plant, the cascaded nature of the system
is not specifically addressed or exploited. The formulation
also does not treat plant constraints explicitly.
To improve the realtime capabilities of their quadrotor
NMPC formulation, Zanelli et al. (2018) proposed a new
RTI scheme variant and demonstrated the results by de-
ploying the design on an embedded platform and perform-
ing real-world flight experiments.

3. QUADROTOR DYNAMICS

We use a conventional symmetric quadrotor platform as
our target plant. Figure 1 shows the coordinate system
definitions for the reference systems and actuators. Off-

Fig. 1. Quadrotor coordinate system and motor axes
conventions.

the-shelf motor drivers allow to set the propeller rotation
speed, where we assume sufficiently fast timing charac-
teristics of the driver and the motor compared to the
quadrotor dynamics to neglect it in the quadrotor model.

3.1 Drive Map

Having a symmetric motor arrangement and orthogonal
motor axes we can formulate a map from motor speeds

[ω0 ω1 ω2 ω3]
>

to upward thrust Fthrust and 3-axes torque

τ = [τroll τpitch τyaw]
>

in the quadrotor frame as

[
Fthrust

τ

]
=

−a −a −a −a−b −b +b +b
+b −b −b +b
−c +c −c +c


︸ ︷︷ ︸

M

ω
2
0

ω2
1

ω2
2

ω2
3

 (1)

where we call M the drive map. The model parameters
a, b, c are determined by the propeller lift and drag coeffi-
cients as well as the quadrotor arm length (see Table 1 for
the actual values).
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For this quadrotor configuration, the inverse M−1 is de-
fined for positive model parameter values, providing us
also with the inverse transformation

M−1 [Fthrust τroll τpitch τyaw]
>

=
[
ω2
0 ω

2
1 ω

2
2 ω

2
3

]>
. (2)

3.2 Rigid-body Dynamics

The drive map allows to set up simplified quadrotor
dynamics as a rigid body in 3D with additional external
forces and torques. The time-continuous model ODE then
becomes

d

dt

pvq
Ω

 =


v

1
mqFq̄ + g

1
2q

[
0
Ω

]
I−1τ

 (3)

where p ∈ R3 is the position, v ∈ R3 the velocity,
q ∈ SO(3) the unit quaternion representing orientation
of the quadrotor frame w.r.t. the world frame and Ω ∈
R3 the angular velocity of the quadrotor. We denote

F = [0, 0, 0,−Fthrust]
>

the upward thrust in negative z-
direction of the quadrotor frame, interpreted as an imag-
inary quaternion. Together with the torques τ ∈ R3 they
constitute the virtual control inputs to the plant. The
gravitational acceleration g ∈ R, the mass m ∈ R and
the inertia tensor I ∈ R3 are model parameters that are
empirically determined.
A natural plant separation becomes apparent based on
the above model equations: rotation and translation dy-
namics are only coupled via the orientation of the forward
thrust. Moreover, this coupling shows a hierarchy in the
subsystems, since we first need to adjust the quadrotor
orientation using the torque controls before the position
can be changed via the upward thrust controls.
We therefore conveniently define the inner cascade as the
attitude control loop and the outer cascade as the position
control loop.

4. CASCADE STRUCTURE

Using the insight gained from the model analysis, we
construct the cascade structure with two stages. The inner
control loop (attitude stage) tracks the quadrotor’s rota-
tional dynamics by applying torques to the plant (Section
4.3). The outer control loop (position stage) tracks the
quadrotor position and yaw by computing a feasible tra-
jectory using forward thrust and torques, feeding reference
orientations to the inner loop (Section 4.1). The position
stage has full model knowledge to be able to generate
feasible reference trajectories for the attitude stage.
In addition we use the control output of the position as
control reference for the attitude stage. While the upward
thrust does not enter the rotation dynamics of the attitude
stage, this makes it possible to negotiate thrust vs. torque
to obey actuator limits inside the attitude stage.
Since the sampling rates and number of prediction steps of
position and attitude stage differ, a resampling step has to
be performed when handing reference values down to the
inner controller (Section 4.2). Using a forward simulation
of the reference values on the time grid of the attitude
stage the sample times of both stages are decoupled.
In the last step the attitude stage applies its computed

Position NMPC

Resampler

Attitude NMPC

Drive Map

Plant

[p̄ q̄yaw]

[
q̄ F̄thrust τ̄

]

[
q̄ F̄thrust τ̄

]

[Fthrust τ ]

[ω0 ω1 ω2 ω3]

[q Ω]

[p v q Ω]

Fig. 2. Structure of the cascaded control system.

upward thrust and torques to the plant.
In this setup, we use the simulated internal plant state as
full state feedback to the controllers. In a real-world setup
this would be achieved by a suitable state estimator.
Note: For the sake of a concise formulation, mathematical
symbols in the next two sections may be named identically.
There is however no overlap except where denoted other-
wise.

4.1 Position Stage

The outer control loop tracks the 3D position and yaw of
the quadrotor. To ensure that we produce feasible refer-
ence values for the inner control loop the full quadrotor
dynamics (equation 3) with states and controls

x =

pvq
Ω

 , u =

[
Fthrust

τ

]
(4)

are utilized.
For every invocation of the position stage the optimal
trajectory is computed as the result of the OCP

min
x0,...,xNp

u0,...,uNp−1

Np−1∑
k=0

l(xk, x̄k, uk, ūk) + lNp
(xNp

) (5a)

s.t. x0 = x̄0, (5b)

xk+1 = fp(xk, uk, hp) ∀k = 0, . . . , Np − 1,
(5c)

0 ≤M−1uk ≤ ω2
max∀k = 0, . . . , Np − 1

(5d)

given the current state estimate x̄0 and a state-control
reference trajectory (x̄0, . . . , x̄Np , ū0, . . . , ūNp−1).
Here, fp(xk, uk, hp) is the result of discretizing Equation
3 with a fourth-order Runge-Kutta (RK4) integrator for
a step size hp, ensuring consistency between trajectory
states and model prediction. Constraint (Equation 5b)
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fixes the initial state x0 to the current estimated state x̄0
as obtained from the estimator. To take the motor limits
into account, we also constrain the total thrust and torques
via the inverse motor map to the maximally possible motor
values ωmax (eq 5d).
The cost terms penalize the tracking error xk−x̄k and uk−
ūk . Extra steps have to be taken for rotation differences
represented as unit quaternions. We define the difference
between two unit quaternions as

qerr = qa − qb := vec(q−1a qb) (6)

where q−1 denotes the conjugate quaternion and vec()
returning the quaternion’s imaginary part. This approxi-
mates the actual angular distance between the quaternions
with sufficient accuracy without introducing nonlineari-
ties. The costs function can then be formulated straight-
forward as

l(xk, x̄k, uk, ūk) =

 pk − p̄kqk − q̄k
Ωk − Ω̄k

>Qp

 pk − p̄kqk − q̄k
Ωk − Ω̄k


+

[
Fk − F̄k

τk − τ̄k

]>
Rp

[
Fk − F̄k

τk − τ̄k

]
lNp

(xNp
) = Ω>Np

Qp,NΩNp

(7)

with weight matrices Qp ∈ R10×10, Rp ∈ R4×4 and
Qp,N ∈ R3×3.

4.2 Resampling

Solving the above optimization problem yields a state-
control-trajectory of length Np sampled with step size
hp. To use the predicted orientation, angular velocity and
controls as reference values for the inner control loop the
trajectory has to be resampled onto the time grid of the
inner control loop. Classical control approaches usually
assume that the time scales of both stages are so far apart
that the inner loop dynamics appear constant to the outer
loop. There, zero-order-hold (ZOH) would suffice to obtain
a sample. In this scenario and due to the predictive nature
of the controllers assuming a constant reference between
position stage samples would lead to large errors.
We therefore use the system model to simulate the ref-
erence trajectory on the time grid of the inner control
loop instead, i.e. for every state-control-reference pair
w̄p,k = (x̄p,k, ūp,k) obtained from the position stage we
extrapolate new reference values w̄p,k,j via

w̄p,k,j =

{
w̄p,k j = 0

fp(w̄p,k,j−1, ha) j ≤
⌈
Np·hp

ha

⌉ (8)

which then are passed to the attitude stage (here, ha is
the prediction horizon length of the attitude stage).

4.3 Attitude Stage

The inner control loop tracks the reference orientation of
the quadrotor that is handed down from the outer control
loop. We therefore only consider the rotation dynamics of
the plant:

dx

dt
=

d

dt

[
q
Ω

]
=

 1
2q

[
0
Ω

]
I−1τ

 , u =

[
Fthrust

τ

]
. (9)

Since the torque controls compete with the total thrust for
the resulting motor speeds, the thrust value computed by
the position controller enters the inner control loop as a
control reference. This allows the attitude stage to deviate
from that reference thrust value if it would violate actuator
constraints.
The attitude tracking problem is then formulated as

min
x0,...,xNa

u0,...,uNa−1

Na−1∑
k=0

l(xk, x̄k, uk, ūk) (10a)

s.t. x0 = x̄0, (10b)

xk+1 = fa(xk, uk, ha)∀k = 0, . . . , Na − 1,
(10c)

0 ≤M−1uk ≤ ω2
max ∀k = 0, . . . , Na − 1.

(10d)

Equivalent to the position OCP we constrain the initial
value to the estimate obtained from the state estimator
(Equation 10b) and limit the controls to physically feasible
values. We however define fa(xk, uk, ha) as the resulting
function of discretizing equation 9 via RK4 for a step size
ha. We define the cost function as

l(xk, x̄k, uk, ūk) = [qk − q̄k]
>
Qa [qk − q̄k]

+

[
Fk − F̄k

τk − τ̄k

]>
Ra

[
Fk − F̄k

τk − τ̄k

]
.

(11)

with weight matrices Qa ∈ R4×4 and Ra ∈ R4×4. The
above nonlinear program (NLP) is converted into a sequen-
tial quadratic program (SQP) by linearizing cost and con-
straint functions in every iteration of the inner control loop
around the current system state. It is then solved using the
realtime iteration (RTI) scheme ((Diehl et al., 2005), (Gros
et al., 2016)). From the resulting state-control-trajectory
the first element is then taken and applied to the plant.

5. IMPLEMENTATION

The presented control structure was implemented in
Python3.6. CasADi (Andersson et al., 2018) was used for
symbolic expressions and solver interfaces. The position
OCP was solved using IPOPT (Wächter and Biegler, 2006)
/ MUMPS. The QPs arising from the linearized atti-
tude control problem were solved with qpOASES (Ferreau
et al., 2014).
A list of all default parameters and values used for the
simulation can be found in Table 1. Deviations from these
parameters for specific simulation scenarios are declared
in the next section. The model parameters represent an
existing physical quadrotor platform and were identified
beforehand.

6. SIMULATION

To analyze the proposed cascaded structure qualitatively
and quantitatively, we perform closed-loop simulation sce-
narios based on the dynamics described in Equation 3, that
highlight the relevant performance criteria of a tracking
control system. As a comparison reference the position
stage without inner cascade is used, representing a single-
stage monolithic NMPC approach.
A step-response scenario and a more complex rectangle
trajectory tracking scenario are chosen to compare both
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Table 1. Controller and model parameters used
for simulation scenarios.

Parameter Value

Position Stage

Prediction Steps Np 30
Sampling Time hp 300 ms
State weight Qp diag([1, 1, 100, 0, 0, 0, 1,

0.05, 0.05, 0.05])
Terminal weight Qp,N diag([1, 1, 1]) · 10−1

Control weight Rp diag([1, 1, 1, 1]) · 10−5

Attitude Stage

Prediction steps Na 5
Sampling time ha 2 ms
State weight Qa diag([0, 5, 5, 5])
Control weight Ra diag([1, 1, 1, 1]) · 10−3

Model parameters

Motor map param.s a 1.086× 10−5 Nrad−2 s−2

b 1.738× 10−6 Nmrad−2 s−2

c 1.515× 10−7 Nmrad−2 s−2

Max. motor speed ωmax 1000 rad s−1

Mass m 1.5 kg
Inerta tensor I diag([0.014, 0.014, 0.024])kgm2

0 1 2 3 4 5

0

0.5

1

MSE Cascaded: 179 cm2

MSE Monolithic: 180 cm2

Time in s

y
-p

o
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ti
on

in
m

cascaded
monolithic
reference

Fig. 3. Comparison between cascaded and monolithic
controller step responses to verify identical behavior.
The reference trajectory is represented by a dotted
line.

candidates. Artificial external torque disturbances are fur-
ther introduced to investigate and compare the control
behavior under non-ideal conditions.
As error metric we compute the mean squared error (MSE)
between two vectors a and b of length n as

MSE(a, b) =
1

n

∑
i

(ai − bi)2. (12)

6.1 Step-response

We generate a reference trajectory that contains a one
meter step along the y-position axis. To verify that both
candidates exhibit the same optimal tracking behavior, we
first simulate five seconds of closed-loop behavior with
identical parameters in a disturbance-free scenario. As
Figure 3 shows, the step-response behavior of the cascaded
controller and the reference controller are almost identical
with MSEs of 179 cm2 and 180 cm2 respectively.
The difference between both trajectories pcentr − pcasc is

shown in Figure 4. The difference does not exceed 1.5 cm
/ 1.5 % of the step height, which we determine to be small

0 1 2 3 4 5

−1

0

1

Time in s

T
ra
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in

g
d

iff
er

en
ce

in
cm

Fig. 4. Difference between cascaded and monolithic con-
troller trajectories.
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y
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in
m

monolithic
cascaded

Fig. 5. Comparison of step tracking performance under
random disturbances, showing 50 trajectories for each
controller as well as the total covered range per time
step displayed by colored areas.

enough to be disregarded in further simulations.
To highlight the performance difference of both candidates
in non-ideal conditions, angular acceleration disturbances
v sampled from a normal distribution

v ∼ N3(

[
0
0
0

]
,

[
σ 0 0
0 σ 0
0 0 σ

]
) (13)

are added to the rotation dynamics of the simulation:

d

dt
Ω = I−1τ + v. (14)

A Monte-Carlo simulation with 50 samples is performed
for each controller where we choose σ = 0.001 rad s−1.
Figure 5 shows all resulting trajectories. A general qualita-
tive difference in disturbance rejection performance can be
seen, highlighting the expected reduction in disturbance
rejection by the attitude stage compared to the single-
stage controller.
Analyzing the torque control values as generated by the
position stage and the attitude stage in Figure 6 gives
more insight into the difference in control action by the
respective control approaches.
An in-depth look into the behavior of both controllers for
different disturbance levels is achieved by performing the
above scenario for a range of external disturbance values.
For the sake of clarity only the MSE and its distribution
is shown in figure 7. As expected both controllers per-
form worse with increasing disturbances. For the presented
disturbance values, the monolithic controller creates a
worst-case median MSE of 380 cm2, the cascaded approach
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Fig. 6. Roll, pitch and yaw torque control values of position
(green) and attitude (blue) stage for an exemplary
step reference. The position stage torques serve as a
reference value for the attitude stage torques.
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Fig. 7. Comparison of cascaded and monolithic controller
for increasing angular acceleration disturbance values.
The performance is represented as distributions of
MSE values.

reaches a median MSE of 185 cm2 in the same scenario.
To explore the importance of the chosen sampling times, a
similar evaluation is performed by fixing the disturbance
values to 1× 10−4 rad s−2 and observing the step response
behavior for a range of sampling rates of the position
stage. Figure 8 shows the results of this simulation. Since
shorter sampling times increase the possibilities of each
controller to counteract unmodeled disturbances, a reduc-
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Fig. 8. Comparison of cascaded and monolithic controller
for decreasing position stage sampling times. The
performance is represented as distributions of MSE
values.

tion in tracking errors can be observed with decreasing
sampling time for both candidates. Since the attitude
stage allows to compensate disturbances and return to the
reference values in between position stage samples, we can
see a distinct performance gain for the cascaded controller.
We further investigate the computation time of both con-
trollers in Table 2. Due to the RTI approach of the attitude

Table 2. Computation times of one control
loop iteration in milliseconds, based on 200

disturbance-free step-tracking simulations.

median Q1 Q3 min max

Monolithic 32.959 29.812 40.220 28.251 570.317
Casc.-Pos. 32.555 28.614 39.924 28.058 452.575
Casc.-Att. 0.801 0.793 0.823 0.775 8.295

stage, computation of the attitude control loop generally
takes less than a millisecond. Since the monolithic con-
troller is equivalent to the position stage of the cascaded
controller, computation times are also almost identical.
The high maximum computation times are the result of
the first iteration, in which the OCP is initialized far from
the converged solution.

6.2 Rectangle trajectory

To demonstrate the control behavior of the cascaded sys-
tem in a more practical scenario, we additionally perform
reference tracking of a rectangle in 3D space. Starting
from hovering, the quadrotor follows a 4-by-4-meter square
shape in the Y-Z plane, returning to the starting point.
Figure 9 shows the resulting trajectories of the cascaded
controller and the reference.
A stable tracking performance is achieved, reaching a

MSE of 251.01 cm2.
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Fig. 9. Rectangle shape trajectory tracking simulation

7. CONCLUSION & OUTLOOK

In this paper we presented a new control approach ap-
plying nonlinear model-predictive control to a cascaded
control structure. The process of creating this control
structure was demonstrated on basis of a quadrotor model
where the assumption of clearly separable time constants
cannot be made using a position stage and an attitude
stage, linked by a model-based resampling approach.
Based on Monte-Carlo-simulations we can show a clear
benefit of this approach over a single-stage, monolithic
nonlinear model-predictive controller. As the simulation
results show, the disturbance rejection of the inner control
loop leads to a drastically reduced tracking error without
increasing the overall computation time. This also allows
to increase the sampling time of the position stage, allow-
ing longer prediction horizons or reduced computational
cost.
Further simulation analysis and real-world experiments
are required to fully explore the performance difference
compared to a monolithic approach. Continuing this work
a range of additional improvements are now viable such
as a spatial distribution of the cascade stages and general-
ization to hierarchical control systems with multiple inner
controllers.
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