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Antônio R. C. Gonçalves ∗ Elaine Guerrero-Peña ∗
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Abstract: Trajectory planning is a crucial issue for robotics. In recent years, researchers have
used meta-heuristics, such as Multi-Objective Evolutionary Algorithms (MOEAs), to handle
it. However, despite the numerous favorable features of EAs, research is needed to analyze the
efficiency and effectiveness of such algorithms to find an optimal trajectory. For this reason,
we present a comparative study between different Pareto-based MOEAs for trajectory planning
for a mobile manipulator in an environment with obstacles. In order to generate the trajectory
in the joint space, two objective functions are considered: the Cartesian velocity and the joint
speed. Both functions are modified to find feasible solutions that avoid collisions. Four state-
of-the-art EAs for multi-objective optimization are selected to perform the study. The planned
trajectories are tested in simulation and with the actual robot TIAGo. The results suggest that
Pareto-based MOEAs are suitable for offline trajectory planning, especially OSP-NSDE, which
found the best solutions in the shortest time.

Keywords: Robotics, Robot Trajectory planning, Evolutionary Computation, Multi-objective
Optimization, Obstacles

1. INTRODUCTION

Over decades, robotics has been developed to achieve a
wide variety of tasks in production environments, such
as exploring and inspecting dangerous zones, performing
welding, painting, and moving objects in areas where the
human physical integrity is threatened. Robots might also
be able to achieve these tasks at a higher speed, reduc-
ing thus the task execution times. Among the numerous
challenges, robots may have to perform their duties in the
presence of obstacles in their workspace. Hence, trajec-
tory planning considering obstacles consists in a critical
component of robot acting (Saramago and Steffen Júnior,
1999).

Trajectory planning consists of computing a sequence of
poses at a given time, a robotic arm has to successively
reach them to achieve a desired task. It can also be seen as
the calculation of the kinematic and dynamics properties
of the motion. In order to compute the trajectory, one
usually relies on optimization functions. Thus, the trajec-
tory planning algorithms aim to find a minimum time,
minimum energy, or minimum jerk solution. Moreover,
there also recent approaches optimizing more than one
function, e.g., (Gasparetto et al., 2015).

Trajectory planning is generally considered as a NP-
hard problem, subject to physical constraints, input
torque/force constraints, and obstacle avoidance (Sara-
mago and Steffen Júnior, 1999). Most of the existing

approaches rely on exact algorithms to find an optimal
solution. For this class of methods, the computational time
might exponentially increase when the complexity grows,
making it unsuitable to handle the complicated search
space of the optimal solutions. Then, probabilistic algo-
rithms were proposed to determine a feasible solution, not
necessarilly the optimal one, taking shorter convergence
time than the previous approach.

Aiming to find optimal solutions, metaheuristics were
used to determine the paths. In particular, single-objective
evolutionary algorithms have yielded promising solutions
(Silva et al., 2010; Abu-Dakka et al., 2013). In this paper,
we define the trajectory planning as a multi-objective
problem (MOP), such as in (Mulik, 2015; Menasri et al.,
2015; Huang et al., 2018) in which we simultaneously
optimize distinct utilities. Furthermore, we consider con-
straints that can be taken as objectives (or part of them)
to plan the optimal trajectories. Despite the promising
results with several Multi-Objective Evolutionary Algo-
rithms (MOEAs), capabilities and limitations in terms of
efficiency and effectiveness of MOEAs is an open research
issue. This study aims to produce a comparative study of
some state-of-the-art MOEAs under the viewpoint of the
MOEAs and of the manipulator performance.

It is proposed to compare the trajectories planned for
a 7-DoF manipulator. The optimization takes place in
the joint space in which the arm reaches a final pose
starting from a given initial posture in a 3D environment
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with obstacles. First, only a Cartesian velocity function
and a joint speed function are used to generate a tra-
jectory. Then, both functions are modified to avoid col-
lisions with obstacles inserted in the environment and
to produce (often locally) optimal feasible solutions. The
chosen MOEAs belong to the class of algorithms based
on Pareto dominance criterion, which are characterized
as fast-convergence MOEAs. Thus, efficient models are
selected: NSGA-II (Deb et al., 2002), NSDE (Angira and
Babu, 2005), SPEA2 (Zitzler et al., 2001), GDE3 (Kukko-
nen and Lampinen, 2005), and OSP-NSDE (Guerrero-
Peña and Araújo, 2019). The solutions found by the al-
gorithms are analyzed taking into consideration Hypervol-
ume, Spacing, Pareto front, and the value of the objective
functions. Other measures are used to analyze the trajec-
tory quality found by the MOEAs: times to go through
trajectories, Cartesian and joint distances, and the error
between the planned trajectory and the trajectory exe-
cuted by the robot. The trajectories computed by the
algorithms are tested both in a simulated environment
and on the robotic platform TIAGo (Pages et al., 2016)
developed by PAL Robotics.

This paper is organized as follows. Section 2 presents the
robot trajectory planning problem. Section 3 describes
the evolutionary algorithms for the trajectory planning.
Section 4 introduces the simulation setup. Section 5 and
6 show the experimental results and the real application.
Finally, Section 7 outlines some conclusions.

2. TRAJECTORY PLANNING PROBLEM FOR
ROBOT MANIPULATOR

2.1 Trajectory Planning Problem without Obstacles

Trajectory planning aims to generate a set of configu-
rations that must be reached by the robotic arm for a
given time, in order to achieve the target avoiding pos-
sible collisions. The trajectory can be expressed either
in the joint space (configuration of all joints) or in the
workspace (configuration of the end-effector) and it con-
sists of a sequence of poses, velocities, or accelerations. In
this work, the trajectory obtained optimizing a number
of conflicting objective functions. Hence, meta-heuristics
are used to determine a compromising optimal planning
in which the solutions comprise trajectories represented
by a curve whose derivatives are continuous to a certain
order (Gasparetto et al., 2015).

In this work, trajectories are computed by evolutionary
algorithms. They produce a set of randomly initiated
individuals to be successively submitted to selection and
variety operators to generate diversity and to hopefully
improve the fitness of part of the population throughout
the generations until a stop criterion is reached.

Each individual in a population represents a trajectory, a
candidate solution to the problem, which is formed by a
set of angular configurations that the manipulator must
take to move from an initial to a final pose (Pires et al.,
2007)):
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where nk is the number of manipulator’s joints, q
(t,T )
i

is angle value at instant t of the ith joint at the T th

generation, with i ∈ [1, · · · , nk], nc is the number of
configurations used to define the trajectory (including the
initial and the final postures), and ∆t is the sampling time
between two consecutive configurations.

The computation of the sequence of poses, as defined
by Eq. (1), can be treated as a minimization problem.
The objective functions can be displacement time, the
linear or angular distances, the sum of speeds, the sum of
accelerations, and the energy consumed in motion by the
manipulator, or a combination of two or more functions.
In this paper, we face a multi-objective problem defined
by two objective functions to be optimized: the Cartesian
velocity function fṗ (Eq. 2) and the joint speed function
f q̇ (Eq. 3), such as:

fṗ =

nc∑
j=3

{d (pj , pj−1)− d (pj−1, pj−2)}2 (2)

f q̇ =

nc∑
j=1

nk∑
i=1

(
q̈

(j∆t,T )
i

)2

(3)

where d(·, ·) is the Cartesian distance between two subse-
quent points (pj) from the end-effector in the workspace,
and q̈i is the acceleration of the ith joint. The function fṗ
(Eq. 2) minimizes changes of the actuator’s speed, while f q̇
(Eq. 3) minimizes changes of the joints’ speed over time.

2.2 Trajectory Planning Problem with Obstacles

In this work, obstacles are represented by spheres in the
robot’s workspace. In order to deal with obstacles in the
environment, this study adopts the technique employed by
Menasri et al. (2015) to detect the occurrences of collisions
of the robot with an obstacle.

Firstly, a sphere of centerO is used to represent an obstacle
and a set of control points {Q1, · · · , Qi, · · · , Qnk

} must be
defined in Cartesian Space as the centers of each joint of
the robotic arm. Next, for each new arm configuration and
for each pair (Qi, Qi+1) of consecutive control points, the
orthogonal projection N of O onto the line (QiQi+1) is
computed. The point N belongs to the segment [QiQi+1]
if −π/2 ≤ θ ≤ π/2 and |Qi+1O| · cos(θ) ≤ |Qi+1Qi|,
where θ is the angle formed by the vectors Qi+1O and
Qi+1Qi. If N belongs to the segment [QiQi+1], then
∆O|N , the closest distance between the current link and
the obstacle center, is calculated. If ∆O|N < δcoll, where
δcoll is a user defined threshold, then we consider there is
a collision (Fig. 1).

The number of poses in a trajectory (individual) that
would collide into an obstacle is then evaluated. This
number of collisions (Ncollision) becomes a penalty for each
objective function (Eq. 2 and 3), as follows:
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Fig. 1. Example of collision detection parameters where Qi

and Qi+1 are two control points, the yellow sphere of
center O represents an obstacle, N is the orthogonal
projection of O onto the line (QiQi+1), and θ is the
angle between Qi+1Qi and Qi+1O

f1 = fṗ ∗ (1 +Ncollision) (4)

f2 = f q̇ ∗ (1 +Ncollision) (5)

3. EVOLUTIONARY ALGORITHMS UNDER STUDY

Five Pareto-based Evolutionary Algorithms are selected
to perform the study: Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II: Deb et al. (2002)), Non-dominated
Sorting Differential Evolution (NSDE: Angira and Babu
(2005)), Strength Pareto Evolutionary Algorithm 2 (SPEA2:
Zitzler et al. (2001)), Generalized Differential Evolution
3 (GDE3: Kukkonen and Lampinen (2005)), and Non-
dominated Sorting Differential Evolution improvement
with Prediction in the Objective Space (OSP-NSDE:
Guerrero-Peña and Araújo (2019)). The Pareto dominance
principle (Deb et al., 2002) is used to assign fitness to
solutions. However, such a principle may not work with
efficacy if a MOEA loses diversity. Thus, a diversity mecha-
nism is used to maintain or insert population variety when
selecting parents or survivors that are equally ranked. The
diversity maintenance in the Pareto algorithm preserves
exploration and tends to avoid concentration of popula-
tion, much exploitation, in several niches of the search
space. Hence, a MOEA simultaneously seeks the fittest
and most spread population.

Algorithms such as NSGA-II, NSDE, and GDE3, employ
the crowding distance diversity mechanism for the selec-
tion of the next-generation population. Other two MOEAs,
SPEA2 and OSP-NSDE use a density estimation tech-
nique and an enhanced archive truncation method, which
prevents boundary solutions from being removed. MOEAs
can also change the variation operators used to generate
offspring. NSGA-II and SPEA2 employ polynomial muta-
tion and SBX crossover. A tournament is made to select
potential parents. In the case of SPEA2, only members of
the external archive participate in the mating selection
process. Moreover, NSDE and GDE3 apply Differential
Evolution (DE) operators. In NSDE, all individuals in
the population are parents. GDE3 establishes rules for
selection, even in the case of comparisons involving in-
feasible solutions. Finally, in OSP-NSDE, the offspring is
generated by DE operators followed by the polynomial mu-
tation. OSP-NSDE also employs an Objective Space Pre-

diction (OSP) strategy to guide population movements.
OSP is strategically triggered when several premises based
on the Approximated Hypervolume metric are satisfied.

Usually, Pareto-based MOEAs are the fastest and simplest
computable approaches. Therefore, the selected algorithms
are expected to find an optimal trajectory in an acceptable
time.

4. SIMULATION SETUP

This section describes the TIAGo manipulator and pa-
rameters setup for the MOEAs under study. The decision-
maker used to choose the optimal trajectory among the
approximated solutions of the Pareto front is presented.
Finally, the metrics used to evaluate the MOEAs, and the
solutions for the robot are shown.

4.1 TIAGo Robot

TIAGo is a robotic platform composed of a mobile base
embedding a 7-DOF robotic arm. Each joint can be con-
trolled in terms of position or velocity, and the angular
values are measured by encoders. Finally, the forward
kinematic model computes the end-effector position as
function of the seven joints values. The forward kinematics
of the TIAGo manipulator can be found in the documen-
tation provided by the Pal Robotics (S.L., 2016).

4.2 Algorithms setup

In this study, an individual for the MOEAs is represented
by Equation (1), seven vectors each one with seven joint
angles, i.e., seven intermediate poses that when added to
the initial and final poses (nc = 7 + 2) form a trajectory.
An individual has a dimension D = (nc − 2) × nk = 49,
where nk = 7 is the number of TIAGo’s arm joints.

All considered MOEAs have a population of 100 indi-
viduals and run for 150, 000 function evaluations (FEs).
NSGA-II, SPEA2, and OSP-NSDE settings include mu-
tation probability of pm = 1/D and distribution index
ηm = 20 for the mutation operator. Canonical rand/1
strategy, with mutation step size F = 0.5 and crossover
rate CR = 0.9 are used for NSDE, GDE3 and OSP-
NSDE. For OSP-NSDE, the variation percentage was set
to λ = 0.2, Hypervolume variation percent was set to
β = 0.9, and the initial forecast horizon was set to p = 50.
The other parameters of the MOEAs were set as in their
cited publications.

4.3 Decision Making

MOEAs produce an approximate Pareto Front (PF), from
which we must choose a single solution (trajectory). Often,
the knee-point in the PF is the chosen solution if the
decision-maker does not have a particular preference.
Thus, the distance to the extreme line knee-point method
is used to select (x∗), the closest solution to a given
reference point, the origin (Liang et al., 2018):

x∗ = min
1≤i≤NP

(d(xi)) | di =
√
f1N

(xi)2 + f2N
(xi)2 (6)

where f1N
e f2N

are the normalized objective functions,
and NP is the number of solutions in PF .
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4.4 Metrics to Assess the Experiments

Average values to assess performance of the MOEAs:

• Machine time assesses the suitability the MOEAs
finding the trajectories on-line. This performance
measure also includes the calculation of the time
spent by the decision-maker;
• The number of individuals at the Pareto Front deter-

mines the representativeness of the algorithm output
sample space;
• Hypervolume (HV) (Zitzler et al., 2007) estimates the

region dominated by the approximated PF from a
reference point (nadir point);
• Spacing (Schott, 1995) calculates the average distance

between individuals on the Pareto Front.

We evaluate the planned trajectory considering the trajec-
tory distance covered. This metric is calculated by linear
interpolation of settings sampled every 100 ms. The metric
value (meters) is equal to the sum between the Euclidean
distances of subsequent positions of the end-effector.

5. EXPERIMENTAL RESULTS

We ran three groups of simulations to validate the per-
formance of the MOEAs: obstacle-free, one-obstacle, and
two-obstacle environments (Fig 3)0. In such MATLAB-
simulated 3D environment, we found the optimal tra-
jectory for each MOEA in each environment. In all
case, the robot configuration started at its rest position
posinit = {0.07, 0, 0, 0, 0, 0, 0} and stoped at the final pos-
ture posend = {2, 0, 0, 0, 0, 0, 0}. The Kruskal-Wallis test
with 99.9% confidence level was run to determine if there
are significant differences between the MOEAs perfor-
mances. Table 1 shows the performance of the algorithms
in terms of the mean values and their standard deviations
The best average results for each case are highlighted. All
MOEAs under comparisons were executed 10 independent
times on a computer with 3.2GHz x 8 CPU, 8GB RAM,
and Ubuntu 16.04 LTS.

Table 1 shows the performance of the algorithms for
the three experiments, considering the Hypervolume and
Spacing metrics, PF size, and the average value of objec-
tive functions. The obtained results suggest that for the
obstacle-free environment, we notice that best Spacing is
obtained by GDE3, while OSP-NSDE reaches the best av-
erage HV. Analyzing the number of solutions obtained by
the compared algorithms, one can see that NSDE finds a
more significant amount of trade-off solutions, while OSP-
NSDE is the worst in this regard. However, this algorithm
reaches the best mean values in the objective functions.
In the results for environments with obstacles, NSDE
obtained the best spacing value and found the highest
number of solutions in the Pareto font. For one-obstacle
environments, OSP-NSDE reached the best HV and the
lowest joint velocity value (f2). For the two-obstacle case,
OSP-NSDE reached the best Cartesian velocity (f1) value.
In summary, the averages of objective function values
suggest that OSP-NSDE has smoother trajectories than
the other MOEAs in most cases. To assess the trajectory
quality for the robot, the best trajectories found by each
algorithm were compared regarding the Cartesian distance
covered by the end-effector and joint distance in time (see

Fig. 2). In the obstacle-free experiment (Fig. 2 a) and d)),
OSP-NSDE converges quicker for the best overall values.
A similar result is obtained for trajectory planning in
environments with two obstacles (Fig. 2 (c, f)). When the
trajectory is designed for one-obstacle environment, we can
observe that OSP-NSDE also yields the shortest Cartesian
distance (Fig. 2 (b)), however, NSGA-II produces the best
result (Fig. 2 (e)) in terms of joint distance. In summary,
OSP-NSDE obtains the best results within the shortest
time (between 50 s and 100 s) for most tests.

6. TRAJECTORY EXECUTION IN A SIMULATOR
AND IN A REAL ROBOT

Ten trajectories were obtained for each experiment with
each tested algorithm. These trajectories were simulated
in robotics simulator Gazebo to verify if they would not
provoke collisions. The simulation reads the sensor data
with a 100 ms sampling rate. The samples are used to
calculate the distance covered by the end-effector (Table
2). During the simulation, each trajectory execution time,
difference between the trajectory final and starting times,
was also measured. For the simulation, the trajectories
were designed to run within 16 seconds and are equally
divided between 8 partial trajectories of 2 seconds each.
The real runtime results of planned routes can be seen in
Table 2. All the execution times were shorter than 16 s
due to the condition of sending the next pose having been
reached before the planned time. For all three experiments,
OSP-NSDE obtained the shortest distance traveled by the
end-effector.

Besides the tests in a simulated prototype, experiments
were performed as a real robot (TIAGo), to verify the
feasibility of applying this type of approach for an actual
robotics. The best trajectory obtained by OSP-NSDE for
the obstacle-free 1 , one-obstacle 2 (see Fig. 4 (a)), and two-
obstacle 3 (see Fig. 4 (b)) cases are shown in videos as the
sequence of TIAGo postures. All videos of the experiments
with TIAGo robot can be found on Youtube.

(a) (b)

Fig. 4. Experiments for TIAGo. a) One-Obstacle Environ-
ment ; b) Two-Obstacles Environment

7. CONCLUSION

Our results suggest that the tested MOEAs are suitable for
offline trajectory planning. OSP-NSDE presented the best
1 Video of the experimentation without obstacles.
2 Video of the experimentation with one obstacle.
3 Video of the experimentation with two obstacles.
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Fig. 2. Convergence analysis of the MOEAs under study for the three experiments. a-c) Cartesian distance (m) vs. Run
Time (s); d-f) Joint distance (rad) vs. Run Time (s).

Table 1. Performance evaluation of the MOEAs chosen for the three experiments, considering
the Hypervolume and Spacing metrics, PF size, and the average value of objective functions.

Experiment 1: Trajectory without obstacle

Algorithms Spacing HV PF Size f1(m
4/s4) f2(rad4/s4)

SPEA2 1.41E+03(6.08E+02) 5.19E+08(3.00E+07) 1.95E+01(1.01E+01) 1.24E+05(5.65E+04) 6.18E+01(1.54E+01)

NSGA-II 4.06E+03(4.48E+03) 5.03E+08(3.02E+07) 1.91E+01(6.30E+00) 1.75E+05(6.41E+04) 6.40E+01(1.52E+01)

NSDE 7.93E+03(3.81E+03) 5.27E+08(1.60E+07) 4.16E+01(1.39E+01) 1.81E+05(4.95E+04) 6.15E+01(1.05E+01)

GDE3 1.53E+04(1.17E+04) 5.21E+08(1.21E+07) 1.31E+01(6.31E+00) 1.73E+05(4.00E+04) 6.30E+01(6.76E+00)

OSP-NSDE 5.66E+03(1.44E+04) 5.66E+08(6.57E+07) 3.20E+00(1.62E+00) 1.70E+04(3.54E+04) 4.13E+01(3.16E+01)

Experiment 2: Trajectory with one obstacle

Algorithms Spacing HV PF Size f1(m
4/s4) f2(rad4/s4)

SPEA2 1.06E+03(1.97E+03) 5.83E+08(3.65E+07) 9.64E+01(7.95E+00) 6.13E+04(2.90E+04) 5.76E+01(1.45E+01)

NSGA-II 5.73E+02(5.11E+02) 6.06E+08(4.79E+07) 9.59E+01(1.16E+01) 4.29E+04(2.93E+04) 5.35E+01(1.73E+01)

NSDE 5.39E+03(2.48E+03) 5.18E+08(4.94E+07) 1.00E+02(0.00E+00) 2.29E+05(4.41E+04) 8.05E+01(1.21E+01)

GDE3 1.75E+03(1.05E+03) 6.12E+08(5.26E+07) 9.46E+01(1.51E+01) 4.75E+04(2.19E+04) 5.50E+01(1.83E+01)

OSP-NSDE 2.03E+03(1.23E+03) 6.25E+08(5.36E+07) 9.27E+01(1.83E+01) 4.60E+04(1.76E+04) 5.03E+01(1.79E+01)

Experiment 3: Trajectory with two obstacles

Algorithms Spacing HV PF Size f1(m
4/s4) f2(rad4/s4)

SPEA2 7.58E+02(3.05E+02) 5.30E+08(1.54E+07) 9.99E+01(3.16E-01) 9.15E+04(1.95E+04) 6.96E+01(1.16E+01)

NSGA-II 9.94E+02(4.38E+02) 5.36E+08(2.28E+07) 9.98E+01(6.32E-01) 7.32E+04(3.63E+04) 6.60E+01(1.49E+01)

NSDE 7.40E+03(2.73E+03) 4.78E+08(1.79E+07) 1.00E+02(0.00E+00) 3.08E+05(9.81E+04) 8.80E+01(1.05E+01)

GDE3 1.62E+03(1.34E+03) 5.55E+08(1.87E+07) 9.79E+01(5.28E+00) 7.07E+04(3.53E+04) 5.97E+01(1.25E+01)

OSP-NSDE 1.85E+03(1.19E+03) 5.45E+08(1.36E+07) 9.66E+01(5.68E+00) 6.76E+04(2.09E+04) 6.34E+01(1.15E+01)

Table 2. Trajectory execution time and Trajectory distance covered in the simulator

Algorithms
Without obstacle With one obstacle With two obstacles

Execution Time Cartesian Distance Execution Time Cartesian Distance Execution Time Cartesian Distance

SPEA2 1.13E+01(2.62E-01) 2.05E+00(2.48E-01) 1.12E+01(1.14E-01) 2.60E+00(9.27E-01) 1.06E+01(8.92E-01) 4.06E+00(1.43E+00)

NSGA-II 1.12E+01(1.80E-01) 2.14E+00(2.97E-01) 1.16E+01(5.39E-01) 3.30E+00(9.84E-01) 1.02E+01(5.24E-01) 3.84E+00(9.78E-01)

NSDE 1.09E+01(1.93E-01) 1.96E+00(1.35E-01) 1.01E+01(2.21E-01) 3.05E+00(8.87E-01) 1.06E+01(7.12E-01) 3.72E+00(1.29E+00)

GDE3 1.09E+01(2.29E-01) 1.93E+00(1.17E-01) 9.89E+00(3.18E-01) 2.95E+00(8.53E-01) 1.05E+01(4.75E-01) 4.11E+00(9.38E-01)

OSP-NSDE1.05E+01(2.65E-01) 1.77E+00(2.43E-01) 9.74E+00(2.22E-01) 1.79E+00(1.12E-01) 1.00E+01(3.12E-01) 2.58E+00(6.97E-01)
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(a) (b) (c)

Fig. 3. Intermediate poses generated by trajectory planning. a) Obstacle-free Environment ; b) One-Obstacle
Environment; c) Two-Obstacle Environment

performance according to the evaluation metrics, including
the response time, due to the acceleration of its con-
vergence caused by the OSP mechanism (Guerrero-Peña
and Araújo (2019)). Even though, all the tested MOEAs
demands execution tome reduction to be employed as a
online planning strategy.
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