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Abstract: This paper studies stability of control systems over a communication network with
spatially correlated fading channels. We consider a multiple-input multiple-output linear time-
invariant discrete-time closed-loop system in which communications are done through multiple
correlated multiplicative channels. Particularly, we provide conditions that relate the stability
of the above networked control system (NCS) to the stability of an auxiliary closed-loop system
that replaces the multiplicative channels by additive noise channels. This provides a simple
framework to analyse NCSs over correlated multiplicative channels since standard linear systems
tools can be used to analyse stability as opposed to consider the multiplicative non-linearity
explicitly in the analysis. Thereby, we extend existing results in the literature that contain
similar conditions for uncorrelated channels only.
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1. INTRODUCTION

Networked control systems (NCSs) are control loops in
which the communication is done via a network (Baillieul
and Antsaklis, 2007), and have received much attention
in the last decade given their practical benefits. However,
in order to study how the network influences the closed-
loop behaviour, the communication constraints that come
with the network have to be taken into account. Several
constraints exist and have been studied in the literature,
such as random delays and packet losses, signal-to-noise
(SNR) ratio constratins, quantization errors, among others
(Baillieul and Antsaklis (2007); Chen and Qiu (2016);
Elia (2005); Maass and Silva (2014)). Here we restrict
our attention to NCS over multiple parallel and correlated
multiplicative channels.

Fading channels, also known as multiplicative channels,
assume there is a time-varying random multiplicative gain
that affects the transmitted signal (Goldsmith, 2005),
(Elia, 2005). In general, these channels are relatively hard
to analyse given the non-linearity imposed by the channel
noise multiplication, and thus the standard analytical tools
from linear systems cannot be directly applied. However,
numerous works can be found in the literature in which
stability and performance of NCSs over fading channels
are studied, see e.g. (Elia, 2005; Maass and Silva, 2014; Qi
et al., 2017; You et al., 2015). In these works, conditions for
stability and achievable performance are obtained, which
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generally depend on the unstable poles, non-minimum
phase zeros, and delays of the plant. However, these results
only apply to uncorrelated fading channels.

In this paper, we propose a framework to study the stabil-
ity of the NCSs over correlated fading channels in terms
of the internal stability of an auxiliary system that re-
places the multiplicative channel by an additive noise. This
framework exploits a second order statistical equivalence
between the original NCS and the auxiliary system. A sim-
ilar statistical equivalence was used in (Maass and Silva,
2014) to obtain optimal performance results on NCSs over
uncorrelated fading channels. Basically, this equivalence
states that the NCS with analogous transmission over
fading channels can be analysed by studying an auxiliary
NCS that contains additive noise channels subject to SNR
constraints. Such a framework facilitates the study of the
original NCS by allowing the use fo standard linear control
systems.

Additive noise channels have been well studied in the
literature (Li et al., 2016; Vargas et al., 2013). Given the
network induced noise enters the system additively, it is
possible to use a set of linear analytical tools to study
its stability and performance. For instance, the authors in
(Li et al., 2016; Vargas et al., 2013) characterise stability
conditions under SNR constraints on the channels. These
works consider that the additive noises are white and un-
correlated with other channels. In (González et al., 2018),
stability of a MIMO system is studied when the noises
are spatially correlated. This result was later extended
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in (Gonzalez et al., 2019) for the case of time-correlated
noises, i.e. coloured noises.

In this work, we extend the statistical equivalence pre-
sented in (Maass and Silva, 2014) for the case in which
the fading channels are correlated between each other. We
obtain conditions such that the first and second order mo-
ments of the original NCS over fading channels are equal
to the first and second order moments of the auxiliary NCS
over additive channels. We use this equivalence to relate
the mean square stability of the NCS over fading chan-
nels to the internal stability of the linear time-invariant
NCS over additive channels. This opens the door to use
results like (González et al., 2018), (Gonzalez et al., 2019)
to further obtain explicit stability conditions or optimal
performance for NCSs over correlated fading channels.

This paper is organised as follows. Section 2 presents the
notation and preliminaries. The problem formulation is
given in Section 3. A statistical analysis of NCSs over
fading and AWN channels is provided in Section 4. The
main results of this paper are presented in Section 5.
Lastly, we draw conclusions in Section 6.

2. NOTATION AND PRELIMINARIES

We denote the expectation operator, Hadamard product,
and spectral radius respectively by E{·}, � and ρ(·). We
say that a linear operator A is stable if ρ(A) < 1. A
positive (semi-definite) definite matrix A is denoted by
A > 0 (A ≥ 0). diag{·} denotes a diagonal matrix.
Given a vector z = (z1, . . . , zn) ∈ Rn, a matrix Dz =
diag{z1, . . . , zn}, and a square matrix M ∈ Rn×n, then
the following holds (Bernstein, 2005), DzMD>z = (zz>)�
M . Let x be a discrete-time stochastic process, and x(k)
the corresponding random variable at time instant k. For
simplicity we define

x̄(k) , x(k)− E {x(k)} .
The mean, covariance matrix, second moment, and auto-
covariance function of x are denoted respectively by µx(k),
Px(k), Qx(k), Rx(k + τ, k), and are defined as follows,

µx(k) , E {x(k)}, Qx(k) , E
{
x(k)x(k)>

}
, Px(k) ,

E
{
x̄(k)x̄(k)>

}
, and Rx(k + τ, k) , E

{
x̄(k + τ)x̄(k)>

}
.

Note that Qx(k) = Px(k) + µx(k)µx(k)>. When Rx(k +
τ, k) = 0 for all τ ∈ Z except for τ = 0, we say that x is a
white process. If, in general, Px(k) is not diagonal for all
k, then we say that x has spatial correlation.

3. SETUP AND PROBLEM FORMULATION

Consider the closed-loop system in Fig. 1.a), where N
is a multiple-input multiple-output linear time-invariant
discrete-time system, d is a vector that contains external
signals, e is a measurement of interest, v corresponds to
the channel input, and w is the channel output.

This type of closed-loop systems can be often found in
the literature, see e.g. (Maass and Silva, 2014; Zhou
et al., 1996), and it is a general way of writing many
control architectures such as the standard one- and two-
degrees of freedom feedback loops. In such scenarios: the
plant, controller, and their interaction are represented
inside system N ; inputs, outputs, and perturbations are

N
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Fig. 1. a) System N closed over a communication channel.
b) Top: Multiplicative noise channel. Bottom: Addi-
tive noise channel.

all contained in the vector d; e denotes a user-defined
performance signal, e.g. tracking error; and the signals that
are being transmitted over the communication network are
contained in vector v (see Fig. 1.a)).

System N is described in state-space by[
x(k + 1)
e(k)
v(k)

]
=

[
A Bd Bw
Ce Dde Dwe

Cv Ddv 0

][
x(k)
d(k)
w(k)

]
, (1)

where k ∈ N0, and x(k) ∈ Rnx denotes the state of system
N . We assume that the initial state x(0) is a random
variable with mean and covariance matrix Px(0). Note that
the 0 element in the above state-space representation is
needed to ensure that there is no algebraic loop inside the
feedback, since the communication channels we consider
have no delays.

Assumption 1. For all k ∈ N0, the input vector d(k) ∈ Rnd

is a stationary white noise sequence with constant mean
µd(k) = µd and constant covariance matrix Pd(k) = Pd.
We also assume that d is not correlated with x(0). �
Remark 1. As foreshadowed in the introduction, we will
use an auxiliary NCS over AWN channels as per Fig. 1.b)
to state our results. Depending on the channel being used
in the closed-loop architecture of Fig. 1.a), the realisation
of the corresponding signals might be different, except
signal d which is the same in both cases. Therefore, we
incorporate the subindex M to refer to signals in (1) when
fading channels are in plance, and the subindex L when
AWN channels are in place. �

3.1 Fading channels

Consider the fading channel in the top of Fig. 1.b) with in-
put vM = [vM1 , . . . , vM`

]>, output wM = [wM1 , . . . , wM`
]>,

and multiplicative noise Θ. We define the multiplicative
channel noise matrix as Θ(k) , diag{θ1(k), . . . , θ`(k)},
with mean Υ(k) , E {Θ(k)} = [µθ1(k), . . . , µθ`(k)]>. The
above definitions correspond to the channel having multi-
ple inputs and outputs.

Assumption 2. We assume that each θi(k), i ∈ {1, . . . , `},
is an i.i.d. process with non-zero mean and correlated
with the other channels θj(k) for i 6= j. This implies

that Υ(k) , Υ is a constant matrix, and that Pθ ,
E
{

(Θ(k)−Υ)(Θ(k)−Υ)>
}

is non-diagonal and constant.
Moreover, we assume that every θi(k) (and thus Θ(k)) is
independent of (xM (0), d(k)). �
Definition 1. The signals wM (k) and vM (k), are con-
nected over a fading channel if and only if the channel
output wM (k) and the channel input vM (k) are related
through wM (k) = Θ(k)vM (k). �
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3.2 AWN channels

The AWN communication channel is depicted in Fig. 1.b),
where vL = [vL1

, . . . , vL`
]> and wL = [wL1

, . . . , wL`
]> are

the input and output of the channel, q = [q1, . . . , q`]
> is

the additive noise vector, and Ψ ∈ R`×` is a deterministic
and constant matrix acting as a channel gain.

Assumption 3. Each qi(k), i ∈ {1, . . . , `}, is a white noise
sequence correlated with qj(k) for i 6= j. Furthermore, we
assume that q(k) is not correlated with (xL(0), d(k)). �
Definition 2. The signals wL(k) and vL(k) are related
through an AWN channel with constant gain if and only if
wL(k) and vL(k) are related via wL(k) = q(k) + ΨvL(k).�

4. STATISTICS OF THE NCS

The goal of this section is to provide expressions for the
first and second order moments of the state of system N ,
and also the performance measurement eM (k), when the
system uses the channels models defined above to transmit
over the network. The proof of the results presented here
are in the appendix.

4.1 Statistics over fading channels

When fading channels are in place, the moments of the
plant signals can be written as follows.

Lemma 1. Define the constant matrices ∆1 , A+BwΥCv
and ∆2 , Bd+BwΥDdv, and suppose Assumptions 1 and
2 hold. Then, the mean, covariance matrix, and covariance
function of the state xM of system N are given by

µxM
(k + 1) = ∆1µxM

(k) + ∆2µd, (2)

PxM
(k + 1) = ∆1PxM

(k)∆>1 + ∆2Pd∆
>
2 +BwH(k)B>w ,

(3)

RxM
(k + τ, k) = ∆τ

1PxM
(k), (4)

where

H(k) = Pθ �
(
CvPxM

(k)C>v +DdvPdD
>
dv

+ (CvµxM
(k) +Ddvµd) (CvµxM

(k) +Ddvµd)
>
)
. (5)

Lemma 1 characterises the first and second moments of the
state xM (k) recursively. We emphasize that the recursion
for the covariance matrix involves the Hadamard product
between the noise variance and the second moment of the
channel input, making this expression non-linear.

Given that system N is linear, the moments of the other
signals in the loop can be written as a function of the
state moments. We can generalise this assertion via the
performance measurement eM (k).

Lemma 2. Define the constant matrices ∆3 , Ce +
DweΥCv and ∆4 , Dde+DweΥDdv, and suppose Assump-
tions 1 and 2 hold. Then, the mean, covariance matrix, and
covariance function of signal eM (k) are given by

µeM (k) = ∆3µxM
(k) + ∆4µd, (6)

PeM (k) = ∆3PxM
(k)∆>3 + ∆4Pd∆

>
4

+DweH(k)D>we, (7)

ReM (k + τ, k) = ∆3∆τ
1PxM

(k)∆>3

+ ∆3∆τ−1
1 [∆2Pd∆

>
4 +BwH(k)D>we], (8)

where PxM
(k) and H(k) are given in Lemma 1.

Lemma 2 characterises the moments of the signal eM (k) as
a function of the state and input perturbation moments.
It is important to recall that eM (k) is an arbitrary per-
formance measurement, and thus this result allows us to
compute the moments of any linear combination of the
state and input.

4.2 Statistics over AWN channels

On the other hand, when the information is sent through
the AWN channels defined in Section 3 the first and second
order moments of the plant signals are given below.

Lemma 3. Define constant matrices Λ1 , A + BwΨCv,
Λ2 , Bd +BwΨDdv, Λ3 , Ce +DweΨCv and Λ4 , Dde +
DweΨCv, and suppose Assumptions 1 and 3 hold. Then,
the mean, covariance matrix, and covariance function of
the state xL of system N are given by

µxL
(k + 1) = Λ1µxL

(k) + Λ2µd +Bwµq(k), (9)

PxL
(k + 1) = Λ1PxL

(k)Λ>1 + Λ2PdΛ
>
2 +BwPq(k)B>w ,

(10)

RxL
(k + τ, k) = Λτ1PxL

(k). (11)

Additionally, the mean, covariance matrix, and covariance
function of the performance signal eL, are given by

µeL(k) = Λ3µxL
(k) + Λ4µd +Dweµq(k), (12)

PeL(k) = Λ3PxL
(k)Λ>3 + ∆4PdΛ

>
4 +DwePq(k)D>we, (13)

ReL(k + τ, k) = Λ3Λτ1PxL
(k)Λ>3

+ Λ3Λτ−11 [Λ2PdΛ
>
4 +BwPq(k)D>we].

(14)

Lemma 3 characterises the moments of the state xL(k)
recursively. As opposed to the fading channel case (see
(3)), the covariance matrix does satisfy a linearity prop-
erty with respect to the noise and state covariance. This
considerably eases the analysis of this type of systems
compared to those where multiplicative channels are in
place. Lemma 3 also presents expressions for the moments
of the performance measurement as linear combinations of
the state, channel noise, and input.

5. MAIN RESULTS

5.1 Statistical equivalence

In this section, we present the statistical equivalence for
which we relate the moment recursions in each case of
Section 4.

Theorem 1. Suppose Assumptions 1, 2, and 3 hold, and
further assume that µxM

(0) = µxL
(0), PxM

(0) = PxL
(0),

and Ψ = Υ. If the noise q is such that µq(k) = 0 for all
k ∈ N0, and such that

Pq(k) =Pθ �
(
CvPxL

(k)C>v +DdvPdD
>
dv (15)

+ (CvµxL
(k) +Ddvµd) (CvµxL

(k) +Ddvµd)
>
)
,

then, for every time instant k ∈ N0, the following holds.

µαM
(k) = µαL

(k),

PαM
(k) = PαL

(k),

RαM
(k + τ, k) = RαL

(k + τ, k),

where α ∈ {x, e}.
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Proof. Given that Ψ = Υ, then by construction Λi = ∆i,
for i = {1, 2, 3, 4}. This implies that, when we compare the
recursion (2) with (9), it is clear that if µq(k) = 0 for all
k ∈ N0 and µxM

(0) = µxL
(0), then the state means will

evolve similarly. Consequently, the same will happen with
the performance signals given in (6) and (12).

For the state covariances, we first compare (3) with (10)
and we note that, given Λi = ∆i, for i = {1, 2, 3, 4}, and
PxM

(0) = PxL
(0), the state covariance matrices will evolve

identically if Pq(k) = H(k), where H(k) is defined in (5).
In that case, we have that PxM

(k) = PxL
(k), and thus we

can use such equality and replace PxM
(k) in (5) by PxL

(k),
leading to (15). If such condition holds, then from (7) and
(13) we get PeM (k) = PeL(k).

The same above requirements suffice for the auto-covariance
functions of the state (4) and (11) to be identical, since this
holds if PxM

(k) = PxL
(k) and Λ1 = ∆1. Similarly, these

conditions guarantee that the auto-covariance functions
for the performance signal are identical, which is concluded
directly by comparing (8) with (14). �

Theorem 1 provides conditions for which NCSs closed over
correlated fading channels have the same second order
moments as NCSs closed over correlated AWN channels,
for both the state and performance signal. Thereby, this
extend the results presented in (Maass and Silva, 2014)
to the case in which the fading channels are correlated
between each other. This result provides a tool to tackle a
broader class of problems related to NCSs over correlated
fading channels since it allows to write the original problem
as an equivalent problem but using an auxiliary noise
variable that satisfies the requirements given in (15) for
the equivalence to hold.

To use the equivalence in practice, instead of studying the
original NCS over fading channel, one creates the auxiliary
system and sets µxL

(0)← µxM
(0), PxL

(0)← PxM
(0),Ψ←

Υ, and picks the additive noise such that µq(k) = 0 for
all k ∈ N0 and such that its variance is equal to (15).
Then, any analysis involving the second order moments of
the original system can be done using the auxiliary setup
under the aforementioned constraints.

5.2 Stability

The equivalence result from Theorem 1 also allows us to
study stability of NCSs over correlated fading channels by
studying the equivalence when k → ∞, which is what we
do in this section. Particularly, we relate the mean square
stability of the NCS with fading channels with the internal
stability of the NCS with AWN channels.

Theorem 2. Consider the system in Fig. 1, under Assump-
tions 1, 2, and 3. Then, the NCS of Fig. 1 when fading
channels are in place is MSS if and only if

(i) the LTI system of Fig. 1 when AWN channels are in
place is internally stable; and

(ii) there exists a finite and positive semi-definite choice
for the auxiliary noise covariance matrix Pq such that
Pq = Pθ� (PvL +µvLµ

>
vL), where PvL = CvPxL

C>v +

DdvPdD
>
dv and µvL = CvµxL

+Ddvµd.

Proof. (⇒): If the NCS of Fig. 1 with fading channels in
place is MSS, then by using Lemma 1 in (Maass and Silva,
2014) 1 together with Lemma 4 (see appendix) and (3),
we can conclude that

PxM
= ∆1PxM

∆>1 + ∆2Pd∆
>
2

+Bw
(
Pθ � [CvPxM

C>v ]
)
B>w

+Bw
(
Pθ � [DdvPdD

>
dv + µvMµ

>
vM ]
)
B>w , (16)

admits a unique solution which is also positive semi-
definite (see (Styan, 1973)), where µvM = CvµxM

+Ddvµd.
In addition, Lemma 1 in (Maass and Silva, 2014) also
implies that there exists M > 0 such that

M −∆1M∆>1 −Bw(Pθ � (CvMC>v ))B>w > 0. (17)

From (17) we conclude that there exists M > 0 such that
M −∆1M∆>1 > 0, which in turn implies that ρ(∆1) < 1.
Consequently, the NCS in Fig. 1 with AWN channels in
place is internally stable.

Since ∆1 is stable, we have that

PxL
= ∆1PxL

∆>1 + ∆2Pd∆
>
2 +BwPqB

>
w (18)

admits a unique positive semi-definite solution for all
positive semi-definite Pd and Pq. Particularly, (18) admits
a solution when we choose

Pq = Pθ � (CvPxM
C>v +DdvPdD

>
dv + µvMµ

>
vM ),

where PxM
satisfies (16). Then, (18) can be written as

PxL
= ∆1PxL

∆>1 +Bw(Pθ � (CvPxM
C>v ))B>w

+ ∆2Pd∆
>
2 +Bw(Pθ � (DdvPdD

>
dv + µvMµ

>
vM ))B>w . (19)

Since both (16) and (19) admit unique solutions, we
conclude that PxM

= PxL
, and that there exists Pq > 0

such that Pq = Pθ�(PvL +µvLµ
>
vL), completing the proof.

(⇐): If the NCS in Fig. 1 with AWN channels in place is
internally stable and there exists a choice for Pq = Pθ �
(PvL +µvLµ

>
vL), then Pq = Pθ� (CvPxL

C>v +DdvPdD
>
dv +

µvLµ
>
vL), where PxL

satisfies (18). In addition, there exists
P > 0 such that

P −∆1P∆>1 > 0. (20)

With Observation 21.6 in (Zhou, 1996), we write (18) as

PxL
=

∞∑
i=0

∆i
1(∆2Pd∆

>
2 +BwPqB

>
w )∆i>

1 . (21)

Therefore,

Pq = Pθ �

[
Cv

( ∞∑
i=0

∆i
1∆2Pd∆

>
2 ∆i>

1 +Q

)
C>v +B+

]
> Pθ �

[
CvQC

>
v

]
, (22)

where B+ , DdvPdD
>
dv + µvµ

>
v and

Q ,
∞∑
i=0

∆i
1BwPqB

>
w∆i>

1 ⇐⇒ Q = ∆1Q∆>1 +BwPqB
>
w .

From (22) we conclude that there exists ε > 0 such that

Pq > Pθ �
[
Cv(Q+ εP )C>v

]
,

where P satisfies (20). We can thus construct the following
inequality

1 The operator is defined by A(Px) , ∆1Px∆>
1 + Bw(Pθ �

(CvPxC>
v ))B>

w
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A(Q+ εP ) ≤ ∆1(Q+ εP )∆>1 +BwPqB
>
w

= Q+ ε∆1P∆>1
< Q+ εP.

We thus conclude that there exists M = Q+ εP > 0 that
satisfies M−A(M) > 0. Therefore, the NCS in Fig. 1 with
fading channels in place is MSS, concluding the proof. �

Theorem 2 shows that the mean square convergence of
the moment of the NCS over fading channels is guaranteed
when the alternative LTI setup is internally stable, and the
stationary constraint for the noise variance is met. This
result is obtained exploiting the fact that the equivalence
is valid also when k →∞.

Remark 2. The result in Theorem 2 is really convenient
to further obtain explicit conditions for stability or per-
formance of an NCS over correlated fading channels. For
instance, similar results have been used for uncorrelated
fading channels in Maass and Silva (2014) to obtain ex-
plicit stability and performance conditions in terms of
unstable poles/zeros and channels statistics. These type
of results have been also popular in uncorrelated channels
with packet losses, see e.g. Silva and Pulgar (2013) for
stability and performance, and Silva and Solis (2013) for
estimation.

6. CONCLUSION

We studied NCSs communicating over spatially correlated
fading channels. Particularly, we provided a statistical
equivalence that relates the moments of the NCS with
fading channels, to an auxiliary NCS that communicates
over AWN channels. This equivalence extends the existing
results in the literature for uncorrelated fading channels. In
addition, we provided necessary and sufficient conditions
that relate the MSS stability of the original system to the
internal stability of the auxiliary system.

Appendix A. PROOF OF LEMMA 1

From (1), the state of system N can be written as

xM (k + 1) = ∆1xM (k) + ∆2d(k) +BwΘ̄(k)vM (k),
(A.1)

where ∆1 = A + BwΥCv and ∆2 = Bd + BwΥDdv are
constant matrices. Moreover, given the linearity of the
expectation operator, we know that

µxM
(k + 1) = ∆1µxM

(k) + ∆2µd +BwE
{

Θ̄(k)vM (k)
}
.

(A.2)

Given that Θ(k) is independent of vM (k), we get
E
{

Θ̄(k)vM (k)
}

= E
{

Θ̄(k)
}
E {vM (k)} = 0, which proves

expression (2). To prove the expression for PxM
, we use

(2) and (A.1) to conclude that

x̄M (k + 1) = ∆1x̄M (k) + ∆2d̄(k) +BwΘ̄(k)vM (k).
(A.3)

We proceed by using the definition PxM
(k + 1) =

E
{
x̄M (k + 1)x̄M (k + 1)>

}
together with (A.3). This com-

putation generates a number of cross terms which will be
zero given Assumptions 1 and 2. In fact, given that d(k) is
a white noise process independent of Θ(k), ∀k ∈ N0, and
not correlated with the initial condition, we conclude that

E
{
x̄M (k)d̄(k)

}
= 0. Moreover, given Assumption 2, and

emphasizing that E
{

Θ̄(k)
}

= 0, we have that

E
{

Θ̄(k)vM (k)x̄M (k)>
}

= 0, (A.4)

E
{

Θ̄(k)vM (k)d̄(k)>
}

= 0. (A.5)

Therefore, we conclude that

PxM
(k + 1) = ∆1PxM

(k)∆>1 + ∆2Pd∆
>
2

+BwE
{

Θ̄(k)E
{
vM (k)vM (k)>

}
Θ̄(k)>

}
B>w

= ∆1PxM
(k)∆>1 + ∆2Pd∆

>
2

+Bw
(
Pθ(k)� [PvM (k) + µvM (k)µvM (k)>]

)
B>w ,

where the mean of vM (k) is given by

µvM (k) = E {CvxM (k) +Ddvd(k)} = CvµxM
(k) +Ddvµd,

and its corresponding covariance matrix given by

PvM (k) = E
{
v̄M (k)v̄M (k)>

}
= E

{
(Cvx̄M (k) +Ddv v̄M (k))

× (Cvx̄M (k) +Ddv v̄M (k))
>
}

= CvPxM
(k)C>v +DdvPdD

>
dv. (A.6)

Then, by defining H(k) , PvM (k) + µvM (k)µvM (k)> and
substituting PvM (k) and µvM (k) we prove (3) and (5).

On the other hand, by using (A.3) and the definition of
the covariance function, we get

RxM
(k + τ + 1, k) =E

{
x̄M (k + τ + 1)x̄M (k)>

}
=E{[∆1x̄M (k + τ) + ∆2d̄(k + τ)

+BwΘ̄(k + τ)vM (k + τ)]x̄M (k)>}
=∆1RxM

(k + τ, k)

=∆τ+1
1 PxM

(k) (A.7)

where we used the fact that E
{
d̄(k + τ)x̄M (k)>

}
= 0, and

that E
{

Θ̄(k + τ)vM (k + τ)x̄M (k)>
}

= 0.

Appendix B. PROOF OF LEMMA 2

We can write eM (k) as

eM (k) = ∆3xM (k) + ∆4d(k) +DweΘ̄(k)vM (k), (B.1)

with ∆3 = Ce + DweΥCv and ∆4 = Dde + DweΥDdv.
Applying the expectation operator in (B.1), and by noting
that E

{
Θ̄(k)vM (k)

}
= 0, we immediately get (6). In order

to compute the covariance matrix PeM (k), we use (B.1)
and (6) to get

ēM (k) = ∆3x̄M (k) + ∆4d̄(k) +DweΘ̄(k)vM (k). (B.2)

It is clear that ēM (k) in (B.2) has the same structure of
x̄M (k + 1) in (A.3), in which the only difference is given
by the multiplying matrices. The above implies that, in
order to compute PeM (k), we can use the same procedure
and properties utilised to obtain PxM

(k + 1) in the proof
of Lemma 1, concluding the proof of (7).

On the other hand, given Assumptions 1 and 2, we have
that

ReM (k + τ, k) =E
{
ēM (k + τ)ēM (k)>

}
=E
{[

∆3x̄M (k + τ) + ∆4d̄(k + τ)

+DweΘ̄(k + τ)vM (k + τ)
]
ēM (k)>

}
=∆3E

{
x̄M (k + τ)ēM (k)>

}
. (B.3)
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Moreover, using (A.3) recursively, we can write

x̄M (k + τ) =∆τ
1 x̄M (k) +

τ∑
i=1

∆i−1
1 ∆2d̄(k + τ − i)

+

τ∑
i=1

∆i−1
1 BwΘ̄(k + τ − i)vM (k + τ − i).

(B.4)

We now use (B.4) and (B.2) to expand the product inside
the expectation. This procedure contains several cross
product terms which will be zero given Assumptions 1 and
2. Therefore, we get

ReM (k + τ, k) = ∆3E
{
x̄M (k + τ)ēM (k)>

}
= ∆3E

{
∆τ

1 x̄M (k)x̄M (k)>∆>3
}

+ ∆3E
{

∆τ−1
1 ∆2d̄(k)d̄(k)>∆>4

}
+ ∆3E

{
∆τ−1

1 BwΘ̄(k)vM (k)vM (k)>Θ̄(k)>D>we
}
,

from which we prove (8), completing the proof.

Appendix C. PROOF OF LEMMA 3

We re-write the state xL(k + 1) in (1) by including the
AWN channel dynamics and get

xL(k + 1) = Λ1xL(k) + Λ2d(k) +Bwq(k). (C.1)

We then apply the expectation operator to (C.1) and get

µxL
(k + 1) = Λ1µx(k) + Λ2µd +Bwµq(k). (C.2)

Moreover, from (C.1) and (C.2) we have that

x̄L(k + 1) = Λ1x̄L(k) + Λ2d̄(k) +Bw q̄(k), (C.3)

Consequently, the covariance matrix can be computed as

PxL
(k + 1) = Λ1PxL

(k)Λ>1 +BwPdB
>
w

+ Λ2Pq(k)Λ>2 , (C.4)

where we exploited the fact that, given Assumptions 1
and 3, E

{
x̄(k)q̄L(k)>

}
= 0,E

{
x̄(k)d̄(k)>

}
= 0, and

E
{
q̄(k)d̄(k)>

}
= 0. Lastly, by using the definition of

covariance function together with (C.3), we have that

RxL
(k + τ + 1, k) = Λτ1PxL

(k), (C.5)

where we used the fact that, for all τ > 0,
E
{
d̄(k + τ)x̄L(k)>

}
= 0, and E

{
q̄(k + τ)x̄L(k)>

}
= 0.

On the other hand, since the signal eL is a linear combina-
tion of the state, the result for eL follows directly from the
results for the state xL, and thus the details are omitted
for brevity.

Appendix D. TECHNICAL RESULT

Lemma 4. Define the operator T (A) , MAMT + L(P �
[NANT ])LT , where A,M,L, P, and N are matrices of
appropriate dimensions, and P ≥ 0. Then, T (·) is a
monotonic linear operator.

Proof. Let α, β ∈ R, then linearity follows from

T (αA+ βB) = M(αA+ βB)MT

+ L(P � [N(αA+ βB)NT ])LT

= αMAMT + βMBMT

+ L(P � [αNANT ])LT + L(P � [βNBNT ])LT

= αT (A) + βT (B),

where we used the fact that (αA) � B = α(A � B)
(Bernstein, 2005). To show monotonicity we let X ≥ Y

and show that T (X) ≥ T (Y ). Given that X − Y ≥ 0, by
using the fact that the Hadamard product of two positive
semi-definite matrices is also positive semi-definite (see
(Styan, 1973)), we get T (X − Y ) ≥ 0. The proof is then
complete by linearity of T (·). �
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