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Abstract: It is quite difficult to imitate the motion of human arms using non-humanoid robots
due to their dissimilar embodiments (degree-of-freedom, body morphology, and constraints).
However, in most cases of the robotic imitation, the human operator and the robot would not
share the same kinematic configuration. This paper addresses the motion imitation problem
between the human arm and an industrial robot, where a commonly-used UR5 robot is
considered. The motion of the human arm is obtained by an inertial motion capture system,
and then the captured motion is reproduced using the UR5 embodiment. A virtual-joint-
based approach is proposed to facilitate the fast and intuitive kinematics mapping between
the human arm and the UR5 robot, leading to a robotic imitation system that can imitate
the tip location and configuration of the human arm simultaneously. The proposed approach is
verified experimentally on a real UR5 robot and compared with classic Cartesian-space-based
mapping approach and joint-space-based approach.

Keywords: Robotic imitation, kinematics mapping, dissimilar embodiment, programming by
demonstration, motion similarity.

1. INTRODUCTION

Robotic imitation is an effective tool in robotic program-
ming and teleoperation Wang et al. (2020); Wang et al.
(2019a,b). Robots can learn from the demonstration of
human operators or other robots, which is often referred
to learning by imitation or programming by demonstra-
tion Alissandrakis et al. (2007), Argall et al. (2009), to
avoid intricate code programming. Also, programming by
demonstration is more intuitive such that it can promote
natural and efficient knowledge transfer from human to
robots or between robots.

One of key challenges in robotic imitation is kinematics
mapping Xiaojun Zhao et al. (2004), especially across
dissimilar bodies. Kinematics mapping is the process of
transforming the captured motion of the demonstrator
into the imitators own capacity Nehaniv and Dautenhahn
(2000). Many existing robotic imitation systems employed
humanoid robots Calinon and Billard (2007), Lin et al.
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(2014)), which have similar bodies with their demonstra-
tors, such as the human arm, so that kinematics map-
ping can be directly implemented by mapping the joint
states from the demonstrator to the imitator. However,
most of the robots may have different embodiments from
humans’, including industrial robots, space robots and
some humanoid robots. Dissimilar embodiments result in
great challenges in terms of kinematics mapping. Li et al.
(2017) fused the human motion information captured by
the Kinect and inertial measurement device, and then re-
produced the motion using the humanoid Baxter Research
Robot. Kormushev et al. (2011) used a free-standing hu-
manoid robot to imitate the whole bodily motion of hu-
man beings. A simplified geometric approach Shahverdi
and Masouleh (2016) was developed to solve the inverse
kinematic problem of the upper-body of NAO robots. A
whole-body imitation system was developed in Zhang et al.
(2016) by fitting corresponding eight kinematic chains
between the NAO robot and human body. Suleiman et al.
(2008) proposed an optimization framework to generate
the upper body motion of humanoid robots from human
captured motions, taking the humanoid physical capabili-
ties into account. A robotic imitation system using a small-
size humanoid robot–Darwin-OP was developed in Lee
et al. (2012). Hwang et al. (2014) developed a humanoid
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robot imitation system, in which the neural-network-based
inverse kinematics (IK) was utilized to reduce the compu-
tation time and improve the tracking accuracy. Besides the
humanoid robots, there are also researches on the imitation
of industrial robots, for example, the demonstration in
robotic assembly Zhu and Hu (2018). Laguillaumie et al.
(2016) proposed an integrated approach to the problem
of reproducing a human hand or tool motion task with a
robot. Jha et al. (2017) proposed a simplified approach of
imitation learning for an industrial robot, realized an end-
effector trajectory planning, with considering the features
of the human arm kinematic model.

The main contribution of this paper is the development
of an on-line imitation system for the human arm and an
industrial robot (UR5), aiming at location of the human
wrist and imitating the configuration of the human arm.
The motion of human arm is obtained with an inertial
motion capture system, and then the captured motion
is reproduced by the UR5 robot. A virtual-joint-based
method is applied to realize fast and intuitive kinematics
mapping between the human arm and UR5. Experiments
are conducted on a UR5 robot and the performance of the
proposed kinematics mapping approach is compared with
the classic Cartesian-space-based mapping approach and
joint-space-based approach.

2. INERTIAL MOTION CAPTURE SYSTEM

The modular perception neuron system is used to cap-
ture the human motion in our research. It generates the
Biovision Hierarchy (BVH) data, which records the hu-
man pose as a nested-structure of parent-joints and child-
joints, containing information that specifies the location of
the skeletal joint relative to its parent-joint. The upper-
limb of human beings mainly consists of the shoulder
complex, the elbow complex and the wrist joint Gopura
and Kiguchi (2009), whose motions are shown in Fig. 1.
Basically, the shoulder joint allows 3 DOFs motions, i.e.,
shoulder abduction/adduction, shoulder flexion/extension
and internal/external rotation. The elbow complex allows
2 DOFs motions, i.e., elbow flexion/extension and supina-
tion/pronation. The wrist joint allows 2 DOFs motions,
i.e., wrist flexion/extension and radial/ulnar deviation. In
total, the human upper-limb can be modeled as a 7-DOF
structure.

To facilitate further use of human data, the Shoulder-
frame, Elbow-frame and Wrist-frame are attached to the
human arm in Fig. 2. The shoulder frame moves with
the shoulder motion, the elbow frame with the elbow
flexion/extension and the wrist frame with the elbow flex-
ion/extension, wrist flexion/extension and radial/ulnar
deviation. In this way, the motion of the human arm
can be represented by the displacement and orientation
of these frames, which can be obtained via the relative
location specifications in BVH data. l1 and l2 are the
length of the human upper-arm and forearm, respectively.
The states of the human arm can be represented as SD =[
θD1 θD2 θD3 θD4 θD5 θD6 θD7

]T
.

3. KINEMATICS OF THE UR5 ROBOT

An UR5 robot is used as the imitator of the human
arm with 6 links Kufieta (2014). In order to obtain the

relation between cascade links, the Denavit-Hartenberg
(DH) convention is adopted, where the states of UR5 are

expressed as SI =
[
θI1 θ

I
2 θ

I
3 θ

I
4 θ

I
5 θ

I
6

]T
. The UR5 robot

is mounted on a metal holder and the orientation of the
base link-frame of the UR5 is shown in Fig. 3. The roll,
pitch and yaw (RPY) Euler-angle from the world frame
to the base link-frame of the UR5 is (π/2, 0, θm), where
θm is an optimization variable to enhance the imitation
performance, which will be explained in the next section.

The initial configuration is set as 0SI = [0, π, 0, 0, π2 , 0]
T

.

4. VIRTUAL-JOINT-BASED KINEMATICS MAPPING

4.1 General Idea

It is noted that the embodiments of human arm and the
UR5 robot are dissimilar, leading to challenges in the kine-
matics mapping process. To be specific, the human arm
has 7 DOFs while a UR5 robot has 6 DOFs. Furthermore,
with different body morphology, it is difficult to find a
satisfactory kinematics mapping solution even though one
of the DOFs of human arm is ignored.

A virtual-joint-based approach is proposed for the first
time in our previous work Chen et al. (2020) to tackle
the kinematics mapping across dissimilar embodiments.
Firstly, the DOFs of the demonstrator (human arm) and
the imitator (UR5 robot) are divided into the same number
of groups. A set of DOFs is called one virtual joint, and
a virtual joint of the demonstrator and the correspond-
ing one of the imitator form a virtual joint pair. Then
metrics of motion similarity can be defined at the virtual-
joint-level. It means that diverse types of metrics can be
employed to measure the similarities between the virtual
joints in one pair. And the kinematics mapping solution
can be found by minimizing the metrics for all virtual joint
pairs. the method is proposed as a general frame of kine-
matics mapping between robots with similar/dissimilar
configurations. It should be noted that the key of the
method is the virtual joint. With different design of the
virtual joint, the method can be applied in different cases.

In the developed system, the DOFs of the human arm and
the UR5 are divided into three groups respectively.

SD =
[
SD1

T
SD2

T
SD3

T
]T

(1)

where SD1 =
[
θD1 θD2 θD3

]T
, SD2 =

[
θD4
]T

, and SD3 =[
θD5 θD6 θD7

]T
.

SI =
[
SI1

T
SI2

T
SI3

T
]T

(2)

where SI1 =
[
θI1 θ

I
2

]T
, SI2 =

[
θI3
]T

, and SI3 =[
θI4 θ

I
5 θ

I
6

]T
.

Consequently, three virtual joint pairs are formed. Then
metrics of motion similarity can be defined. As pictured
in Fig. 4, free vector vlink2 is considered from the origin of
the frame1 to that of the frame2 of the UR5, vlink3 from
the frame2 to the frame3, vupper−arm from the Shoulder-
frame to the Elbow-frame, and vforearm from the Elbow-
frame frame to the Wrist-frame. θe is the angle down from
vlink2 to vlink3, and θD4 is the angle down from vupper−arm
to vforearm. The desired global performance is that vlink2
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Fig. 1. Motions of the human arm.

Fig. 2. Frames on the human arm.

Fig. 3. Initial configuration.

tracks the direction of the human upper-arm, vlink3 tracks
the direction of the human forearm and the last three links
of the UR5 robot perform a bit like a trans-formative hand,
moving with the rotation of the human wrist. To achieve
the above performance, three metrics are employed in the
following part.

For the first virtual joint pair, the metric used is presented
as follows

M1 = arccos

(
vlink2 · vupper−arm
|vlink2||vupper−arm|

)
(3)

where arccos() is the arc-cosine function that ranges from
0 to π.

For the second virtual joint pair, the joint-level metric is
used

M2 = ||θe − θD4 ||2 (4)

θD4 = arccos

(
vupper−arm · vforearm
|vupper−arm||vforearm|

)
(5)

Fig. 4. Illustration of the metrics used in the first and
second virtual joint pairs.

For the third virtual joint pair, the rotation of the frame6
with respect to the frame3 of the UR5 robot is expected
to be equal to the rotation of the wrist frame with respect
to elbow frame (as shown in Fig. 5). The metric used is
presented as

M3 = ||RcRElbowWrist(Rc)
−1 −RFrame3Frame6||2 (6)

where RElbowWrist represents the orientation of the wrist frame
with respect to the elbow frame, RFrame6Frame3 represents the
orientation of the frame6 of the UR5 robot with respect
to its frame3, and

Rc =

[
0 1 0
1 0 0
0 0 −1

]
(7)

4.2 Computational Procedure

(1) For virtual joint pair1 and the determination of θm

The goal of this step is to obtain the desired joint angles
θI1 and θI2 by minimizing the metric (3) and to determine
θm.

A new frame, Joint1-frame, whose direction always parallel
to those of the base-link-frame, is attached to the origin of
the frame1. Then in the initial configuration of the UR5
robot, the locations of these points in the Joint1-frame are
shown in Fig. 6(a). The desired joint angles θI1 and θI2 can
be obtained as follows:

θI1 = 0θI1 − ∠AOC = −∠AOC (8)
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Fig. 5. Illustration of the metric used in the third virtual
joint pair.

θI2 = 0θI2 +
π

2
− ∠POD =

3π

2
− ∠POD (9)

where ∠POD = arccos
(

z·
−−→
OP

|z||
−−→
OP |

)
, ∠AOC = arccos

(
y·
−−→
OA

|y||
−−→
OA|

)
,

−→
OA =

−−→
OP × z,

−−→
OP = vlink2, z = [0 0 1]

T
, y = [0 1 0]

T
.

Fig. 6. Illustration of the geometric relationship for first
virtual joint pair.

Though the solutions (8)-(9) can bring the metric (3) to
zero, it cannot reproduce the shoulder internal/external
rotation in the UR5 robot. The underlying cause lies
in one less DOF in the first virtual joint of the UR5
robot than that of the human arm. Ignoring the shoulder
internal/external rotation will lead to remarkable tracking
errors in the location of the human wrist. To solve this
problem, (1) the human operator is suggested to avoid
the shoulder internal/external rotation; (2) a proper θm
should be chosen to make the rotation axis of the elbow
flexion/extension motion parallel to that of the joint 3 of
UR5 as nearly as possible when the human arm moves in
its work-space. We will show how to determine θm in the
following parts.

According to the solutions (8)-(9), the rotation axis of the
elbow flexion/extension would parallel to that of the joint 3

of the UR5 when vlink2 moves in the x-y plane of the Joint1
frame (as shown in Fig. 7(a)), while those two axes would
be vertical to each other when vlink2 moves in the y-z plane
(as shown in Fig. 7(b)). Consequently, it is preferable that
vlink2, which follows the direction of vupper−arm, moves
near the x-y plane of Joint1 frame when the human arm
moves in its workspace. As a result, θm is chosen as π/4
according to the main range of human arms motion, as
shown in Fig. 7(c).

(2) For virtual joint pair2. The desired joint angle θI3 can
be obtained directly with the following equation,

θI3 = 0θI3 − θe = −θD4 (10)

(3) For virtual joint pair3. According to rotation order of
the last three joints of the UR5 robot, RElbowWrist has to be
converted to the intrinsic X-Y-Z Euler angle (αW , βW , γW )
so that it can be executed by the UR5 robot. Then the
desired joint angles θI4 , θI5 and θI6 can be obtained as:

θI4 = 0θI4 + αW = αW (11)

θI5 = 0θI5 + βW = π/2 + βW (12)

θI6 = 0θI6 + γW = γW (13)

5. EXPERIMENTS

5.1 Experiment settings

System composition. The imitation system mainly con-
sists of the human operator, the Perception Neuron mo-
tion capture system, kinematics mapping module and the
UR5 robot, as is shown in Fig. 8. Communications among
the last three modules are realized through ROS (Robot
Operating System) framework.

Parameters settings. The Perception Neuron motion
capture system maps the human arms motion to the
motion of an avatar and generates the BVH data files.
In the experiment, the length of the upper-arm of the
avatar is set as l1 = 0.7 |a2| = 297.5mm, and the length
of the forearm is set as l2 = 0.7 |a3| = 274.6mm. The
velocity limit is set to 3.15 rad/s for every joint of the
robot. The target states for the UR5 robot that violate
the joint velocity limit would be abandoned.

System input and collected data. The motion of hu-
man arms can be roughly divided into two modes, i.e.,
position-changing mode and orientation-changing mode.
In the position-changing mode, the operator rotates his
first and second virtual joint, consequently changing the
location of the upper-arm and forearm, as well as the
position of the Wrist-frame. In the orientation-changing
mode, the operator rotates his third virtual joint, conse-
quently changing the orientation of the wrist frame. Two
demos of the human arm’s motion are recorded via the
Perception Neuron system and then sent to the kinematics
mapping module. To show the effectiveness of the pro-
posed method, Cartesian-space-based mapping (CSBM)
approach with workspace-matching and Joint-space-based
mapping (JSBM) approach are also implemented to com-
pare with the developed scheme.

In demo]1, the human arm mainly moves in the position-
changing mode; while in demo]2, the human arm mainly
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Fig. 7. Illustration of the determination of θm.

Fig. 8. Components of the imitation system.

moves in the orientation-changing mode. Both demos are
used as inputs to the proposed approach, the Cartesian-
space-based mapping approach and the joint-space-based
mapping approach. To separate the imitation errors, the
desired robot motions are obtained by computing the
forward kinematics for the desired joint states, instead
of the real UR5’s motion data, which are then collected
and compared with human motion data obtained by the
motion capture system (as shown in Fig. 9).

Fig. 9. Data flow of the performance analysis procedure.

The following statistics are employed to evaluate the
imitation performance.

a) Similarity in the end-effector locations.

It is important to measure the similarity between end-
effector location of the demonstrator and that of the
imitator. The Cartesian coordinate of vShoulderWrist is consid-
ered as the tip position of human arm and recorded as
(xD, yD, zD). The orientation of Wrist frame with respect
to the world frame is considered as the tip orientation of
human arm and recorded as RPY angles. As for the tip
position of the UR5 robot (xI , yI , zI) in the proposed ap-
proach, it refers to the Cartesian coordinate of the vector
from the origin of the frame1 to that of the frame3; while
in the CSBM it refers to the coordinate of the vector from
the origin of the base link-frame to that of the frame6.
In both approaches, the tip orientation of the UR5 robot
(αI , βI , γI) refers to the orientation of the frame6 of the
UR5 with respect to the World frame, transformed into
the RPY angles. The root-mean-square errors (RMSE)
between the relative movement of the tip of the human
arm and that of the UR5 robot can be computed as follows

RMSE dξ =

√√√√ 1

n− 1

n−1∑
i=1

(dξD(i)− 0.7dξI(i))
2

dξD(i) = ξD(i+ 1)− ξD(i)

dξI(i) = ξI(i+ 1)− ξI(i)

(14)

where ξ = x, y, z, α, β, γ.

b) Accuracy of algorithms.

In the experiment, errupperarm and errforearm are em-
ployed to measure the similarity in the configuration of
the human arm and UR5 robot. The following statistics
are computed:

RMSE upperarm =

√√√√ 1

n

n∑
i=1

(errupperarm(i))
2

errupperarm(i) = arccos(
vlink2(i) · vupper−arm
|vlink2||vupper−arm(i)|

)

(15)


RMSE forearm =

√√√√ 1

n

n∑
i=1

(errforearm(i))
2

errforearm(i) = arccos(
vlink3(i) · vforearm(i)

|vlink3(i)||vforearm(i)|
)

(16)

c) Smoothness of imitation motion.
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The following statistic is used to measure the smoothness
of the imitation motion.MEAN SumJoints =

1

n− 1

n−1∑
i=1

6∑
j=1

|dθIj (i)|

dθIj (i) = θIj (i+ 1)− θIj (i)

(17)

d) Time efficiency of algorithms.

The consuming time of kinematics mapping, which con-
sists in the time for the transform data and that for the
computation of the desired joint angles for the UR5 robot,
is recorded with the help of the clock( ) function provided
by the C Time library. The average of the consuming time
is computed as below

MEAN time =
1

n

n∑
i=1

t(i) (18)

where t(i) is the consuming time of the ith kinematics
mapping procedure.

5.2 Experiment results

Results of the proposed approach and CSBM. The sta-
tistical data is shown in Table 1, where Approach]1 refers
to the proposed mapping approach. It can be seen that,
with the proposed mapping approach, the frame3 of the
UR5 robot tracks the displacement of the Wrist-frame suc-
cessfully in both demos, and the position tracking errors
along the Z axis are a litter larger than those along the
X and Y axes. The orientation of frame6 imitates that
of the Wrist-frame at a high accuracy. The RMSE dα,
RMSE dβ, RMSE dγ are all less than 1◦. errupperarm is
close to zero all the time. errforearm is about 5◦ in the
demos. It means that the configuration of the UR5 robot
tracks that of the human arm nearly perfectly (as shown in
Fig.15). The MEAN SumJoints is about 4◦ in the first
demo and 3◦ in the second demo. The consuming time for
kinematics mapping is less than 0.2ms in most cases. The
MEAN time is about 0.1ms. It is worth mentioning that
the advantage of the proposed method is the capability
of imitation simultaneously in Cartesian space and joint
space, not only about the accuracy of end-effector tracking,
as shown in Fig. 10 and Table 1.

With the CSBM approach, the frame6 of the robot tracks
the position and orientation of Forearm-frame perfectly.
errupperarm and errforearm are much larger than those in
the virtual-joint-based approach. The RMSE errupperarm
is about 10◦ and the RMSE errforearm is about 23◦.
It means that there are some differences between the
configuration of the UR5 robot and the human arm.
In the first demo, the MEAN SumJoints in the two
approaches are pretty close. But in the second demo,
the MEAN SumJointsis 13% larger in CSBM approach.
Also, the average of consuming time of the CSBM is about
50% larger than that in the proposed approach, though
they are both less than 0.2ms.

Results of JSBM approach. Fig. 10 shows the mapping
results of the proposed approach and the JSBM approach
in the second demo. It can be known that, when the
human operator uses only one of the last three DOFs of
his arm, i.e., changes the orientation of his wrist frame

along one of its axes (as shown in Fig. 10. (a), (d), (g)),
both the proposed approach and the JSBM approach
have satisfying tracking performance in wrist rotation.
However, when composite motions are taken, such as
doing elbow flexion/extension and wrist flexion/extension
simultaneously (as shown in Fig.10. (j)), the proposed
approach tracks the rotation of wrist frame successfully
while the JSBM fails to guarantee it.

Fig. 10. Mapping results with the proposed approach and
the JSBM.

5.3 Discussions

Effects of experiment conditions. The initial pose of the
UR5 robot has some important effects on the kinematics
mapping procedure. To be specific, for the mapping in the
virtual joint pair]3, the initial pose of the robot decides
which type of Euler-angle the rotation matrix RElbowWrist has
to be converted to. It also influences the computation
procedure for the virtual joint pair]1.

In the proposed approach and CSBM approach, the tuning
of the lengths of the avatar’s upper-arm and forearm and
the scaling factor k help to match the workspace of the
UR5 robot to that of the human arm. The motions of
human arms generally fall into two categories: the position-
changing and the orientation-changing modes. We have
studied the imitation performance of our system with two
types of human motions as input respectively.

Table 1. Experiment results

Statistics Approach]1 CSBM Approach]1 CSBM
in demo]1 in demo]1 in demo]2 in demo]2

R dx(mm) 0.3117 5.15e−4 0.0522 5.18e−4
R dy(mm) 0.5468 4.20e−4 0.2123 5.02e−4
R dz(mm) 2.3279 3.22e−4 1.1346 5.24e−4
R dα(◦) 0.4171 3.84e−4 0.2666 3.07e−4
R dβ(◦) 0.6728 0 0.2011 0
R dγ(◦) 0.3796 0 0.1527 0

R upperarm(◦) 7.17e-5 12.7535 6.91e-5 8.2251
R forearm(◦) 3.5605 23.4819 6.2294 22.1848

M SumJoints(◦) 4.1739 4.2360 2.9939 3.4019
M time(ms) 0.0966 0.1502 0.1144 0.1561

* R and M represent the abbreviation of RMSE and MEAN.
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Compared with the CSBM approach. From the experi-
ment results it can be known that both approaches have a
good performance in imitating the location of the human
wrist. The location tracking errors of CSBM are mainly
caused by calculation errors. In the proposed approach,
the location tracking errors are resulted mainly from the
dissimilar embodiments in the first virtual joint pair. To
be specific, the first virtual joint of the human arm has
one more DOF than that of the UR5 robot, and their
morphologies are different. The relatively larger position
tracking errors along the Z direction is an evidence for
this. The proposed approach does a much better job in
imitating the configuration. In the proposed approach,
the configuration of the UR5 robot is almost the same
as that of the human arm. But in CSBM, the similarity
in the configuration of the UR5 and that of the human
arm can’t be guaranteed, even the size parameters of the
avatar in motion capture system are well tuned and a
proper initial configuration is chosen. In the first demo, two
approaches have similar performance in the smoothness
of robot motion; while in the second demo, the proposed
approach does a better job than the Cartesian space-based
approach in terms of the motion smoothness. In the second
demo, the human operator mainly moves his third virtual
joint of arm, corresponding to the third virtual joint of the
UR5 robot in the proposed approach. So in the proposed
approach, mainly the last three joints of the robot have
to move to imitate the human arm’s motion in the second
demo while all six joints have to be used in CSBM.

Also, the proposed approach has a higher computation
efficiency. In the proposed approach, the overall kinematics
mapping problem is decomposed into finding mapping
solutions for three virtual joint pairs, so that the inverse-
kinematics for a 6-DOF structure is avoid. In CSBM,
the algorithm is consisted of three parts–listening to the
transform data, calculating all feasible inverse-kinematics
solutions and choosing a solution closest to the current
states as the desired joint angles for UR5.

To sum up, the proposed approach has better performance
on imitating the configuration of the human arm, better
motion smoothness and higher computation efficiency, at
the price of the less satisfying performance in tracking the
location of the human wrist. In those where the similarities
in the tip location and configuration are both required, the
proposed approach has advantages over CSBM.

Compared with JSBM. By properly choosing initial
poses for the UR5 robot and the human arm and designing
a suitable JSBM, the UR5 robot would track the rotation
of the human Wrist-frame successfully if the Wrist-frame
only rotates along one of its axes. However, when the
human operator uses more than one of his arm’s last
three DOFs simultaneously, JSBM would fail to track. It
is one of the limitations for applying JSBM to kinematics
mapping across dissimilar embodiments. In some respects,
JSBM tries to find the mapping that maps the effect of
rotation (or displacement) of each DOF of the demon-
strator to that of the corresponding DOF of the imitator.
However, in cases where the demonstrator and the imitator
have different topologies, mapping at the DOF-level can’t
guarantee satisfying overall performance. To overcome this
challenge, the proposed approach divides the DOFs of

the demonstrator and those of the imitator into the same
number of groups (called as virtual joints) and tries to
find the virtual-joint-level mapping that maps the effect
of each virtual joint of the demonstrator to that of the
corresponding one of the imitator. By choosing different
grouping schemes and describing different aspects of effects
of the virtual joints, diverse virtual-joint-based mapping
strategies can be defined. So the proposed approach is
much more flexible and powerful than JSBM and can be
applied to kinematics mapping across embodiments that
have different DOFs and dissimilar topologies.

6. CONCLUSION

In this paper, an on-line imitation system for the human
arm and an UR5 robot has been developed, in which
the tip location and configuration of the human arm can
be imitated simultaneously by the robot. A virtual-joint-
based approach has been proposed to tackle the kinematics
mapping between dissimilar embodiments. Experiments
have shown that, compared with the traditional Cartesian-
space-based approach, the proposed approach has better
performance in human arm configuration imitating, better
motion smoothness and higher computation efficiency.
Also, the intuitive correspondence between the virtual
joints of the human arm and that of the UR5 would
enable the human operator to control the robot in a
more natural way. On the other hand, compared with
simple and intuitive joint-space-based mapping approach,
the proposed approach is more flexible and can be applied
to kinematics mapping with different DOFs and dissimilar
topologies.
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