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Abstract: In this paper, we propose a computationally efficient algorithm for solving mixed-
integer sampled optimization problems involving a large number of constraints. The proposed
algorithm has a sequential nature. Specifically, at each iteration of the algorithm, the feasibility
of a candidate solution is verified for all the constraints involved in the sampled optimization
problem and violating constraints are identified. As a second step, an optimization problem
is formed whose constraint set involves the current basis—the minimal set of constraints
defining the current candidate solution—and a limited number of the observed violating
constraints. We prove that the algorithm converges to the optimal solution in finite time.
Additionally, we establish the effectiveness of the proposed algorithm using mixed-integer linear,
and quadratically constrained quadratic programming problems.
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1. INTRODUCTION

Sampled optimization problems are optimization problems
involving a possibly large number of sampled constraints.
This class of problems is widely used in the scenario
approach (Calafiore and Campi, 2004; Calafiore et al.,
2012; Campi and Garatti, 2018a) as well as more gen-
eral learning paradigms such as statistical learning theory
(Vidyasagar, 2001, 2002; Alamo et al., 2009). In these lines
of research, a semi-infinite optimization problem—a ro-
bust optimization problem involving an infinite number of
constraints—is approximated by a sampled optimization
problem involving a finite number of random constraints.
The number of random samples is then selected such that
the solution of the sampled optimization problem attains
some desired probabilistic robustness. If the probabilis-
tic parameters defining the robustness of the solution of
the sampled optimization problem are stringent, then the
sample complexity (the number of samples required to
guarantee certain probabilistic robustness guarantee) may
be large thereby leading to a computationally complex
sampled optimization problem.

There have been few attempts in the literature to reduce
the computational complexity associated with the solution
of such sampled optimization problems. In Chamanbaz
et al. (2013, 2016) a sequential technique has been pro-
posed for solving a scenario optimization problem. At
each iteration k of the sequential algorithm, a sample
complexity N(k) smaller than the scenario bound is se-
lected, a sampled optimization problem with N(k) samples
is solved, and the robustness of the solution is checked
through a validation test. If the solution passes this vali-
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dation test, the algorithm is successfully terminated; oth-
erwise, a larger sample complexity N(k+ 1) > N(k) is se-
lected and a more complex optimization problem is solved.
These two steps are repeated until a solution eventually
passes the validation test. Borrowing ideas from statistical
learning theory, in Chamanbaz et al. (2014), the sample
complexity for solving robust linear and bilinear matrix
inequality problems is computed and a sequential random-
ized method for solving the sampled optimization problem
is presented. The proposed techniques in Chamanbaz et al.
(2013); Chamanbaz et al. (2014); Chamanbaz et al. (2016)
require a possibly large number of validation samples in
order to ensure the robustness of the candidate solution at
each iteration. In applications where samples are provided
by experiments—making them expensive resources—it can
be demanding to provide a large number of validation sam-
ples. In Calafiore (2016), an approach similar to the one in
Chamanbaz et al. (2016) has been proposed for solving the
scenario problem. The algorithm in Calafiore (2016) does
not increase the cardinality of the design sample set at
each iteration, but instead considers a probabilistic char-
acterization of the number of iterations required to find
a solution. A sequential approach based on a ‘wait-and-
judge scenario’ optimization (Campi and Garatti, 2018b)
has recently been reported in Garatti and Campi (2019)
without any validation phase considered. At each iteration
of the algorithm, a sampled optimization problem is solved
and the number of support constraints is computed. The
sample complexity at each iteration is designed such that
the final solution meets the desired probabilistic robust-
ness in terms of both accuracy and confidence levels. The
presented approach in Garatti and Campi (2019) primarily
focuses on reducing the number of scenarios rather than
reducing the computational complexity because evaluating
the number of support constraints at each iteration can be
computationally demanding for problems involving a large
number of sampled constraints.
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In this paper, we propose a deterministic algorithm bor-
rowing ideas from the well-known Clarkson Las Vegas
technique for linear and integer programming (Clarkson,
1995) to directly solve the sampled optimization problem.
The proposed algorithm is fundamentally deterministic
and does not involve any probabilistic validation phase.
From this aspect, the proposed algorithm is different
from all aforementioned techniques where the objective is
mostly to keep the number of sampled constraints as low
as possible—leading to a less computationally demanding
optimization problem—while guaranteeing the same prob-
abilistic guarantees as the original sampled optimization
problem constructed using the scenario approach or sta-
tistical learning theory. We rather propose a computation-
ally efficient algorithm to directly solve the sampled opti-
mization problem involving a large number of constraints.
The algorithm is motivated by a distributed randomized
constraints consensus approach presented in Chamanbaz
et al. (2017, 2019) for solving robust distributed mixed-
integer problems. The approach presented in Chamanbaz
et al. (2017, 2019) is a probabilistic approach—unlike the
deterministic algorithm presented in the current paper—in
which agents perform local computation and communica-
tion in order to reach a consensus on their candidate solu-
tion. A probabilistic validation step is used in Chamanbaz
et al. (2017, 2019) which has the same nature as the one
used in Chamanbaz et al. (2016).

In this paper, given a sampled optimization problem—
generated using statistical learning theory or the scenario
approach, we propose an algorithm that converges in finite
time to the optimal solution of the problem. The algorithm
has a sequential nature. Specifically, each iteration of the
algorithm involves two steps: (i) a validation step and (ii)
an optimization step. In the validation step, the feasibility
of a candidate solution for all the constraints involved in
the sampled optimization problem is checked and violating
constraints are identified. This step is computationally
inexpensive as it only involves validation of a candidate
solution and no optimization is required. Next, an opti-
mization problem is solved whose constraint set involves:
(a) a limited number of violated constraints observed in
the validation step and (b) the current basis which is the
minimal set of constraints defining the candidate solution.
The validation and optimization steps are iterated until no
constraint violates the candidate solution which is guaran-
teed to happen in a finite number of iterations.

The deterministic nature of the proposed algorithm allows
one to use the exact same algorithm for any optimization
problem with very large number of constraints enjoying
Helly-type property; see Amenta (1994); Amenta et al.
(2015). In fact, any problem possessing Helly-type prop-
erty is guaranteed to have a finite-cardinality basis set.
We note that this class of problems involves a fairly large
category of non-convex problems.

Notation
Throughout this paper, we use capital italic letter, e.g. F
to denote constraints and capital calligraphic letter, e.g.
F to denote the set induced by the constraint F . We note
that, with this notation, if A = B∪C with B and C being
collections of constraints, then A = B ∩ C, that is, the
set induced by the union of constraints B and C is the
intersection of B and C. An optimization problem

min cTx

subject to x ∈ F ,
is represented by the pair (F, c). Finally, J(F ) is the
smallest value of cTx while x ∈ F .

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following robust optimization problem

min cTx

subject to x ∈ F(q), ∀q ∈ Q
x ∈ RdR × ZdZ , (1)

where x ∈ RdR × ZdZ is the vector of decision variables, q
is the vector of uncertain parameters acting on the system,
F(q) = {x ∈ Rd : f(x, q) ≤ 0}, with d = dR + dZ
and, f(x, q) : Rd × Q → R, is the constraint function of
problem (1). The constraint function f(x, q) is convex for
any fixed value of q if all decision variables x are considered
to be continuous. Without loss of generality, we consider
a linear objective function. In fact, a nonlinear convex
objective function can be transformed into the epigraph
form by introducing an extra decision variable. If dZ = 0,
the problem (1) is a usual continuous convex optimization
problem; if dR = 0, (1) becomes an integer optimization
problem and choosing dr 6= 0, dZ 6= 0 leads to a mixed-
integer optimization.

One of the efficient methods to find an approximate so-
lution to problem (1) with desired probabilistic robust-
ness guarantee is to convert it to a sampled optimiza-
tion problem using the scenario approach (Calafiore and
Campi, 2004, 2006; Calafiore, 2010; Calafiore et al., 2012;
Campi and Garatti, 2018a) or statistical learning theory
(Vidyasagar, 2001; Alamo et al., 2009)—if the so-called
Vapnik–Chervonenkis dimension of the problem (1) is fi-
nite. With these approaches, the semi-infinite optimization
problem (1) is converted into an optimization problem
with a finite number of constraints by extracting random
samples from the set of uncertainty Q and constructing
constraints only at the extracted samples. Formally, N
independent and identically distributed (i.i.d) samples are
extracted from the set Q

q = {q(1), . . . , q(N)} ∈ QN

where QN = Q×Q× . . .×Q (N times) and the following
sampled optimization problem is formulated

x∗
N = arg min cTx

subject to x ∈
N⋂
i=1

F(q(i))

x ∈ RdR × ZdZ . (2)

The solution to problem (2) can be identified by only
a few number of constraints. This concept is formally
characterized by the notion of basis. Specifically, a basis
is the minimal set of constraints that defines a solution.
The concept of basis is supported by Helly-type theorems
initially introduced by Eduard Helly in Helly (1923), see
also Amenta (1994); Amenta et al. (2015). The primary
goal of this paper is to find basis for the optimization
problem (2) and correspondingly its solution x∗

N in a
computationally efficient manner.
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Definition 1. (Basis). Given a collection of constraints F ,
a subset of minimal cardinality B ⊆ F is a basis of F if the
optimal cost of the problem defined by (F, c) is identical to
the one defined by (B, c), and the optimal cost decreases
if any constraint is removed.

The size of the largest basis for a problem (F, c) is called its
combinatorial dimension. The following Theorem adopted
from (Calafiore et al., 2012, Corollary 1), and (Amenta
et al., 2015, Theorem 3.11) defines the combinatorial
dimension of the mixed-integer problem (2).

Theorem 1. The combinatorial dimension of problem (2)
is (dR + 1)2dZ − 1.

We make the following assumption regarding the solution
of any subproblem of (2).

Assumption 1. (Non-degeneracy). The minimum point of
any subproblem of (2) with at least (dR + 1)2dZ − 1
constraints is unique and there exist only (dR + 1)2dZ − 1
constraints intersecting at the minimum point.

Assumption 1 is not restrictive. In fact, to ensure unique-
ness of the optimal point, one can use a strictly convex
objective function, a lexicographic ordering, or any uni-
versal tie-breaking rule, see (Amenta, 1994, Observation
8.1) for further details.

The following Theorem form (Calafiore et al., 2012, Theo-
rem 3 and Corollary 2) characterizes the robustness prop-
erty of x∗

N .

Theorem 2. Suppose Assumption 1 holds. Given proba-
bilistic accuracy and confidence levels ε, δ ∈ (0, 1), let N
be the smallest integer satisfying

δ ≥
(dR+1)2dZ−2∑

`=0

(
N

`

)
ε`(1− ε)N−`. (3)

Then the solution of (2) x∗
N satisfies

PN

{
q ∈ QN : P

{
q ∈ Q : x∗

N /∈ F(q)

}
≤ ε
}
≥ 1− δ,

where PN is the product probability measure on QN .

The sample complexity N can be computed by numerically
solving (3). Results similar to Theorem 2 can be de-
rived using the Vapnik–Chervonenkis (VC) learning theory
(Vapnik and Chervonenkis, 1971). To this end, a combina-
torial parameter called VC dimension of problem (1) has to
be finite. We remark that reporting the sample complexity
using statistical learning theory falls outside the scope of
this paper. Interested readers are referred to Vidyasagar
(2001); Alamo et al. (2009); Chamanbaz et al. (2014). The
sample complexity computed using statistical learning the-
ory is usually very large leading to a computationally chal-
lenging sampled optimization (2); see e.g. (Alamo et al.,
2009, Theorem 3), (Chamanbaz et al., 2014, Corollary
2). In the scenario approach, the number of samples N
is inversely proportional to the accuracy level ε and has
a logarithmic relationship with the inverse of confidence
parameter δ. Hence, if the accuracy and confidence levels ε,
δ are required to be small, the number of scenario samples
N computed in (3) can become large leading to a possibly
complex sampled optimization problem (2). This calls for

Algorithm 1 Sequential Algorithm

1: Input: c, r, dR, dZ , F (q(i)), i = 1, . . . N,
2: Output: xseq, Bseq

Initialization:
3: Set m = (dR + 1)2dZ , feasible = 0, t = 0
4: [x(0), B(0)] = SolveMIP(F (q(1)) ∪ . . . ∪ F (q(m)), c)

Evolution:
5: while feasible == 0 do
6: [F Viol, feasible] = Verification(F (q(1)), . . . ,

F (q(N)),x(t), r)
7: [x(t+ 1), B(t+ 1)] = SolveMIP(F

Viol ∪B(t), c)
8: end while
9: Set xseq = x(t+ 1) and Bseq = B(t+ 1)

10: return xseq, Bseq

the necessity of a computationally efficient algorithm for
solving the sampled optimization problem (2). In the next
section, we report a deterministic sequential algorithm for
solving sampled optimization problem (2).

3. SEQUENTIAL ALGORITHM

In this section, we present a sequential algorithm for
solving the sampled mixed-integer problem formulated in
(2). We first define two primitives. The first primitive is
[F Viol, feasible] = Verification(F (q(1)), . . . , F (q(N)),
x, r) which checks the feasibility of a candidate solution x
for all the sampled constraints involved in (2), i.e. F (q(1)),
. . . , F (q(N)) and—if possible—finds r violated ones. Fur-
thermore, if there is no violation, the flag feasible is
set to 1 otherwise, feasible = 0. The second primitive
is [x, B] = SolveMIP(F, c). This primitive solves the opti-
mization problem defined by the pair (F, c) and returns
back the optimal point x and the corresponding basis B.
The two primitives constitute the two main parts of the
algorithm. In the first part of the proposed algorithm, a
candidate solution x is examined—using Verification
primitive—to see if it satisfies all N constraints of the
optimization problem (2) and—if possible—r violated con-
straints are found. Next, the algorithm solves an opti-
mization problem—using the primitive SolveMIP—whose
constraint set consists of (i) the r violated constraints and
(ii) the current set of basis. The algorithm iterates the
two steps until there is no violating constraint left. This
algorithm is formally presented in Algorithm 1.

We now state few remarks regarding Algorithm 1.

Remark 1. Algorithm 1 is not limited to solving sampled
optimization problems. It is a Clarkson-type algorithm and
shows significant computational improvement for problems
for which: (i) the number of constraints is much larger than
the number of decision variables and (ii) the Helly-type
property holds, see Amenta (1994); Amenta et al. (2015).

Remark 2. (Complexity of each iteration). An important
feature of Algorithm 1 is that the complexity of the
optimization problem being solved at each iteration does
not increase with the iteration counter. In fact, the number
of constraints involved in the optimization problem at each
iteration is at most r+ (dR + 1)2dZ −1. For instance, for a
mixed-integer optimization problem with dR = 5, dZ = 3
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if we set r = 10, the number of constraints can be at most
57; or in a continuous optimization problem in which the
dimension of the solution space is dR = 5, the number of
constraints can be at most 15. Therefore, at each iteration,
an optimization problem of fixed—and small—complexity
is solved.

Remark 3. (Complexity of verification step). The verifica-
tion step of Algorithm 1 is computationally inexpensive
since it only requires checking the feasibility of a candidate
solution for the N constraints present at problem (2).

Remark 4. (Finding basis). In a continuous optimization
problem, basis is defined as the minimal set of active
constraints. However, in a mixed-integer problem, finding
basis can be computationally more demanding. A compu-
tationally manageable way to compute a basis which might
not necessarily be of minimal cardinality is to check con-
straints one by one to see whether or not they can belong
to basis. To this end, we consider the optimization problem
at hand and drop its ith constraint. If the objective value
returned by this optimization problem is smaller than
the objective value of the original problem, the dropped
constraint can be a part of basis. However, we note that
the number of constraints of the optimization problem for
which we need to find basis—the problem formed at line 7
of Algorithm 1—is at most r+(dR +1)2dZ −1. Hence, it is
not computationally expensive to find basis as the problem
has a limited number of constraints. We also remark that
a similar greedy algorithm is being used in the context of
scenario with discarded constraints (Campi and Garatti,
2011; Calafiore, 2010) and very recently in wait-and-judge
scenario optimization (Campi and Garatti, 2018b; Garatti
and Campi, 2019).

Remark 5. The number of violated samples r in Algorithm
1 constitutes a trade-off between the complexity of the
optimization problem being solved at each iteration of
the algorithm and the number of iterations required for
convergence. Increasing r would result in a more complex
optimization problem solved at line 7 of the algorithm.
However, one would expect a lower number of iterations
required to terminate the algorithm; see subsection 4.2 and
in particular Table 2 for a numerical confirmation of this
observation.

The properties of Algorithm 1 are summarized in the
following Theorem.

Theorem 3. Let Assumption 1 holds. Then, the following
statements hold.

(i) The objective value of the candidate solution cTx(t) =
J(B(t)) is monotonically increasing while Algorithm
1 is progressing.

(ii) Algorithm 1 terminates in finite time.
(iii) The solution returned by Algorithm 1, xseq is identi-

cal to x∗
N .

Proof: Note that in constructing the basis at time t+ 1
i.e. B(t + 1), we use the basis at time t, i.e. B(t). Hence,
J(B(t+1)) ≥ J(B(t)). On the other hand, there has to be
at least one violating constraint F viol in all the iterations

of Algorithm 1 except the last iteration. Indeed, if there
had not been a violating constraint, the condition at line
5 would have been satisfied and the algorithm would have
terminated. This means that at line 7 of Algorithm 1,
we solve an optimization problem whose constraints set
involves the current basis B(t) and at least one violating
constraint F viol. Therefore, due to the presence of the
violating constraint(s) F viol, and due to Assumption 1,
the cost has to increase, i.e. J(B(t + 1)) > J(B(t)). This
proves the first statement of Algorithm 1.

There are finite number of constraints involved in (2);
hence, there are finite number of candidate basis leading to
a finite number of candidate costs J(B(t)). Furthermore,
the cost J(B(t)) is strictly increasing with the iteration
counter t—as proved in the first statement. Since, the
sequence {J(B(t))}t>0 is strictly increasing and has a
finite number of elements, it will converge in a finite
number of iterations leading to the finite-time termination
of the algorithm. This proves the second statement of the
theorem.

We first note that since at any iteration t of the algo-
rithm, a sub-problem of mixed-integer problem (2) is being
solved, J(B(t)) cannot be greater than J(F ) = cTx∗

N ,

where F
.
=
⋃N

i=1 F (q(i)); then, J(B(t)) ≤ J(F ), ∀t > 0
and as a result J(Bseq) ≤ J(F ). We now show that J(Bseq)
cannot be smaller than J(F ). Assume by contradiction
that J(Bseq) < J(F ) or equivalently J(Bseq) < J(Bseq ∪
F ) as Bseq ⊆ F . By construction, xseq must satisfy all
the constraints in (2) as it has passed the verification step

of Algorithm 1; then, xseq ∈ F with F .
=
⋂N

i=1 F(q(i)).
Furthermore, since by definition F ⊆ Bseq; then, xseq ∈
F ∩ Bseq. Now, considering the point that Bseq is the set
induced by the basis Bseq corresponding to xseq, we have
J(Bseq) ≥ J(F ∪ Bseq) which contradicts our earlier as-
sumption that J(Bseq) < J(Bseq∪F ). Hence, J(Bseq) can
neither be greater nor smaller than J(F ) = cTx∗

N . There-
fore, J(Bseq) = cTx∗

N or equivalently, cTxseq = cTx∗
N .

This combined with Assumption 1 concludes the proof.

4. NUMERICAL EXAMPLE

We ran extensive numerical simulations to test perfor-
mance of Algorithm 1. We considered different prob-
lems including Linear Programming (LP), Mixed-integer
Linear Programming (MILP), Quadratically Constrained
Quadratic Programming (QCQP) and Mixed-integer Quad-
ratically Constrained Quadratic Programming (MIQCQP)
of various sizes to prove the effectiveness of the proposed
algorithm. We compared the performance in terms of the
time required to solve the problem. The performance of
the algorithm is compared against the widely used com-
mercial solver Cplex (Cpl, 2018). We note that Cplex
exhibits a superior performance compared to solvers such
as Mosek (Andersen and Andersen, 2000), SDPT3 (Toh
et al., 1999), and SEDUMI (Labit et al., 2002), which is the
reason for choosing Cplex over other commercial solvers as
benchmark. All simulations are performed on a Dell Z660
Workstation running Linux with 12 Cores and 48 GB of
RAM.
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Table 1. Average—over 20 randomly generated sampled optimization problems—CPU time it
takes for the Cplex solver to find the solution to the sampled optimization problem (5), average
CPU time it takes for Algorithm 1 to converge, and average number of iterations required for
Algorithm 1 to converge. The simulation is performed 20 times for each row and average results
are reported. The entry NA indicates that Cplex requires more than 48 GB of RAM to run.

Problem # Constraints # Continuous # Discrete Average CPU Time Average CPU Time Average Iteration Counter
Type N Variables (dR) Variables (dZ) Cplex (sec) Algorithm 1 (sec) at Convergence

LP 1× 104 10 0 0.2198 0.2779 4.33

LP 5× 105 10 0 10.15 0.3521 9.28

LP 2× 106 10 0 52.04 0.5549 10.23

LP 1× 104 100 0 2.37 2.27 196.33

LP 5× 105 100 0 103.98 18.69 487

LP 2× 106 100 0 NA 66.91 600

MILP 1× 104 5 5 0.9239 6.49 4.28

MILP 5× 104 5 5 26.09 8.23 4.8

MILP 1× 106 5 5 NA 25.51 7.52

MILP 1× 104 20 5 1.41 42.28 6.88

MILP 1× 105 20 5 621.44 48.12 10.87

MILP 2× 106 20 5 NA 89.49 16.8

Table 2. Average—over 20 randomly generated sampled optimization problems—CPU time it
takes for the Cplex solver to find the solution to the sampled optimization problem (7), average
CPU time it takes for Algorithm 1 to converge and average number of iterations required for
Algorithm 1 to converge. The simulation is performed 20 times for each row and average results
are reported. The entry NA indicates that Cplex requires more than 48 GB of RAM to run.

Problem # Constraints # Continuous # Discrete # Violated Average CPU Time Average CPU Time Average Iteration Counter
Type N Variables (dR) Variables (dZ) Constraints (r) Cplex (sec) Algorithm 1 (sec) at Convergence

QCQP 1× 104 10 0 20 51.57 2.17 4.71

QCQP 5× 105 10 0 20 1.98× 103 2.50 7.66

QCQP 5× 105 10 0 100 1.98× 103 1.62 3.85

QCQP 5× 105 10 0 5 1.98× 103 3.69 19.9

QCQP 1× 106 10 0 20 4.35× 103 4.65 10.23

MIQCQP 1× 104 5 5 20 4.97× 103 179.34 3.61

MIQCQP 5× 105 5 5 20 NA 303.53 5.04

MIQCQP 1× 106 5 5 20 NA 560.34 9.61

4.1 Robust Mixed-integer Linear Programs

We consider robust Linear Programming (LP) and robust
Mixed integer Linear Programming (MILP) problems hav-
ing the following structure

minimize cTx (4)

subject to: (A0 +Aq)x ≤ b,
x ∈ RdR × ZdZ ,

where the vector c ∈ Rd defines the objective direction,
A0 ∈ Rd×d, b ∈ Rd are the nominal (fixed) matrix and
vector defining the nominal constraint set of problem (4),
and Aq ∈ Rd×d is an interval matrix—a matrix whose
entries vary in given intervals—defining the uncertainty
in optimization problem (4). The vectors b, c and nominal
matrix A0 are generated such that problem (4) is feasible.
To this end, we follow the methodology presented in
(Dunham et al., 1977). In particular, elements of A0 and
c are drawn from a standard Gaussian distribution, i.e.
zero mean and unit standard deviation. The `-th element

of b is defined by b` = γ (
∑d

m=1

(
A0

`m

)2
)1/2, where γ > 1

manipulates the feasibility region of the MILP problem.
The larger the variable γ, the bigger the volume of feasible
region. Note that the procedure presented in Dunham
et al. (1977) generates random feasible LP however, a
feasible LP can become infeasible for the case of MILP.
Therefore, in the set of simulations reported here, we
set γ = 10 to make sure that the generated MILP is
indeed feasible. The entries of Aq are bounded in [−0.2,
0.2]. The sampled version of problem (4) is constructed

by extracting random samples {A(i)
q }Ni=1 from the set of

uncertainty

minimize cTx (5)

subject to: (A0 +A(i)
q )x ≤ b, i = 1, . . . , N

x ∈ RdR × ZdZ .

For computational study, we vary the dimension of the
solution space dR, dZ and the number of sampled con-
straints N and solve problem (5) using Algorithm 1 and
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the commercial solver Cplex—using cplexlp command for
the case dZ = 0 and cplexmilp command for the case
dZ 6= 0. The performance in terms of the amount of time
it takes to solve the problem is compared in Table 1. As
can be seen in Table 1, for small problems, the commercial
solver Cplex outperforms Algorithm 1 however, for large
problems, Algorithm 1 outperforms Cplex as the simula-
tion time is considerably smaller compared to Cplex. Note
that for some of the problems reported in Table 1, the
Cplex solver requires more than 48 GB of RAM to solve the
formulated problem and hence, it is not possible to solve
the problem on our workstation using Cplex. This shows
an important advantage of Algorithm 1 in significantly
saving memory required for solving sampled optimization
problems involving large number of constraints. For all the
simulations reported in Table 1, the number of violated
constraints r is set to 50.

4.2 Robust Mixed-integer Quadratically Constrained
Quadratic Programs

The problem we deal with in this subsection is the fol-
lowing robust Mixed-integer Quadratically Constrained
Quadratic Program (MIQCQP)

minimize xTPx + sTx (6)

subject to: xTPqx + (s0 + sq)Tx + (r0 + rq) ≤ 0

x ∈ RdR × ZdZ

where Pq = (D0 + Dq)T (D0 + Dq) ∈ Sd×d
+ —with Sd×d

+
being the set of all d-dimensional symmetric positive semi-
definite matrices—s0, sq ∈ Rd, and r0, rq ∈ R define the
robust MIQCQP.

In order to make sure that the nominal problem is feasible,
we select a point x0 ∈ RdR × ZdZ at random and then
compute r0 such that xT

0 P
0x0 + (s0)Tx0 + r0 ≤ −γ with

P 0 = (D0)TD0 and γ ≥ 0. The uncertain matrix Dq is
selected to be an interval matrix whose entries vary in
[−0.1, 0.1] and sq, rq are drawn from the Gaussian distri-
bution with zero mean and unit standard deviation. The
sampled version of MIQCQP (6) can be constructed by

extracting random samples {D(i)
q }Ni=1, {s

(i)
q }Ni=1, {r

(i)
q }Ni=1

from the set of uncertainty

minimize xTPx + sTx (7)

subject to: xTP (i)
q x + (s0 + s(i)q )Tx

+ (r0 + r(i)q ) ≤ 0, i = 1, . . . , N

x ∈ RdR × ZdZ .

We remark that problem (7) will not be unbounded from
below because the feasible set is the intersection of N
ellipsoids and hence bounded as far as ellipsoids are non-
degenerate. Problem (7) is solved using Algorithm 1 for
different values of N, dR, dZ . The results in terms of the
time it takes for Algorithm 1 to converge is compared with
the commercial solver Cplex—using cplexqcp function for
the case dZ = 0 and cplexmiqcp function for the case
dZ 6= 0—are reported in Table 2. The effect of the number
of violated constraints r is explored in Table 2. Increasing
r from 20 to 100 decreases the average CPU time as well
as the number of iterations is takes for Algorithm 1 to
converge. Similarly, decreasing r to 5 increases the CPU
time as well as the number of iterations.

We note that more complex uncertainty structure than the
ones used in (4) and (6) can be handled using sampling-
based techniques such as the scenario approach. In fact,
one of the major advantages of using a randomized tech-
nique over a deterministic one in solving robust opti-
mization problems is that they are not limited to the
uncertainty structure.

For continuous optimization problems, e.g. LP and QCQP,
it is straightforward to find the set of bases. The procedure
for finding a basis involves: (i) finding active constraints
by checking which constraints hold with equality in (5)
and (7) which is computationally inexpensive even for
problems involving a very large number of constraints and
(ii) checking which of the active constraints belong to the
set of bases by firstly, forming an optimization problem
whose constraints set includes only active constraints
and secondly, removing the active constraints one at a
time and solving the resulting optimization problem and
checking if the resulting objective value becomes smaller.
If any improvement in the objective value is observed, the
removed constraint can belong to the set of bases.

It is more computationally demanding for a problem in-
volving integer decision variables, e.g. MILP and MIQCQP
than a continuous problem to find the set of bases. In fact,
for a mixed-integer problem, we need to use a brute-force
approach and check the constraints one by one to find out
which ones belong to the set of bases. However, as men-
tioned earlier, the number of constraints involved in the
optimization problem being formed at each iterations of
the algorithm is limited. Hence, it is not computationally
expensive to find the set of basis in Algorithm 1.

5. CONCLUSION

In this paper, we presented a deterministic algorithm for
solving sampled optimization problems. The algorithm ex-
hibits a significant saving in the time and memory required
for solving sampled optimization problems. The algorithm
can be immediately used for solving a far more general
class than sampled optimization problems: any problem
possessing Helly-type property in which the number of
constraints is much larger than the dimension of the solu-
tion space. The algorithm has two main steps: verification
and optimization. In the verification step, feasibility of a
candidate solution is examined and violating constraints
are identified. In the optimization step, an optimization
problem whose constraint set involves current basis and
few violated constraints is solved. The convergence prop-
erties of the algorithm are analyzed and its performance
in solving mixed-integer sampled optimization problems is
compared against a widely used commercial solver.
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