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Abstract: This paper proposes a new cooperative adaptive cruise control (CACC) approach of vehicle 
platoons with fading signals and heterogeneous communication delays. The CACC model with variable 
input delays is established to describe the varying time-delays from transmitting acceleration of the front 
vehicle. The fading signal gains may be unknown and uncertain due to heterogeneous V2V wireless 
channels. Then a set of decentralized time-delay feedback CACC controllers is computed in such way 
that each vehicle evaluates its own control strategy using only neighborhood information. In order to 
establish string stability of the platoon with the decentralized controllers, some sufficient conditions are 
obtained in form of linear matrix inequalities. The scenarios, consisting of seven different cars with 
heterogeneous wireless channels, are used to demonstrate the effectiveness of the presented method. 
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1. INTRODUCTION 

In recent years, cooperative adaptive cruise control (CACC) 
of vehicle platoons has attracted considerable attention in 
both industrial and academic communities. With information 
exchange between vehicles by V2X (vehicle-to-vehicle, 
infrastructure,…) wireless communication, CACC improves 
traffic flow stability, throughput, driving safety and ride 
comfort of vehicles (Dey, et al., 2016; Milanes, et al., 2014; 
Wang, et al., 2018; Al-Jhayyish and Schmidt, 2018; He, et al., 
2019). Then CACC is shown to be one of the promising 
intelligent transportation systems technologies (Dey, et al., 
2016; Wang, et al., 2018; Milanes and Shladover, 2014). 

The main goal of CACC is to adjust multiple vehicles to form 
a platoon and then maintain an optimal, safe spacing (Dey, et 
al., 2016). String stability is the important aim of theoretical 
analysis of vehicle CACC systems. This property implies that 
in a platoon perturbation on the leading vehicle are not 
amplified downstream through the platoon (Dey, et al., 2016; 
Milanes, et al., 2014). Several CACC methods have been 
proposed to establish the string stability of vehicle platoons 
(e.g., see Li, et al. (2017), Kayacan (2017), Ploeg, et al. 
(2014), Guo and Yue (2014), Yu, et al. (2018)). 

In CACC systems, the real-time behaviours of front vehicles 
are dispatched to the nearest following vehicles in the V2X 
wireless network. Hence, the V2X network has important 
effects on the string stability of a vehicle platoon due to 
uncertainties and time-varying communication delays (Dey, 
et al., 2016). Many works addressed these effects within the 
networked control systems framework (Oncu, et al., 2014; 
Firooznia, et al., 2017; Orosz, 2016; Abdessameuda, et al., 
2015; Bernardo, et al., 2015; Izadi, et al., 2009; Song, et al., 
2019). For instance, the effect of network-induced constant 

delays or sample-and-hold devices on string stability was 
studied within a networked control system perspective (e.g., 
Oncu, et al., 2014). The results on CACC were general 
derived by the assumption of constant time-delays of the 
V2X network. Fewer results have been obtained to deal with 
time-varying heterogeneous communication delays (Bernardo, 
et al., 2015; Song, et al., 2019). 

Most of the existing results on CACC generally assume that 
the information transmitted by V2X are reliable all the times. 
However, signal fading might happen to wireless network in 
practical vehicles for reasons such as low battery power and 
interference of radar signals. For example, the signal-to-noise 
ratio of the information transmitted by V2X may noticeably 
decay at low battery power (Xu, et al., 2018; Su and Chesi, 
2017). Vulnerability of V2X wireless network to battery 
power and cyber-attacks was studied by many researches 
(e.g., see Sharma and Kaushik (2019), Petit and Shladover 
(2015) and the references therein). Under signal fading, the 
vehicle can still have access to the state (e.g., acceleration) of 
the preceding car via V2X but the state is inaccurate, which 
may degrade the string stability of a vehicle platoon. How 
would signal fading affect the cooperative control of vehicle 
platoons is still an open and challenging problem.  

The aim of this paper is to solve CACC problem in the 
networked control framework by taking into account fading 
signals and heterogeneous communication delays. The 
CACC model with variable input delays is used to describe 
the time varying heterogeneous communication. The CACC 
controller is defined on the state of the host vehicles and on 
fading signals transmitted from the preceding vehicles via 
V2X communication network. The platoon formation and its 
stability is guaranteed in the presence of fading signals and 
time-varying delays by some LMI conditions. Numerical 
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results illustrate the effectiveness of the proposed CACC 
method for string stability of a seven-vehicle platoon in the 
varying speed scenario. 

Notations: Throughout the paper, P>0 means that the matrix 
P is positive definite and diag{...} denotes a block-diagonal 
matrix. The symmetric terms in a symmetric matrix are 

denoted by ‘*’, e.g., 
T*

M N M N

L N L

   
   

   
. 

2. PROBLEM FORMULATION 

Consider a group string of n vehicles moving along a single 
lane and assume that they run in horizontal environment (see 
Fig. 1). In this platoon, each vehicle shares its acceleration 
with the following vehicles through a predecessor-following 
communication topology network that consists of N (1<N<) 
heterogeneous wireless channels. The vehicles are also 
equipped with onboard sensors to measure the inter-vehicle 
distance and relative velocity with respect to its preceding 
vehicle. The first vehicle in the platoon presents the reference 
trajectory of the string according to some safety spacing 
policies. Let Li, qi, vi and ai be the length, position, velocity 
and acceleration of the ith vehicle in the platoon for 
i=0,1,…,N, where i=0 stands for the leading vehicle. 

ie 1e
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Fig. 1  A schematic CACC system of the vehicle platoon 

Considering the ith vehicle in this platoon, the three-order 
linear model is adopted to describe the longitudinal dynamics 
of the vehicle (Guo, et. al., 2014; Oncu, et al., 2014) 
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where qi, vi and ai are the position, velocity and acceleration, 
respectively, control ui is the acceleration command and 
constant i represents the internal actuator dynamics. The 
model can be obtained by feedback linearization (Guo and 
Yue, 2014), which simplifies the complexity of modeling the 
longitudinal dynamics of vehicles. It has been shown in 
(Oncu, et al., 2014) that the model (1) adequately describes 
the longitudinal dynamics of the acceleration-controlled 
vehicles via the experimental validation and has been widely 
used to design CACC controllers of vehicle platoons. 

The goal of CACC is generally to regulate the inter-vehicle 
distance di to a small desired spacing while guaranteeing 
string stability. In this study, the vehicle platoon moves with 
a reference constant velocity, namely, the leading vehicle 
satisfies that 0 0( ) ( )q t v t and 0 ( ) 0v t  . Moreover, the 

constant time headway is adopted as the safe spacing policy 
of the proposed CACC system. The desired safe spacing is 
defined as 

)()(, tvhDtd iiiir                             (2) 

where dr,i is the desired spacing between vehicles i and i1, 
Di is the desired distance at standstill and hi is the time gap. 
The actual inter-vehicle distance is equal to di=qi-1qiLi 
where qi-1 is the position of predecessor. The difference 
between actual and desired inter-vehicle distances defines 
error ei=didr,i=qi-1qiLidr,i.  

This paper selects the error state vector of the ith vehicle as 
xi=[ei  vi  ai]T. Then the dynamics of the error variables for 
the vehicle can be represented as 

)()()()( 1 txGtuBtxAtx iiiiiii                  (3) 
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for i=1,...,N. Since the ith vehicle receives the signals 
transmitted by onboard sensors and V2V communication, 
respectively, the output of the vehicle in the platoon is 
defined as 

 T1
T ))(()()( ttatxCty iiiii                     (4) 

where i is the unavoidable time-varying communication 
delay and Ci=diag{i,1, i,2, i,3, i,4} is the uncertain gain 
matrix of the state measurement. Typically, i is updated over 
finite time intervals and can be assumed bounded by some a 
maximum value, i.e., 0ih with the bound h>0. Moreover, 
(i,1, i,2, i,3) and i,4 denote the gains of onboard sensors and 
V2V channels, respectively, and also are assumed to be 
bounded between minimal and maximum values, i.e., 
i,mini,ji,max with the bounds i,min, i,max>0 for j=1,...,4.  
Note that if onboard sensors and V2V channels are normal, 
then i,j=1 for j=1,...,4. In practice, however, these signal 
gains are generally not accurately known but uncertain due to 
battery power, heterogeneous V2V wireless channels, etc.  

The control objective of the paper is to design an output 
controller for the ith vehicle in the platoon, i.e. 

)(:)( 14,3,2,1, tyKakakvkektu iiiiiiiiiii        (5) 

that regulates the error state xi to zero while guaranteeing 
string stability of the vehicle platoon in (3) in the presence of 
signal gain-uncertainties and heterogeneous varying delays. 
The gain vector Ki=[ki,1 ki,2 ki,3 ki,4] of controller (5) will be 
determined in the next section. In what follows, some well-
known results are recalled. 

Definition 1(Stability): (Guo, et al. 2014) For a step change 
of desired speed v at time instant t=0, the error state of each 
vehicle in the platoon described by (1) is asymptotically 
stabilized to the origin, i.e., vehicles in the platoon reach the 
reference speed. 
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Definition 2(String stability): (Oncu, et al., 2014) The 
vehicle platoon system (4) is string stable if the inequality 
||G(jw)||1 holds for any w, where G(s)=ai(s)/ai-1(s) with ai(s) 
and ai-1(s) are the Laplace transforms of ai(t) and ai-1(t), 
respectively. 

String stability of a platoon implies that the oscillations do 
not amplify with the platoon caused by any manoeuvre of 
leading vehicle. Hence, string stability can be seen as a 
measurement on the amplification of perturbations along the 
vehicle string. When the onboard sensors and wireless V2V 
work in a normal situation, the system (4) is string stable 
under some well accepted conditions, e.g., Oncu, et al., 
(2014). However, due to the uncertain and unknown gains of 
output signals and varying delays, the system is getting to an 
uncertain system subject to varying delays and uncertain 
gains of output signals. This makes the CACC problem rather 
challenging. 

3. CACC OF VEHICLE STRINGS 

The general form of the closed-loop CACC vehicle system is 
obtained by combining the dynamics of error states in (3) 
with the CACC law (5). To this end, substituting (4) to the 
CACC law (5) yields  
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      (6) 

where Ki,1=[ki,1 ki,2 ki,3], Ki,2=ki,4, Yi,1=diag{i,1,i,2,i,3} and 
Yi,2=[0 0 i,4]. Here the signal gains Yi,1 and Yi,2 are generally 
uncertain and unknown. The gain Ki will be computed 
elaborately for any signal gains Yi,1 and Yi,2 in Subsection 3.2. 

Applying the control law (6) into the system (3), the closed-
loop CACC system of the ith vehicle is derived as 
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Let x=[x1
T x2

T ··· xn
T]T. The closed-loop CACC system of the 

vehicle platoon can be re-written in a compact form of  

))(()()()( 2211 ttxYKBtxYBKAtx           (8) 

with B=diag{B1,B2,...,Bn}, K1=diag{K1,1,K1,2,...,K1,n}, Y1= diag 
{Y1,1,Y1,2,...,Y1,n}, K2=diag{K2,2,K2,3,...,K2,n,0}, Y2= diag{Y2,2, 
Y2,3,...,Y2,n, 0} 
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and ={1,2,..,n}. In what follows, the gains Ki will be 
computed to guarantee the closed-loop CACC system (7) is 
vehicle stable and the closed-loop string system (8) is string 
stable in the presence of heterogeneous communication 
delays and uncertain gains of output signals. 

Consider the closed-loop string system (8) and let 
Ak=A+BK1Y1 and 

22YKBBk   for simplicity. The closed-

loop string system is equal to 

))(()()( ttxBtxAtx kk                     (9) 

This paper introduces a known lemma that will be 
instrumental for the proof of vehicle stability of the CACC 
system presented later in this section. 

Lemma 1: (Zhang, et al., 2005) Let Pi, Qi and Ri be any 
positive-definite symmetric matrices with appropriate 
dimension for i=1 and 2. Then there exists a symmetric 
matrix M such that 
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Now the vehicle stability of the vehicle platoon in the 
presence of fading signals and heterogeneous time-varying 
delays can be guaranteed under the hypothesis of the 
following theorem.  

Theorem 1: Consider the closed-loop string system (9). If 
there exist some positive-definite symmetric matrices 
P3n3n, Q3n3n and R3n3n such that the following 
nonlinear matrix inequality holds: 
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and M13=[N1 N2]h with =PAk+Ak
TP+Q+N1

T+N1, =1 and 
some free matrices Ni3n3n for i=1 and 2, then the system 
is asymptotically stable. 

Proof: Consider the closed-loop string system in (9). From 
the Leibniz-Newton formula, it is known that (t)=0 with  
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Then for the matrices N1 and N2, it is derived that 
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Consider the following Lyapunov-Krasovskii candidate 
function of the string system:  
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Taking the derivative of V(t) along (9) gives 
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From the changes of the time-delay, it is obtained that 
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where 1=[Ak Bk]=h-1M12 and 
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which is equal to the inequality (12). Hence, the condition in 
(12) yields that V(t) monotonically decreases along the 
trajectories of (9) and it is a Lyapunov function of the closed-
loop string system (9). This establishes the asymptotic 
stability of the system from the Lyapunov-Krasovskii’s 
argument. 

Remark 1: Theorem 1 presents a sufficient condition to 
ensure stability of the closed-loop string system (9). However, 
the condition (12) is nonlinear matrix inequality, e.g., R-1, 
PAk. Hence, it is not easy to compute the CACC controllers 
in (5) by the known linear matrix inequality (LMI) tool. One 
method is to introduce the linearization method (Zhang, et al., 
2005) to compute the CACC controllers via the available 
LMI tool. Namely, consider the closed-loop string system (9) 
and given some numbers  and . If there exist some matrices 

nnP 330  , nnQ 330  , nnR 330  , W113n and 

W213n such that the following LMI holds: 
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then the closed-loop string system is asymptotically stable 
with the CACC gains 1

1
1

11
 YPWK  and 1

2
1

22
 YQWK . 

Then the matrix inequality (21) is linear with respect to the 
matrices P , Q , R , W1 and W2. Hence, these matrices can be 

obtained by solving the feasibility problem with the solver 
‘feasp’ in the LMI toolbox (Boyd, et al., 1994).  

4. STRING STABILITY ANALYSIS 

Although the closed-loop system (7) guarantees the zero 
steady-state spacing error for each vehicle in the platoon, it 
gives no specific restrictions on the transient spacing errors 
and string stability. To meet the string stability requirement, 
i.e., the transient spacing errors are not amplified downstream 
along the platoon, the controller need to be supplemented 
with the conditions on transient spacing errors.  

Considering the desired safe spacing (2), it is obtained that 
the Laplace transform of the spacing 
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Substituting (5) and (22) into (3), and making some algebra 
operations, it is obtained that 
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Let s=jw. From the Euler formula on eis, this paper obtains 
that 
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In order to guarantee |Gi(jw)|=|ai(jw)/ai-1(jw)|1 for any w and 
i=1,...,n, it is derived that 
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Using Taylor series, it is obtained that 
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Then it is true that |Gi(jw)|=|ai(jw)/ai-1(jw)|1 for any w and 
i=1,...,n. The string stability property of the vehicle platoon is 
ensured. 

5.  SIMULATIONS 

In this section, an example of a seven-vehicle platoon is used 
to show the implementation of the proposed control method. 
The platoon runs in a virtual environment established using 

System Build software package in MATLAB. The vehicles’ 
parameters used in the simulation experiments are selected as 
minimum vehicle distance di = 8 m, length of vehicle Li = 2m, 
time constants 1=6=7=4=0.3 s, 2=5=0.25 s, 3=0.2 and 
time gap hi =1 for i=1,…,7. The upper bound of varying 
delays of the ACC system considered here is picked as 
u=1.05 s. As the traffic messages of the seven vehicles and 
the acceleration of the front vehicle are transmitted by 
heterogeneous wireless channels, the gain channels for the 
platoon are chosen as C1=[1.0, 0.95, 0.97, 0.97], C2=[0.95, 0.93, 
1.0, 0.96], C3=[0.98, 1.0, 0.95, 0.95], C4=[0.99, 0.97, 0.96, 0.98], 
C5=[0.94, 0.96, 0.93, 0.94], and C6=[0.93, 0.97, 0.98, 0.98]. In 
order to compute the CACC gains ki, let =0.257, =0.5, 
and 1=0. By solving the LMI (21), the gains are computed 
as K1=[0.7247, 1.8876, -1.2673, 0.0032], K2=[0.7048, 1.8793, -
0.8303, 0.0046], K3=[0.5843, 1.4580, -0.4828, 0.0099], K4= 
[0.9294, 2.2878, -1.2498, 0.0128], K5=[0.8762, 1.9249, -0.9120, 
0.0255] and K6=[1.1532, 2.1864, -1.2495, 0]. In simulation, the 
varying time-delay of the ACC system is produced by a 
stochastic signal satisfying the bound u. The scenario is 
initialized that all vehicles stop and the inter-vehicle distance 
errors are set as 4 m. 

    

(a) Actual spacing                         (b) Velocity 

    

(c) Vehicle accelerations                   (d) Control signals 

Fig. 2  Profiles of states and control of the vehicle platoon 

Fig. 2(c)-(d) show the trajectories of all vehicles when using 
the proposed method, where subplot (a) pictures the actual 
relative distance between the adjacent vehicles and subplots 
(b)-(d) picture the time evolutions of the vehicle speed, 
acceleration and control inputs of the host vehicles, 
respectively. Moreover, Fig. 3 shows that the frequency 
response of the acceleration transfer function on the adjacent 
vehicles in the platoon. From Figs. 2 and 3, it is seen that the 
trajectories of all vehicles can quickly converge in the face of 
fading signals and varying delays induced by the V2X channel 
transmission. In other words, each vehicle has the ability to 
track its immediately preceding one and maintain the inter-
vehicle distance at the desired spacing as well as ensuring a 
consensus speed of all vehicles in the platoon. These results 
demonstrate the effectiveness of the presented method. 
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Fig. 3 Frequency response for any ω>0 

6. CONCLUSION 

This paper has presented a new cooperative adaptive cruise 
control (CACC) method for vehicle platoons connected by 
time-delay heterogeneous channel transmission and fading 
signals. Some linear matrix inequalities (LMIs) are solved to 
design the CACC controller of the vehicle platoon. Moreover, 
the LMI conditions are established to guarantee the 
asymptotic stability and string stability properties of the 
vehicle platoon in the presence of fading signals and varying 
time-delays induced by the time-varying heterogeneous 
wireless communication delays. The simulation results 
demonstrated the effectiveness of the method presented here 
and certified string stability of the connected vehicles with 
fading signals and varying time-delays induced by the time-
varying heterogeneous wireless communication delays. 
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