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Abstract: Controller encryption is a cryptographic approach to enhancing the security of
networked control systems. The method would be effective in reducing risks of eavesdropping
attacks. However, encryption may cause high communication traffic and processing delays.
This study proposes a redetermination method for a sampling period of a given encrypted
control system to increase the sampling period. The proposed method can reduce the bit rate of
communication between a plant and controller and improving the strength of ciphertexts. The
validity of the proposed method is examined through numerical simulations. The simulation
results demonstrate that the sampling period-redetermined encrypted control system achieves
asymptotic stability and retains control performance of the original encrypted control system.
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1. INTRODUCTION

Cybersecurity is crucial for cyber-physical systems, such
as water systems, transportation, and electric power grids
(Sandberg et al., 2015; Teixeira et al., 2015a,b). Attacks on
control systems are more severe than ones on information
systems because they may cause physical damages as well
as information leakage and economic losses. Encrypted
control is a cryptographic countermeasure against attacks
for networked control systems (Kogiso and Fujita, 2015;
Farokhi et al., 2017). This method can reduce risks of
eavesdropping attacks by concealing controller parameters
and signals (e.g., a reference, sensor measurement, and
control input) with homomorphic encryption.

Kogiso and Fujita (2015) have proposed the controller
encryption method using multiplicative homomorphic en-
cryption such as RSA (Rivest et al., 1978) and the ElGa-
mal encryption (Elgamal, 1985). Multiplicative encrypted
control systems can encrypt both the controller parame-
ters and signals. Additionally, the encrypted control sys-
tems lead to a detection method for controller falsifi-
cation attacks and replay attacks (Kogiso, 2018; Baba
et al., 2018). The feasibility of an encrypted PID con-
troller, encrypted regulator, and encrypted observer-based
servo controller has been examined (Kogiso et al., 2018;
Teranishi et al., 2019a). Encrypted control systems with
additive homomorphic encryption, the Paillier encryption
(Paillier, 1999), can conceal either controller parameters
or signals (Farokhi et al., 2017). As a variety of additive
encrypted control, encrypted consensus control (Kishida,
2018), encrypted cooperative control (Darup et al., 2019),

and encrypted model predictive control (Alexandru et al.,
2018) were proposed.

Although encrypted control is a promising approach to
enhancing the cybersecurity of networked control systems,
encryption may cause high communication traffic and
processing delays. Deterioration of network quality would
affect the control performance and stability of networked
control systems. Therefore, it is necessary to reduce the
communication traffic of encrypted control systems.

Increasing the sampling period is one of the methods ex-
pected to reduce communication traffic. Sampling period
selection is a traditional problem in the field of control
engineering. A sampling frequency is restricted by con-
trol systems specifications, such as an actuator, sensor,
sampler, and holder. Based on heuristic speculations, a
sampling frequency is typically selected at least as fast as
50 times of the system bandwidth (Franklin et al., 1997). A
multirate sampling technique is effective in improving the
control performance of digital control systems by employ-
ing different sampling periods of the sampler and holder
(Berg et al., 1988; Fujimoto et al., 2001).

Event-triggered and self-triggered control, aperiodic sam-
pling control, are another strategy for handling com-
munication constraints (Heemels et al., 2012). In event-
triggered control systems, plant outputs are transmitted
to a feedback controller when a triggering condition based
on current measurements is satisfied. Thus, event-triggered
control requires additional computation costs to evaluate
the triggering condition. In self-triggered control systems,
a feedback controller with a triggering mechanism decides
a next update time by using a plant model. The triggering
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condition needs to be assessed in ciphertext to implement
self-triggered encrypted control. However, it may be diffi-
cult to evaluate if-then rules using ciphertext in real-time,
even though homomorphic encryption is used.

This study considers the problem of increasing a sampling
period of a given encrypted control system. When we
reduce the communication traffic of a networked control
system in operation, it is meaningful from the perspec-
tive of availability to increase the sampling period of
the control system while not changing a controller. As a
solution to the problem, we provide an event-triggering
mechanism of an encrypted state-feedback controller and
propose a lower-bound of the inter-event time of the event-
triggered encrypted control system. The lower-bound is
employed as a new sampling period, whose interval is
longer than or equal to the original sampling period of the
given encrypted control system. Computational costs of
the sampling period-redetermined encrypted control sys-
tem are the same as that of the original encrypted control
system, unlike event-triggered encrypted control systems.
Furthermore, the asymptotic stability of the encrypted
control system is guaranteed. The validity of the proposed
method is examined through numerical simulations.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces preliminary information on the ElGamal
encryption and an encoder/decoder for controller encryp-
tion. Section 3 describes the problem setting and the main
result of this study. Section 4 provides some results of
numerical simulations. Section 5 presents conclusions and
future works.

2. PRELIMINARIES

2.1 Notation

The sets of real numbers, integers, security parameters, key
pairs, public keys, secret keys, plaintexts, and ciphertexts
are denoted by R, Z, S, K, Kp, Ks, M, and C, respectively.
We define the sets R+ := {x ∈ R | 0 ≤ x}, Z+ := {z ∈
Z | 0 ≤ z} and Zn := {z ∈ Z | 0 ≤ z < n}. The set of
vectors whose sizes are n is denoted by Rn, and the set
of matrices whose sizes are m × n is denoted by Rm×n.
The ith element of a vector v = (vi) is denoted by vi,
and the (i, j) entry of a matrix M = (Mij) is denoted by
Mij . The ℓ2 norm of v is denoted by ‖v‖. The maximum
and minimum eigenvalues of M are denoted by λmax(M)
and λmin(M), respectively. The identity map on a set A
is denoted by idA. We use x̌ and x̄ for a plaintext and
quantized value of x, respectively.

2.2 ElGamal Cryptosystem

Definition 1. (Katz and Lindell, 2014; Buchmann, 2004)
We call E = (Gen,Enc,Dec) a public-key encryption if it
satisfies Dec ◦ Enc = idM, where Gen : S → K = Kp × Ks

is a key generation algorithm, Enc : Kp × M → C is
an encryption algorithm, and Dec : Ks × C → M is a
decryption algorithm.

Definition 2. (Katz and Lindell, 2014; Buchmann, 2004)
We call E◦ = (Gen,Enc,Dec, ◦) a homomorphic encryption
if it is a public-key encryption that satisfies the following
conditions.

(i) M and C are group with operations ◦ and •, respec-
tively.

(ii) Assume that c = Enc(pk,m) and c′ = Enc(pk,m′),
then Dec(sk, c • c′) = m ◦m′.

The ElGamal encryption is a multiplicative homomorphic
encryption E× that consists of

Gen : k 7→ (pk, sk) = ((G, q, g, h), s),

Enc : (pk,m) 7→ c = (c1, c2) = (gr mod p,mhr mod p),

Dec : (sk, c) 7→ m = c1
−sc2 mod p,

where S = Z+, M = G, C = G2, q is a k bit prime,
p = 2q + 1 is a safe prime, g is a generator of a cyclic
group G = {gi mod p | i ∈ Zq} such that gq mod p = 1,
r and s are random numbers in Zq, and h = gs mod p.
The ElGamal cryptosystem satisfies the following equality
with the Hadamard product ∗:
Dec(sk,Enc(pk,m) ∗ Enc(pk,m′) mod p) = mm′ mod p.

2.3 Encoder and Decoder

An encoder Ecd : R+ × R → M and decoder Dcd : R+ ×
M → R with a scaling parameter γ are given as follows:

Ecd : (γ, x) 7→ x̌ = arg min
m∈M, m≥γx+α(x)

|γx+ α(x) −m|,

Dcd : (γ, x̌) 7→ x̄ =
x̌− β(x̌)

γ
,

where

α(x) :=

{

p, x < 0,

0, x ≥ 0,
β(x̌) :=

{

p, x̌ > q,

0, x̌ ≤ q,

and for a vector and a matrix, Ecd and Dcd perform
elementwise. Note that Dcd(γ, ·) ◦ Ecd(γ, ·) 6= idR, i.e.,
Ecd and Dcd cause quantization errors (Teranishi et al.,
2019b).

3. SAMPLING PERIOD REDETERMINATION

This section describes the problem of increasing a sam-
pling period and the main result of this study. First, we
introduce an event-triggering mechanism for an encrypted
controller to derive a sampling period redetermination
method. Then, we give the lower-bound of inter-event time
of the event-triggered encrypted control system, which
guarantees asymptotic stability.

3.1 Problem Setting

A plant P and a controller f are given as follows:

P :

{

x(t + 1) = Ax(t) +Bu(t),

y(t) = Cx(t),

f :

{

xc(t+ 1) = Acxc(t) +Bcy(t),

u(t) = Ccxc(t) +Dcy(t),

where t ∈ Z+ is a time step, x ∈ Rn is a state, u ∈ Rm

is an input, y ∈ Rl is an output, A, B, and C are plant
parameters, xc ∈ Rnc is a controller state, and Ac, Bc, Cc,
and Dc are controller parameters. f can be rewritten as
follows:

ψ(t) = Φξ(t) =: f(Φ, ξ(t)),

ψ(t) :=

[

xc(t+ 1)
u(t)

]

, Φ :=

[

Ac Bc

Cc Dc

]

, ξ(t) :=

[

xc(t)
y(t)

]

.
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f×
Enc z−1 P

EcdEnc

DcdDec+
u(t)

y(t)

xc(t+ 1)

xc(t)

Enc(pk, ξ̌(t))

Enc(pk, Ψ̌(t))

Fig. 1. Block diagram of encrypted control system.

Definition 3. Given a multiplicative homomorphic encryp-
tion E×, then we call

f×
Enc : C(nc+m)×(nc+l) × Cnc+l → C(nc+m)×(nc+l)

an encrypted controller if it satisfies

f×
Enc(Enc(pk,Ecd(γc,Φ)),Enc(pk,Ecd(γp, ξ)))

= Enc(pk,Ecd(γcγp,Ψ)),

Dec+(sk,Enc(pk,Ecd(γcγp,Ψ)))

= f+(Ecd(γcγp,Ψ)) = ψ̌,

where Dec+ := f+ ◦ Dec, and f is divided as f = f+ ◦ f×

(Kogiso and Fujita, 2015):

f× : ((Φij), (ξj)) 7→ (Φijξj) =: Ψ,

f+ : (Ψij) 7→ (ΣjΨij) = ψ.

Fig. 1 depicts a block diagram of an encrypted control
system.

Definition 4. The following definition of bit rate is em-
ployed:

η := log2M (bits/sample),

where M is a cardinality of alphabet (Nair et al., 2007).
Then, the bits per second can be defined as follows:

η′ :=
η

Ts
=

log2M

Ts
(bits/second),

where Ts is a sampling period. In encrypted control sys-
tems, M is given as follows:

M = |Cnc+l| × |C(nc+m)×(nc+l)|,
= 22(k+1)(nc+l)+2(k+1)(nc+m)(nc+l).

Problem 5. Given f×
Enc that stabilizes P , whose sampling

period is Ts. Design an increased sampling period T ′
s ≥ Ts

such that

• the bit rate decreases η′ to η′Ts/T
′
s.

• a closed-loop system with T ′
s is asymptotically stable.

• the controller parameter matrix Φ is the same even
after changing the sampling period.

This problem is critical for reducing the communication
traffic of a networked control system in operation while
maintaining the availability of the control system.

3.2 Design of An Increased Sampling Period

In this study, we consider a networked control system with
an encrypted state-feedback controller using the ElGamal
encryption

f×
Enc : (cF , cx(t)) 7→ cu(t),

cF = Enc(pk,Ecd(γc, F )),

cx(t) = Enc(pk,Ecd(γp, x(t))),

cu(t) = cF ∗ cx(t) mod p,

where Φ = F , C = In, ξ(t) = y(t) = Cx(t) = x(t),
ψ(t) = u(t) = F̄ x̄(t), F is a feedback gain, and In is an
n × n identity matrix. Then, M = 22(k+1)(m+1)n because
of nc = 0 and l = n. The closed-loop system is given as
follows (Teranishi et al., 2019b):

x(t+ 1) = Ax(t) +BF̄ x̄(t). (1)

This closed-loop system is not necessarily stable because
of quantization errors for F and x, even if an unencrypted
closed-loop system is stable. To regard this, the follow-
ing result (Teranishi et al., 2019b) is used to guarantee
asymptotic stability of (1).

Theorem 6. Assume that A+BF is Schur. If

γc =
dmax

Ω(Pc, Qc)
+ µc, (2)

γp(t) =
dmax

‖x(t)‖ (Θ(Pp, Qp) + µp), (3)

then A + BF̄ is Schur and (1) becomes asymptotically
stable, where dmax is the maximum width of M, µc > 0,
µp > 0,

Ω(Pc, Qc) :=
2√

mn‖B⊤PcB‖

(

−‖(A+BF )⊤PcB‖

+
√

‖(A+ BF )⊤PcB‖2 + λmin(Qc)‖B⊤PcB‖
)

,

Θ(Pp, Qp) :=

√
n

2λmin(Qp)

(

‖(A+BF̄ )⊤PpBF̄‖

+
√

‖(A+ BF̄ )⊤PpBF̄‖2 + λmin(Qp)‖F̄⊤B⊤PpBF̄‖
)

,

and Qc, Pc, Qp, and Pp are positive definite matrices
satisfying (A + BF )⊤Pc(A + BF ) − Pc = −Qc and (A +
BF̄ )⊤Pp(A + BF̄ ) − Pp = −Qp, respectively. In the
following, we assume Ecd and Dcd does not cause overflow
and underflow.

An event-triggered control system of (1) is given as follows:

x(t+ 1) = Ax(t) +BF̄ x̄(tk), (4)

= Ax(t) +BF̄ (x(t) + e(t)),

= (A+BF̄ )x(t) +BF̄e(t),

where e(t) := x̄(tk) − x(t), t ∈ [tk, tk+1), and {tk}k∈Z+

is a time sequence of control input updates. We design
a triggering condition for the time sequence by using the
methodology in (Kishida, 2019).

Theorem 7. Given F such that A+BF is Schur. Suppose
γc and γp satisfy (2) and (3), respectively. If an event-
triggered encrypted state-feedback controller is given as

cu(t) =

{

f×
Enc(cF , cx(t)), ‖x(t)‖ ≤ σ‖e(t)‖,
cu(tk), otherwise,

tk+1 = min {t ≥ tk | ‖x(t)‖ ≤ σ‖e(t)‖} , t0 = 0,

then (4) becomes asymptotically stable, where
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σ :=
1

λmin(Qe)

(

‖(A+BF̄ )⊤PeBF̄‖

+
√

‖(A+BF̄ )⊤PeBF̄‖2 + λmin(Qe)‖F̄⊤B⊤PeBF̄‖
)

,

and positive definite matrices Pe and Qe satisfy (A +
BF̄ )⊤Pe(A+ BF̄ )− Pe = −Qe.

Proof. From Theorem 6, A + BF̄ is Schur. Thus, there
exist positive definite matrices Pe and Qe such that (A+
BF̄ )⊤Pe(A + BF̄ ) − Pe = −Qe. Let V (t) = x⊤(t)Pex(t)
be a Lyapunov function candidate, then

V (t+ 1)− V (t)

= {(A+BF̄ )x+BF̄e}⊤Pe{(A+BF̄ )x+BF̄e}
− x⊤{(A+BF̄ )⊤Pe(A+BF̄ ) +Qe}x,

= x⊤(A+BF̄ )⊤PeBF̄e+ e⊤F̄⊤B⊤Pe(A+BF̄ )x

+ e⊤F̄⊤B⊤PeBF̄e− x⊤Qex,

≤ −λmin(Qe)‖x‖2 + 2‖(A+BF̄ )⊤PeBF̄‖‖e‖‖x‖
+ ‖F̄⊤B⊤PeBF̄‖‖e‖2.

By using the notations a := −λmin(Qe), b := 2‖(A +
BF̄ )⊤PeBF̄ ‖‖e‖, and c := ‖F̄⊤B⊤PeBF̄‖‖e‖2, the solu-
tion for the quadratic equation a‖x‖2 + b‖x‖ + c = 0 is
given as follows:

‖x‖ =
1

2a

(

−b±
√

b2 − 4ac
)

,

=
‖e‖

λmin(Qe)

(

‖(A+BF̄ )⊤PeBF̄‖

+
√

‖(A+BF̄ )⊤PeBF̄ ‖2 + λmin(Qe)‖F̄⊤B⊤PeBF̄‖
)

.

Therefore, V (t + 1) − V (t) is negative outside the ball
{x(t) | ‖x(t)‖ ≤ σ‖e(t)‖}. If the control input is updated
immediately when ‖x(t)‖ ≤ σ‖e(t)‖ is satisfied, then (4)
achieves asymptotic stability because V (t + 1) − V (t) is
negative for any time step t. ✷

Note that the event-triggered encrypted control system
requires that a plant computes the triggering condition.
Theorem 7 ensures the stability of the encrypted control
system with aperiodic sampling. The main result of this
study is given by using this result as follows:

Theorem 8. Given F such that A+BF is Schur. Suppose
γc and γp satisfy (2) and (3), respectively. Let ∆ ∈ Z+ be
an inter-event time of the time sequence {tk}k∈Z+ . If an
encrypted state-feedback controller is given as

cu(t) = f×
Enc(cF , cx(tk)),

tk+1 = tk +∆, t0 = 0,

∆ := max

{

τ

∣

∣

∣

∣

∣

√

ΓX(τ)

ΓE(τ)
> σ

}

, (5)

then (4) becomes asymptotically stable, where

ΓX(τ) := λmin(X
⊤(τ)X(τ)) − 2‖X⊤(τ)Aτ‖D,

ΓE(τ) := λmax(E
⊤(τ)E(τ)) + 2‖E⊤(τ)Aτ‖D

+ λmax((A
τ )⊤Aτ )D2,

X(τ) := Aτ +
τ−1
∑

i=0

Aτ−1−iBF̄ ,

E(τ) := In −X(τ),

D :=

√
n

Θ(Pp, Qp) + µp

.

Proof. Without loss of generaliry, we set t ∈ [tk, tk+1) and
tk = t0 = 0 because tk can be regarded as an initial time
after every control input update. From (4), the solution of
x(t) is

x(t) = At−tkx(tk) +

t−tk−1
∑

i=0

At−tk−1−iBF̄ x̄(tk),

=

{

At +

t−1
∑

i=0

At−1−iBF̄

}

x̄(0)−Atδ(0),

= X(t)x̄0 −Atδ0,

where δ(tk) = x̄(tk)−x(tk), x̄0 = x̄(0), and δ0 = δ(0). The
dynamics of e(t) is given as

e(t+ 1) = x̄(tk)− x(t+ 1),

= Ae(t) + (In −A−BF̄ )x̄(tk).

Then, the solution of e(t) is

e(t) = At−tke(tk) +

t−tk−1
∑

i=0

At−tk−1−i(In −A−BF̄ )x̄(tk),

=

{

In −At −
t−1
∑

i=0

At−1−iBF̄

}

x̄(0) +Atδ(0),

= E(t)x̄0 +Atδ0,

where e(tk) = x̄(tk)− x(tk) = δ(tk). Thus,

‖x(t)‖ > σ‖e(t)‖
⇐⇒ ‖X(t)x̄0 −Atδ0‖ > σ‖E(t)x̄0 +Atδ0‖,

⇐⇒
√

x̄⊤0 X
⊤Xx̄0 − 2x̄⊤0 X

⊤Atδ0 + δ⊤0 (At)⊤Atδ0

>σ
√

x̄⊤0 E
⊤Ex̄0 + 2x̄⊤0 E

⊤Atδ0 + δ⊤0 (A
t)⊤Atδ0,

⇐=
√

λmin(X⊤X)−2‖X⊤At‖κ

>σ
√

λmax(E⊤E)+2‖E⊤At‖κ+λmax((At)⊤At)κ2.

where κ = ‖δ0‖/‖x̄0‖. Because ‖δ(tk)‖ is bounded from
above by

√
ndmax/γp(tk) (Teranishi et al., 2019b),

κ =
‖δ0‖

‖x0 + δ0‖
≤ ‖δ0‖

‖x0‖
≤

√
n

Θ(Pp, Qp) + µp

= D,

where x0 = x(0). Note that elements of δ(tk) are non-
negative due to the definition of Ecd. Then, we obtain

‖x(t)‖ > σ‖e(t)‖

⇐=
√

λmin(X⊤X)−2‖X⊤At‖D

>σ
√

λmax(E⊤E)+2‖E⊤At‖D+λmax((At)⊤At)D2,

⇐⇒
√

ΓX(t)

ΓE(t)
> σ.
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Therefore, if the time sequence {tk}k∈Z+ is decided by
tk+1 = tk + ∆, then ‖x(t)‖ > σ‖e(t)‖ is satisfied for any
time step t. ✷

Remark 9. ∆ can be calculated offline because (5) does not
depend on the initial condition. Thus, the time sequence
{tk}k∈Z+ is determined in advance of control systems
operation, that is, the sampling period is redetermined as
T ′
s = ∆Ts.

Remark 10. Sampling period-redetermined control sys-
tems may become weaker against plant parameter varia-
tions and noises. In future work, we will extend Theorem 8
so as to consider their effects.

Theorem 8 allows us to redetermine the sampling period of
control systems while retaining the stability of an original
encrypted state-feedback control system. By increasing the
sampling period Ts to ∆Ts, the bit rate decreases η′ to
η′/∆. It is also possible to increase the key length instead
of decreasing the bit rate because the processing time for
encryption and decryption can be increased.

4. NUMERICAL EXAMPLE

Consider the following continuous-time plant:

A =

[

−1 0
1 1

]

, B =

[

1
0

]

.

This plant is discretized with Ts = 1 ms as follows:

A =

[

0.999 0
0.001 1.001

]

, B =

[

9.995× 10−4

5.000× 10−7

]

.

A state feedback controller is designed by using the
discrete-time linear quadratic regulator problem as follows:

F = [−2.541 −5.270],

where the cost function is

J =

∞
∑

t=0

(x(t)⊤Qx(t) + u(t)⊤Ru(t)),

state and input weights are respectively set to Q = ǫI2
and R = 1−ǫ, and the design parameter ǫ = 0.5. ElGamal
encryption parameters and design parameters are shown
in Tables 1 and 2. With these parameters, we obtain
γc = 1049.233, γp(0) = 22831.334, σ = 12.745 and ∆ = 11
(i.e., T ′

s = 11 ms), where

Pc =

[

424.244 1001.095
1001.095 4780.781

]

,

Pp = Pe =

[

424.884 1003.089
1003.089 4786.590

]

,

F̄ = [−2.540− 5.266],

and x(0) = [1 1]⊤. Thus, the bit rate η′ decreases
264000 bit/s to 24000 bit/s.

Fig. 2 shows a comparison of the control performance
between the original encrypted control system with the
sampling period Ts = 1 ms and the proposed encrypted
control system with the redetermined sampling period
T ′
s = 11 ms. Fig. 3 depicts absolute errors between the con-

trol input/state of the original encrypted control system
and those of the proposed encrypted control system. These
results confirm that stability and control performance of
the encrypted control system are retained even after the
sampling period is modified Ts to T ′

s.

Table 1. ElGamal encryption parameters.

Parameter Value Parameter Value

k 32 h 5527055734
p 6848919887 s 1076876626
q 3424459943 dmax 32
g 2

Table 2. Design parameters.

Parameter Value Parameter Value

ǫ 0.5 Qc I2
µc 103 Qp I2
µp 103 Qe I2
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(a) x1.
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s
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Fig. 2. Comparison of the control performance between the
original encrypted control system (Ts = 1 ms) and the
proposed encrypted control system, whose sampling
period is redetermined (T ′

s = 11 ms).

Fig. 4 illustrates the relationship between the fixed inter-
event time ∆ and the controller design parameter ǫ. A
total of 99 different values for ǫ varying from 0.01 to 0.99
were used. The result shows that ∆ tends to decrease
as ǫ increases. This implies that faster dynamics may
require more frequent updates of the control input than
the one with slow dynamics. We also can balance a trade-
off between a sampling period and control performance by
tuning ǫ.

5. CONCLUSION

This study proposed the redetermination method of a
sampling period for encrypted control systems while guar-
anteeing asymptotic stability. By increasing the sampling
period, it would be possible either to reduce the bit rate
for communication between a plant and controller or to
increase the key length of encryption. A lower bit rate
may lead to improving network quality, addressing such as
latencies and packet dropouts. A longer key length results
in making ciphertexts stronger.

The validity of the proposed method was investigated
through numerical simulations of an encrypted state-
feedback control system. Furthermore, the relationship be-
tween an inter-event time and a controller design parame-
ter was examined. A trade-off between the sampling period
and control performance can be considered by tuning the
design parameter based on the relationship.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3568



0 2 4 6 8 10

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
rr

o
r 

o
f 
x
1

×10
−2

(a) Error of x1.

0 2 4 6 8 10

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r 

o
f 
x
2

×10
−2

(b) Error of x2.

0 2 4 6 8 10

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
rr

o
r 

o
f 
u

×10
−1

(c) Error of u.

Fig. 3. Error of the signals between the original encrypted
control system and the proposed encrypted control
system.
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Fig. 4. Relationship between the fixed inter-event time ∆
and the controller design parameter ǫ.

Future work includes robustness analysis for sampling
period-redetermined encrypted control systems. We will
also extend the proposed method so as to consider distur-
bances and delayed control inputs.
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