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Abstract: The Big Data revolution refers to using a large amount of data to improve decision
making. In process control applications, the use of big data techniques has been restricted
to complementing classical control schemes as model-based or PID approaches. This work
focuses on a model-free purely data-driven control strategy known as Big Data approximating
control (BDAC), which was recently introduced in the context of process control. In particular,
this work proposes two modifications to the classical BDAC formulation and presents a real
implementation of the enhanced BDAC technique to a real industrial paste thickener.
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1. INTRODUCTION

Process control is a mature area of control engineering
that aims at enhancing the performance of an industrial
process by applying automatic control concepts. Among
the existing control techniques, model-based control has
become the state-of-the-art tool in process control appli-
cations, showing great success in oil, paper and pulp, and
mining processes (Mayne, 2014; Qin and Badgwell, 2003).

Recently, industrial facilities have seen an important up-
grade in connectivity, driven by the Industrial Internet
paradigm, which has resulted in the availability of an
enormous amount of process data, typically in the form
of time-series, which represents an opportunity to develop
data-driven algorithms and applications for supervision,
modeling and control (Ge, 2017). This is known as the big
data revolution (Mayer-Schonberger and Cukier, 2013),
whose main purpose is to use large amounts of data to
enable knowledge discovery and better decision making.

The big data revolution has bolstered the fast development
of technologies and techniques for handling enormous
amounts of data. Machine learning and deep learning
algorithms are examples of data-driven techniques that
have had impressive success in extracting hidden patterns
and rich information from big data in different areas.

As expected, the use of big data techniques has also
impacted process control. However, although there are
many applications based on these new techniques, most
of them have been developed following a classical control
scheme, replacing some of its components but without
altering the underlying structure. For example, Lu et al.
(2017) presents an adaptive PID with a neural network
to regulate its gains. The work by Núñez et al. (2020)
presents a Model Predictive Control (MPC) scheme using
a neural network as a model and a nonlinear optimizer,
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and Liang et al. (2017) presents an optimal controller using
a support vector machine as the model. Despite the fact
that these techniques have proven to be effective, classic
control schemes were not designed for getting the most out
of big data. Therefore, designing a controller architecture
tailored specifically for exploiting big data in the context
of process control is of great interest.

A first step in this direction was taken in Stanley (2018),
where a new control paradigm, model-free and purely
based on a big data approach, called Big data approxi-
mating control (BDAC) is introduced. In Stanley (2018),
it was shown that BDAC is capable of controlling different
systems with almost no modifications. However, all the
evaluations were performed in a simulated environment
and its performance in a real process is yet to be seen.
In this work, we first propose two key modifications to
the original formulation of the BDAC in what we call an
enhanced BDAC scheme. We then study the application
of BDAC to a real industrial process: a paste thickener,
and we show that this new control paradigm is capable of
controlling this challenging process, in a real-life scenario,
without the use of an explicit model and only relying on
archived data. Consequently, the contributions of this ar-
ticle are twofold, namely, the formulation of the enhanced
BDAC scheme and its application to a real industrial
process.

1.1 Notation and Basic Definitions

In this work, R denotes the real numbers, Z≥0 the non-
negative integers, Rn the Euclidean space of dimension n,
and Rn×m the set of n×m matrices with real coefficients.
For a, b ∈ Z≥0 we use [a; b] to denote their closed interval
in Z. For a vector v ∈ Rn, vi denotes its ith component.
For a matrix A ∈ Rn×m, Ai denotes its ith column, Ai

its ith row, and ||A||2,1 its L2,1 norm, given by ||A||2,1 =∑m
j=1

(∑n
i=1 |aij |2

) 1
2 , where aij is the ijth entry of A. For

an n-dimensional real-valued sequence α : Z≥0 → Rn,
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α(t) denotes its tth element, and α[a;b] denotes its restric-
tion to the interval [a; b], i.e., a sub-sequence. For an n-
dimensional sub-sequence α[a;b], M(α[a;b]) ∈ Rn×(b−a+1)

is a matrix whose ith column is equal to α(a+ i− 1), with
i ∈ [1; b− a+ 1].

2. BDAC BACKGROUND

Consider a generic non-linear time-invariant system Σ
described by

Σ :

{
ẋ = f(x, u), x ∈ X ⊆ RK , u ∈ U ⊆ RM

y = h(x, u), y ∈ Y ⊆ RN , (1)

where f and h are smooth non-linear mappings. Assume
that the system operates over a set of steady-states I,
such that for all (yi, xi, ui) ∈ I, f(xi, ui) = 0 and
h(xi, ui) = yi holds. Moreover, for each (yi, xi, ui) ∈
I, Σ is locally asymptotically controllable to (yi, xi, ui).
BDAC is a discrete-time control strategy that solves the
problem of regulating the system Σ to an operating point
(yi, xi, ui) ∈ I by using only historical data in the form
of sampled time series, i.e., sequences ȳ and ū such that
ȳ(k) and ū(k) represents the output and input of Σ at time
instant kT respectively, where T is the sampling period.
BDAC works in two stages: i) a training phase where
the controller “learns” the system dynamics by gathering
sequences that contain rich input-output information; and
ii) an estimation and control phase, where given a sequence
representing the current operating condition of Σ and
a reference trajectory, the controller retrieves a control
sequence from which the first input is applied, following
the receding horizon control principle (Kwon and Han,
2005).

2.1 Training phase

During the training phase, BDAC works with an observa-
tion sequence Σ̄, with Σ̄T (k) = [ȳT (k) ūT (k)], to generate
a database S such that each s ∈ S, a trajectory, is a matrix
s = M(Σ̄[k−2nh;k]) where k is the time instant at which the
trajectory s was acquired. We can think of S as a subset
of a set Ω that contains all possible system trajectories of
length 2nh + 1. As it might be thought, Ω could be very
large and intractable. In contrast, we want S to remain
of a manageable size with as much information as possi-
ble. Therefore, in addition to recording only trajectories
with enough dynamic information, similar trajectories are
merged, which also helps S to be adaptive in case the
system is non-stationary.

Rejection: Consider a database S for Σ is being formed.
When a new candidate trajectory snew is available, it goes
a first screening process to check whether the system is
in steady-state or not. To this end, a simple steady state
detector is created just by analyzing the difference in
mean and variance at different points of all the constituent
signals of snew. If the differences are lower than a threshold,
then the system is declared in steady state and the
trajectory snew is rejected for lacking dynamic content.

Filtering: If the trajectory snew was not rejected, then
it can enter S. However, there are three possible options
for the new trajectory to enter S, depending on: a given

Table 1. Target calculation summary

Type of signal Values for svirtualtarget

Controlled variables Setpoint

Manipulated variables Last value

Disturbances Last measurement

threshold dth, the maximum size for S denoted as Smax,
and the closest trajectory to snew already existing in S,
sclose, where sclose = argmins(||s− snew||2,1), s ∈ S.

• ||snew − sclose||2,1 > dth: In this case, snew is incorpo-
rated to S as a new trajectory.

• ||snew − sclose||2,1 ≤ dth: snew is incorporated recur-
sively through real time exponential filter clustering
(RTEFC) given by (Stanley, 2018):

sclose = αsclose + (1− α)snew. (2)

This filtering helps to attenuate noise and the impact
of unmeasured disturbances and, additionally, helps
S to slowly adapt to process changes.

• Size of S is greater than Smax: In this case, forced fil-
tering occurs using RTEFC independently of ||snew−
sclose||2,1.

It should be noted that, as stated in Stanley (2018),
to account for causality, the definition of the norm is
modified. Here ||snew − sclose||2,1 could be thought of as a
weighted L2,1 norm where all the weight values for process
outputs are set to zero, so the distance calculation is only
over process inputs. By that, we are clustering together
trajectories of similar inputs but not necessarily similar
outputs, thus letting S to adapt to slow system changes
that cause outputs to same inputs to be different.

2.2 Control and Estimation phase

After the training phase is finished, hence S is formed by
a large number of different trajectories, the online control
and estimation phase starts. However, it should be noted
that training can continue online and more trajectories
should be incorporated to S during this phase to allow the
controller to adapt.

Target trajectory: The first step is to construct a target
trajectory for the system, starget. To this end, at each
control instant k, starget is generated by concatenating
two sub-trajectories as starget = [srealtarget svirtualtarget ], where

srealtarget = M(Σ̄[k−nh;k]) is a trajectory that considers the
system dynamics during the last nh + 1 sampling instants,
and svirtualtarget is a virtual trajectory of size nh constructed
depending on the three types of signals that it could con-
tain. 1) First for controlled variables, svirtualtarget contains the
desired setpoints. 2) In the case of manipulated variables,
since we would like to minimize control variations, svirtualtarget

should hold the last value applied to the process. 3) for
process inputs acting as disturbances, since their behavior
is uncertain, svirtualtarget holds the last measured value. Table

1 presents the values in svirtualtarget for each type of variable.

BDAC approximation problem: When generating starget
we were careful to construct it based on control objectives,
such as reaching the desired setpoint under a minimum
control effort. However, consistency with process dynamics
was not considered at all. The BDAC approximation
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problem consists in approximating starget, in the best
possible way trying not to violate the system dynamics.
Mathematically, this amounts to finding

s∗ = argmins||s− starget||2,1, s ∈ Ω, (3)

where Ω is the set of all possible trajectories of the system.
Since starget may not be feasible, and we do not have access
to the set Ω, the BDAC approximation problem is solved
using trajectories stored in S. In Stanley (2018) several
solutions to this problem were proposed. Here we revisit
those solutions and propose novel solutions to the BDAC
approximation problem

• Direct Matching : This is the simplest method and
it consists in approximating s∗ just by the closest
trajectory in S. Mathematically:

s∗ = argmins||starget − s||2,1, s ∈ S (4)

Intuitively, as S tends to Ω direct matching should
have better results and in the limit where S = Ω this
simple method would achieve the best performance.
However, when S is small relatively to Ω, this method
achieves poor results as we will see later.
• Orthogonal decomposition: This method consists in

constructing an orthonormal set of basis vectors ei
from the rows of S, using the Gram-Schmidt proce-
dure (Leon et al., 2013). Then, the solution is given
by the orthogonal projection of starget onto the space
created by the basis vectors. Mathematically,

s∗ =
∑
i

< starget, ei > ei, (5)

where < ·, · > denotes the inner product of two
vectors. This linear technique was proposed in Stanley
(2018) and used in its simulations.

• Inverse distance weighting (IDW): Also proposed
in Stanley (2018), IDW is a nonlinear multivariate
interpolation method popular in image processing
that is based on normalized weights calculated as
the inverse of the L-distance between starget and the
stored trajectories in S. Mathematically,

s∗ =

∑
i wisi∑
i wi

, wi =
1

||starget − si||L
(6)

• PCA-approximation: We now propose a new can-
didate method based on Principal component anal-
ysis (Wold et al., 1987). This method is a linear
technique similar to orthogonal decomposition, but
here the basis vectors are the eigenvectors of the
covariance matrix of the rows of S, ordered based
on the magnitude of their corresponding eigenvalues.
In this case s∗ is calculated by taking the projection
of starget to the principal components subspace, and
then transforming back to the original space using
only the first n (n ≤ dim(S)) components. The idea
behind using only the first n principal components
for reconstruction is to avoid the effect of undesired
outliers or noise that might be present in S (Langarica
et al., 2020).

• PCA-approximation with KNN : This novel candi-
date method is a nonlinear extension of the PCA-
approximation. In this case, the PCA transformation
is not done with the entire S but only with the
k nearest neighbors of starget. Even when PCA is
used with a linear kernel, the locality of this method
helps to approximating nonlinearities of the space

generated by the vectors in S in a better way. PCA-
approximation with KNN can be implemented with
both linear and nonlinear kernels.

After solving the BDAC approximation problem with any
of the methods explained above, the manipulated variables
are extracted from s∗ and applied to the process. The
whole control and estimation procedure must be repeated
each time step following the receding horizon principle.

Finally, it should be noted that s∗ can be used not only for
control purposes, but also for prediction since it includes
an estimation of future values for each variable based on
historical information.

Weighting and constraint management in BDAC: An
important aspect for any high performing controller is
prioritization of control objectives and constraint manage-
ment for both controlled and manipulated variables. These
two aspects are of great importance when implementing a
controller in a real industrial process, where reaching the
setpoint is more important for some variables and a viola-
tion of constraints may have catastrophic consequences.

For prioritizing control objectives, a weighting strategy
was suggested in Stanley (2018) consisting in normalizing
all signals and then weighting them depending on their
type: disturbance, manipulated or controlled variables. A
method for handling constrains was not proposed.

To account for constraints, a simple yet effective approach
is proposed here, which consists in using only a subset of
the database Sres ⊆ S, that contains only those trajecto-
ries in S that do not violate any of the constraints when
solving the BDAC approximation problem. Since the solu-
tion to the BDAC approximation problem, solved with any
of the methods introduced above, is an interpolation over
a finite set of trajectories, then if none of the trajectories
violate any of the constraints, s∗ neither does.

Integral Action: Since S (or Sres) may not contain
information of a given setpoint, it could be the case that
s∗ cannot regulate the system to that setpoint, yielding
a permanent error. To rule out this behavior, a reactive
pseudo-integral term is added to the BDAC formulation.

This pseudo-integral action consists in replacing the set-
point SP for controlled variables by SP−Kie(k), whereKi

is the integral constant and e(k) is given by e(k) = y(k)−
SP with y(k) being the measured controlled variable at
time k. What this integral action does is to move the real
setpoint in the opposite direction of the error, trying to
compensate it when retrieving signals from S.

3. BDAC OF A SIMULATED PLANT

To test the proposed enhancements to the BDAC formula-
tion, we first apply BDAC to a simulated plant. The well-
known quadruple tank system (Johansson, 2000), challeng-
ing for controllers because of its nonlinear, MIMO (multi-
input multi-output) and coupled nature, is chosen as toy
example. Figure 1 shows the quadruple-tank system. The
four levels are measured and only the inferior tanks levels
(Tank 1 and Tank 2) are controlled by the two pumps.

To construct the database S, the system was excited with
a set of steps of different magnitudes and the resulting
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Fig. 1. Quadruple-tank system (Johansson, 2000). The
control objective to control Tank 1 and Tank 2 levels
using both pumps.

Table 2. Parameters used to control
Quadruple-Tank system (W stands for

weights).

Parameter Value

nH 50

dth 20

α 0.98

Smax 500

Ki 2

W controlled 2

W manipulated 1

trajectories were saved following the procedure described
in the previous section. Once S is constructed, BDAC was
applied for setpoint tracking. The parameters used in all
the simulations are shown in table 2.

To evaluate performance, the different methods for solving
the BDAC approximation problem were compared against
using the ISE (integral squared error) and the total energy
(TE) indices, defined as

ISE =

T∑
t=0

(rt − yt)2, TE =

T−1∑
i=0

(ut+1 − ut)2. (7)

The trajectory used for setpoint tracking is shown in
Figure 2 along the closed-loop response of the BDAC
controller using local PCA with 30 neighbors. The results
of all the tested methods are presented in Table 3. From
these results, it can be seen that, in general, when the
search of trajectories is restricted to a smaller space
(fewer components or fewer neighbors) the behaviour of
the controller is more aggressive, having a lower ISE but
a higher TE. This trade-off can be adjusted depending
on the requirements of the specific application. Another
interesting result observed in Table 3 is that methods that
use nonlinear kernels have much worse results, this may
be due to the fact that the Gaussian kernel is impossible
to invert exactly and it has to be estimated numerically,
which may lead to poor results.

(a) Controlled variables

(b) Manipulated variables

Fig. 2. Setpoint tracking results using the local PCA
technique with 30 neighbors.

Table 3. Setpoint tracking results for the four
tanks system.

Method ISE TE

Orthogonal decomposition 38947 0.031

IDW 55957 0.672

Min dist 149836 2.044

PCA (all components) 40275 0.027

PCA (200 components) 13495 0.292

Local PCA (100 components, 30 neighbors) 12423 0.577

K. PCA (200 components) 397078 0.571

K. Loc. PCA (100 components, 30 neighbors) 354280 0.304

4. APPLICATION TO AN INDUSTRIAL PASTE
THICKENER

To evaluate the performance of the BDAC technique in
a real industrial process, we applied it to control an
industrial paste thickener in a mineral processing facility.

4.1 Thickening Basics

Thickening is the primary method for producing high
density tailings slurries. The most common method gen-
erally involves a large thickener tank with a slow turn-
ing raking system. Typically, the tailings slurry is added
to the tank after the ore extraction process, along with
a sedimentation-promoting polymer known as flocculant,
which increases the sedimentation rate to produce thick-
ened material discharged as underflow. In this context,
the main control objectives are: 1) to stabilize the solids
contents in the underflow; 2) to improve the clarity of the
overflow water, and 3) to reduce the flocculant consump-
tion (Núñez et al., 2020). In this work the focus is on
the control of a paste thickener, a taller type of thickener
that produces a discharge with a solids content near 70%.
Figure 3 presents the process and instrumentation diagram
of the thickener under study.

Regarding operation, it is customary in thickening plants
to control the solids content in the discharge and conduct-
ing an stabilizing control over the internal states around

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12122



Flocculant

Centrifugal
Pump

Feed

Tailings 
Disposal

 

Thinning

Stand-by

Mass Flow
Measurement

Volumetric Flow
Measurement

Volumetric Flow
Measurement

Density
Measurement

Density
Measurement

Hydrostatic
Pressure

Measurement

Positive
Displacement

Pump

Centrifugal
Pump

Centrifugal
Pump

· Clarity
· Interfase
· Mud

Fig. 3. Process and instrumentation diagram of the thick-
ener under study.

Table 4. Variables used in the first test

Type of variable Variables

Controlled variables Output solids concentration

Manipulated variables Flocculant flow, Output Flow

Measured disturbances Input Flow, Input solids concentration

Table 5. Variables used in the second test

Type of variable Variables

Controlled variables Bed, Rake Torque, Hydrostatic Pres-
sure, Output solids concentration

Manipulated variables Flocculant flow, Output Flow

Measured disturbances Input Flow, Input solids concentration

desirable ranges. These internal states are the mud, in-
terface, bed and clarity levels, which are measured online
using the “smart diver” sensor, the hydrostatic pressure
and the rake torque, which are indicators of the amount of
solids inside the thickener. It should be noted that thick-
ening is a slow process, with response times in the order
of several hours and in addition to this, is a highly non-
linear multi-input multi-output (MIMO) process, highly
autoregressive and subject to multiple disturbances as
mineral hardness and granulometric distribution. Hence,
traditional mathematical modeling based on differential
equations is very difficult and inaccurate. In the same
line, synthesizing a first-principles-based controller for au-
tomatic regulation is unfeasible given the intricate dynam-
ics and strong disturbances. In this context, data-driven
models and controllers, as BDAC, are an appealing option.

4.2 Controller design

Given the control objectives mentioned above, two BDAC
configurations were tested in the mining facility for con-
trolling the thickener. The first configuration aims at
tracking a setpoint only for the output solids concentra-
tion, while the second configuration aims at tracking a
setpoint for the output solid concentration and all the
internal states. Tables 4 and 5 show the variables and their
role in S for both configurations, respectively.

Based on historical data spanning the period from April
2018 to March 2019, yielding around 96.500 training
sequences with T = 5 minutes, it was determined that

Table 6. Parameters used to control the Thick-
ener (vector’s order is consistent with Table 5)

Parameter Value

nH 60

dth 80

α 0.99

Smax 1500

Ki [1, 0, 0, 2]

W controlled [2, 1, 1, 10]

W manipulated [1, 1]

W perturbations [0.2, 0.2]

Manipulated V. limits [[0.2-1.8], [50-180]]

Controlled V. limits [[3-5], [80-100], [10-30], [65-75]]

Setpoints [4.2, 89, 20, 70]

BDAC method Local PCA with 30 Neighbors

the response time of the system ranges from 4 to 5
hours, therefore, nH was set to 60 in both configurations.
Furthermore, since the thickener is highly nonlinear, local
linear approximations of S are expected to perform better
than linear approximations of the entire space. Hence,
the local PCA method was chosen for solving the BDAC
approximation problem in both configurations.

Another important parameter to set precisely is dth, which
if set too small forces every trajectory to be introduced in S
and reach Smax with not necessarily sufficient information,
on the other hand, if dth is set to a very large number
it forces every trajectory to be filtered with others and
novel information is lost. Therefore, to select a good dth,
we sampled some trajectories from historical data and set
a desired percentage of these trajectories to be stored in
S as novel cases. Then by an iterative method we moved
dth until the desired number of cases were stored. Table 6
shows the parameters used in the second configuration.
For the first configuration, the corresponding subset of
parameters was used.

4.3 Results

Test 1 : Figure 4 shows the results obtained for the first
configuration, over a 19 hours test. It can be seen that
BDAC succeeds in the task of disturbance rejection and
setpoint tracking of the output solids concentration, the
only controlled variable in this configuration, with a minor
permanent error.

Test 2 : Figure 5 shows the results obtained for second
configuration over a 10 hours test. In this case, in addi-
tion to the output solid concentration, the rake torque
is plotted as well to show how the controller succeeds in
controlling secondary variables at their setpoins despite
the strong disturbances. It is also interesting to see how
the controller is able to manage long delays between ma-
nipulated and controlled variables. The flocculant, which
mostly affects the rake torque, acts drastically around at
19:00 hours to reduce the torque value and has effect
only after almost three hours at 22:00, then the controller
stabilizes flocculant at 22:00 having the effect of stabilizing
the torque at 02:00. On other hand the output flow, that
mostly affects the output solid concentration acts around
18:30 to increase the solid concentration value and then
stabilizes around 19:30, stabilizing the controlled variable
at 22:00 with only a minor permanent error.
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(a) Controlled variables

(b) Manipulated variables

(c) Disturbances

Fig. 4. Setpoint tracking of BDAC controller using the
local PCA technique with 30 neighbors.

(a) Controlled variables

(b) Manipulated variables

(c) Disturbances

Fig. 5. Setpoint tracking of BDAC controller using the
local PCA technique with 30 neighbors.

5. CONCLUSIONS AND FUTURE WORK

An enhanced formulation of Big Data Approximating Con-
trol (BDAC) is presented and evaluated in controlling both
a simulated plant and an industrial paste thickener. A
first evaluation in a simulated four tanks system indicates
that the novel local linear approximation based on PCA
outperforms previously proposed methods for solving the
BDAC approximation problem. Evaluation in the indus-
trial paste thickener shows that BDAC successfully reg-
ulates the system to the setpoint despite the presence of
strong disturbances.

Future work includes developing new methods for solving
the BDAC approximation problem using advanced nonlin-
ear techniques, such as neural networks.
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