
Simultaneous Parameter and State
Estimation of Agro-Hydrological Systems

Song Bo ∗ Soumya R. Sahoo ∗ Xunyuan Yin ∗ Jinfeng Liu ∗,1

Sirish L. Shah ∗

∗ Department of Chemical & Materials Engineering, University of
Alberta, Edmonton, AB T6G 1H9, Canada.

Abstract: The Richards equation plays an important role in the study of agro-hydrological
systems. It models the water movement in soil in the vadose zone, which is driven by capillary
and gravitational forces. Its states (capillary potential) and parameters (hydraulic conductivity,
saturated and residual soil moistures and van Genuchten-Mualem parameters) are essential for
the accuracy of mathematical modeling, yet difficult to obtain experimentally. In this work, an
estimation approach is developed to estimate the parameters and states of the Richards equation
simultaneously. Parameter identifiability and sensitivity analysis are used to determine the most
important parameters for estimation purpose. Three common estimation schemes (extended
Kalman filter, ensemble Kalman filter and moving horizon estimation) are investigated. The
estimation performance is compared and analyzed based on extensive simulations.
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1. INTRODUCTION

Water scarcity is becoming serious issue worldwide due
to population growth and climate change. According to
United Nations statistics (FAO, 2016), approximately 70%
of available fresh water is consumed for agricultural activ-
ities, with the main consumer being irrigation. Currently,
it is still a common practice to use open-loop irrigation,
which leads to low average water-use efficiency. Closed-
loop irrigation is a promising alternative to reduce water
consumption (Mao et al., 2018). In the development of
such a closed-loop irrigation system, it is important to have
the soil moisture information of the entire field, which is
in general very difficult to obtain. One way to overcome
this challenge is to estimate the field’s soil moisture based
on limited sensor measurements. However, this depends on
the accuracy of the agro-hydrological model. We aim to de-
velop a systematic parameter and state estimation scheme
that can provide accurate estimates of soil moisture.

We consider simultaneous parameter and state estimation
based on agro-hydrological systems modeled using the
Richards equation. The parameters of Richards equation
are related to soil properties. Different approaches have
been developed to estimate their values. They were esti-
mated in a soil lab by fitting the soil-water retention curve
and hydraulic conductivity curve using collected field data
of soil moisture, hydraulic conductivity, and corresponding
capillary pressure head (van Genuchten, 1980). However,
soil properties may change over time and it would be
expensive to take frequent soil samples for lab analysis
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especially when a big field is considered. As an alternative
to direct lab analysis, soil parameters can be estimated
indirectly based on the Richards equation and some easily-
accessible field measurements by minimizing the difference
between measured values and model predicted values. This
type of indirect approaches are referred to as inverse es-
timation (Hwang and Powers, 2003). The above methods
can only estimate soil parameters but not soil moisture,
and cannot be used for online parameter estimation.

Sequential data assimilation is a widely used approach
in estimating soil parameters online. It has the ability
to deal with uncertainties in the measurements and the
model. Extended Kalman filters (EKF) (Lv et al., 2011),
and ensemble Kalman filters (EnKF) (Li and Ren, 2011)
are common and widely used algorithms in sequential
data assimilation for soil parameter estimation. However,
these methods cannot handle constraints on the states or
parameters. Constraints on the states and parameters are
important information and may be used to significantly
improve estimation performance as will be demonstrated
in the simulations of this work. To address this issue,
the optimization based moving horizon estimation (MHE)
method is considered, which is widely used in state esti-
mation of nonlinear systems with explicit constraints taken
into account (Rao et al., 2003).

In this work, the investigated system and the formulation
of the mathematical model are introduced in Section 2.
The estimation methods, MHE, EKF, and EnKF for the
augmented system are introduced in Section 3. Section 4
includes the methods of identifiability and sensitivity, used
to study the significance of parameters. Section 5 shows the
synthetic experimental setup, determination of significant
parameters, and comparison of estimation results, followed
by concluding remarks in Section 6.
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Fig. 1. A schematic diagram of an agro-hydrological system

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

An agro-hydrological system shown in Figure 1 (Nahar,
2019) describes the water movements between soil, crop,
and atmosphere. In this work, we focus on soil that is above
the water table (i.e., soil in the vadose zone), where water
movement is mainly driven by capillary and gravitational
forces. The water dynamics is modeled using Richards
equation shown below (Richards, 1931):
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where h (m) is the capillary potential in the unsaturated
soil. The value 1 on the right-hand-side denotes the impact
of gravitational force on water in the vertical (z) direction.
K(h) (m/s) and c(h) (1/m) denote hydraulic conductivity
and capillary capacity of the soil, respectively, as follows
(van Genuchten, 1980):
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where Ks (m/s), θs (m3/m3), and θr (m3/m3) are satu-
rated hydraulic conductivity, saturated and residual soil
moisture, respectively. The van Genuchten-Mualem pa-
rameters α (1/m) and n characterize the properties of the
soil, which are proportional to the inverse of the soil air
entry pressure and of soil porosity, respectively. The soil-
water retention curve built by van Genuchten (1980) is
shown below:

θ (h) = (θs − θr)
[

1

1 + (−αh)
n

]1− 1
n

+ θr (4)

In (4), θ (m3/m3) denotes volumetric water content in
soil. The five parameters θs, θr, α, n, and Ks determine
the properties of a type of soil. The sequential estimation
of soil properties is studied based on real-time field mea-
surements: capillary potential h. We consider that the soil
properties are spatially and temporally homogeneous.

2.1 Finite difference model development

By applying two-point forward difference scheme and two-
point central difference scheme to approximate the deriva-
tives with respect to the temporal and spatial variables,
respectively, the discrete-time finite difference model at
node i and time instant k + 1 can be obtained as follows:

hi(k + 1) = hi(k) +
∆t
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where k ∈ [0, Nt] ⊂ Z and i ∈ [1, Nx] ⊂ Z, representing
time and position indexes, respectively. Nt and Nx are
the total number of time instants and states investigated.
∆t and ∆z represent the discretization step sizes in the
temporal and spatial domains. The hydraulic conductivity,
for example, Ki− 1

2
, is linearized explicitly as Ki− 1

2
(h) =

K(hi−1+hi
2 ) and ci(h(k)) is defined as c(hi(k)).

The Neumann boundary condition is utilized to character-
ize the top and bottom boundaries of the system and are
shown below, respectively:
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where the subscripts T and B represent the top and
bottom boundary conditions, respectively. The qT (m/s)
is the irrigation rate which is considered as the input of the
system and free drainage boundary condition is applied at
the bottom.

For the sake of simplicity, the compact form of the model is
obtained by combining Nx of (5) for all spatial nodes and
the boundary conditions, (6) and (7). It is shown below:

x (k + 1) = F (x (k) , u (k) , p (k)) + ωx (k) (8)

where x(k) ∈ X ⊂ RNx represents the state vector
containing Nx capillary pressure values for corresponding
spatial nodes, at the defined time instant k. p(k) ∈
P ⊂ RNp , represents the parameter vector containing the
parameters to be estimated. u(k) ∈ U ⊂ RNu , ωx(k) ∈
Wx ⊂ RNωx denote the input and the model disturbances,
respectively.

The general output function, with the measurement noise
taken into account, is shown below:

y (k) = G (x (k) , p (k)) + ν (k) (9)

where y(k) ∈ Y ⊂ RNy and ν(k) ∈ V ⊂ RNν denote
the measurement vector and measurement noise. The
tensiometers are used to measure the water potential h in
the soil, G(·) in (9) represents a matrix indicating which
states are measured by the tensiometers.

Furthermore, in order to estimate the states and param-
eters simultaneously, the parameter vector is augmented
at the end of the state vector and treated as a part of
the augmented state vector, X = [x, p]T . An estimation
of the augmented state vector X brings the benefit to
estimate the states and parameters at the same time. The
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augmented model can be constructed by augmenting (8)
with the following equation:

p (k + 1) = p (k) + ωp (k) (10)

where ωp(k) ∈Wp ⊂ RNωp . When the parameter vector p
is assumed to be constant, ωp is equal to 0.

The augmented model and output function used for simul-
taneous parameter and state estimation are shown below:

X (k + 1) = Fa (X (k) , u (k)) + ωa (k) (11a)

y (k) = Ga (X (k)) + ν (k) (11b)

where X(k) ∈ Xa ⊂ RNx+Np , ωa(k) ∈Wa ⊂ RNw+Np , and
the subscript a of F (·) and G(·) denotes the augmentation.

3. ESTIMATION METHODS

In this work, three common estimation schemes, MHE,
EKF, and EnKF are applied to the augmented model to
estimate the states and parameters. The design of these
methods are detailed next.

3.1 Moving horizon estimation

MHE is an online optimization based estimation method
(Rao et al., 2003). The MHE optimization problem used
in this work is formulated as follows:

min
X̂(k−N),···,X̂(k),
ω̂a(k−N),···,ω̂a(k−1)

V (X̂(k−N))+

k−1∑
j=k−N

‖ω̂a(j)‖2Q−1+

k∑
j=k−N

‖v̂(j)‖2R−1

(12a)

s.t. X̂(j + 1) = Fa(X̂(j), u(j)) + ω̂a(j),

j ∈ [k −N, k − 1] ⊂ Z (12b)

y(j) = Ga(X̂(j)) + ν̂(j), j ∈ [k −N, k] ⊂ Z (12c)

V (k −N) =
∥∥∥X̂(k −N)− X̄(k −N)

∥∥∥2
P−1

(12d)

X̄(k −N) = X̂(k −N |k −N) (12e)

X̂(j) ∈ Xa, v̂(j) ∈ V, j ∈ [k −N, k] ⊂ Z (12f)

ω̂a(j) ∈Wa, j ∈ [k −N, k − 1] ⊂ Z (12g)

In the MHE optimization, the objective is to minimize
the distance between the predicted and observed measure-
ments which is measured by the term ‖ν̂‖2R−1 as shown
in (12a). The caret sign ˆ indicates that the variable is
estimated. In addition, the model uncertainty or the pro-
cess disturbance is taken into account and represented by
‖ω̂a‖2Q−1 . The arrival cost, V summarizes the information
from the initial state of the model up to the beginning
of the estimation window of the MHE. N denotes the
length of the estimation window. After each optimization,
only the last estimated state within the estimation window
is used. X̂ and ω̂a within the moving window are the
decision variables of the optimization problem. The terms
ω̂a and ν̂ obey the process constraints of (12b) and (12c),

respectively. And X̄ follows the definition of (12e). X̂(k−
N |k−N) represents the estimated state X̂ at time instant
k−N , which is estimated at time instant k−N . Matrices
P , Q, R are positive definite matrices and they are the
covariance matrices of state uncertainty, process noise ωa,
and measurement noise ν, respectively. In addition, MHE
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Fig. 2. A flowchart of the procedure to determine the
significant parameters and number of sensors

takes into account constraints on the states, parameters,
and model uncertainties as expressed in (12f) and (12g).

3.2 Extended Kalman filter and ensemble Kalman filter

EKF is a common method used for state estimation of
nonlinear systems based on successive linearization of the
nonlinear system. It involves a prediction step and an
update step. The algorithm can be found in Lv et al.
(2011).

The EnKF is a method developed by Evensen (1994) based
on Monte Carlo method. An ensemble of trajectories of the
system is generated based on the priori probability distri-
bution of the case. A practical implementation scheme is
introduced by Gillijns et al. (2006), which estimated the
probability distribution based on the information embed-
ded within ensembles, instead of propagation of the state
covariance matrix P . This scheme is used in this work.

4. PROPOSED PROCEDURE TO DETERMINE
SIGNIFICANT PARAMETERS AND NUMBER OF

SENSORS

In reality, it is nearly impossible to measure all states,
and the parameters can not be determined easily. First,
according to Sahoo et al. (2019), it states that the original
system of (8) is observable using limited number of mea-
surements. However, for this work the augmented system
(11) is studied, for this case it is necessary to ensure
that the parameters are also identifiable. The proposed
procedure to check the identifiability of the parameters,
to select appropriate parameters for estimation and to
determine the minimum number of sensors is shown in
Figure 2. The key steps are explained below.
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4.1 Determine candidate parameter sets for estimation

After augmenting the original nonlinear system with the
parameters, the entire system may not be observable.
In order to determine which parameters can and should
be estimated online, we resort to observability analysis.
In this step, we assume that all states are measured.
This ensures that the observability analysis results depend
only on the parameters. If the augmented system is not
observable, then the unobservability is caused by the
augmentation of the parameters in the state vector.

When checking the observability of the augmented system,
the system is started with all the parameters augmented.
If the augmented system is not observable, then one of
the parameters is removed from the augmented system.
If there are Np parameters, then there are Np different
ways to remove the one parameter. All these Np cases
are considered. If after removing one parameter and upon
finding that the new augmented system is observable, we
continue to the next step to determine which parameter
set to estimate (described in the next subsection). If
we can still not find an observable augmented system
after removing one parameter, we continue to remove two
parameters from the original augmented system. Again,
all the possible cases should be considered. If we can still
not find an observable system, we continue to remove
three parameters from the original augmented system.
This continues until we find at least a system that is
observable.

When checking the observability, we propose to use
the Popov-Belevitch-Hautus (PBH) observability theory.
Since the augmented system is a nonlinear system, it
should be linearized before PBH can be applied. Instead
of linearizing the system at one point, it can be linearized
at different points along typical operating trajectories as
used in Nahar et al. (2019).

Note that the observability analysis described in this step
may generate more than one candidate parameter sets that
can be estimated through augmentation of the original
agro-hydrological system.

4.2 Sensitivity analysis

If there is only one candidate parameter set from the
previous step, we can continue with the candidate and
move to the next subsection to find the minimum number
of sensors. However, if there are more than one candidates,
we need to determine which parameter set to choose. Sen-
sitivity analysis is proposed to determine the importance
of these parameters and pick the set containing the most
important parameters for further analysis.

The sensitivity analysis measures how the outputs respond
when there is a change in one parameter. The sensitivity
matrix Sy(k) shown in Stigter et al. (2017) contains the
information about, at time instant k, how each output is
affected by X(0) which is constituted of the initial state
x(0) and the parameters p.

The detailed steps to derive the sensitivity matrix is in-
spired by Stigter et al. (2017). Once the sensitivity matrix
is obtained, the relative importance of different param-
eters can be determined. Specifically, we can exam the

magnitudes of the elements in the sensitivity matrix. Each
parameter corresponds to one column in the sensitivity
matrix. We can use, for example, the summation of the
absolute values of the elements of each column to compare
the relative importance of parameters. A bigger value im-
plies a more important parameter in terms of its impact on
the outputs. Among all the candidate parameter sets, we
keep the parameter set with the highest sensitivity values.

4.3 Minimum number of sensors

After the parameter set to be estimated is determined,
the original system is augmented with the parameters, as
illustrated in Sahoo et al. (2019), we can use the maxi-
mum multiplicity theory (Yuan et al., 2013) to determine
the minimum number of sensors required to ensure the
observability of the entire system. Then, state estimation
techniques can be used to estimate the states and param-
eters simultaneously.

5. SIMULATION RESULTS AND DISCUSSION

5.1 System description

In this work, a total length (L) of 67 cm loam soil column
is investigated. It is equally partitioned into 32 compart-
ments. Correspondingly, Richards equation is spatially dis-
cretized into 32 states (Nx) in the z-direction, with each
state centered at the corresponding compartment. At the
surface of the soil, the irrigation, qT , is performed at the
rate of 2.50 cm/day, from 12:00 PM to 4:00 PM daily.
At the bottom, the free drainage boundary condition is
considered. The soil column has the homogeneous initial
condition (x(0)) of -0.514 m capillary pressure head and
the parameters of the soil are shown in Table 1 (Carsel
and Parrish, 1988).

5.2 Determination of significant parameters and number
of sensors

The augmented system (11) is utilized to achieve simul-
taneous parameter and state estimation. First without
knowing the observability of the augmented system, all 5
parameters (Ks, θs, θr, α, and n) are augmented; that is,
Np = 5. All 32 states are assumed to be measured. A 10-
day state trajectory, without considering the process and
measurement noise, is used in the rest of the subsection
for selecting appropriate parameters for estimation and
determining the minimum number of sensors. It is assumed
that the measurements are available every 1 hour.

Following the procedure as discussed in Section 4.1, we
apply the PBH observability test on the augmented system
to check the identifiability of the parameters. The test
is conducted every sampling time, which requires the
system to be linearized accordingly. According to the
results, the augmented system is not observable. This
implies that it is impossible to identify the 5 parameters
simultaneously. In order to look for an observable system,
parameters are removed from the augmented system. We
start with removing only 1 of the parameters and this
results in 5 different augmented systems with each one
augmented with 4 parameters. Then, the observability of
the 5 augmented systems is checked. It was found that 2
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Table 1. Initial states and parameters of the investigated loam soil column and initial guesses
used in filters and estimator

x(0) (m) Ks (m/s) θs (m3/m3) α (1/m) n θr (m3/m3)

System -0.514 2.89× 10−6 0.430 3.60 1.56 0.0780
Initial guess -0.617 3.18× 10−6 0.387 3.24 1.72 0.0780

of the 5 systems are observable. In these two subsystems,
either θs or θr is removed. Since observable systems are
found, we proceed to the next step to determine the final
parameter set.

The significance of θs and θr is compared based on the
sensitivity analysis described in Section 4.2. Sensitivity
analysis is conducted based on the original augmented sys-
tem with all the parameters. By comparing the summation
of the absolute values of the elements of each column of the
normalized sensitivity matrices SN , it can be found that
the summation corresponding to the column ∂yi

∂θs
(98600)

is much bigger than the one for ∂yi
∂θr

(17900). Based on this,
θs is considered as a more important parameter because
it has more impact on the output than θr. Therefore,
the parameter set containing θr is removed and the final
parameter set will be used in the remaining analysis is
{Ks, θs, α, n}.
When the set of parameters is determined, we determine
the minimum number of sensors (measurements) needed to
ensure the observability of the augmented system with 4
parameters. Following the method described in Section 4.3,
the maximum multiplicity method is conducted, and it can
be found that the minimum number of sensors is 4.

5.3 Simultaneous parameter and state estimation

According to the minimum number of sensors found above,
4 tensiometers (Ny) are installed at 7.30 cm, 24.1 cm, 40.8
cm, and 57.6 cm below the surface, which measure the 4th,
12th, 20th, and 28th states, respectively. In the simulations,
the actual parameter values used are shown in Table 1 and
they are assumed to be homogeneous temporally. Process
and measurement noises (ωx and ν) are considered in
the simulations and they have zero mean and standard
deviations 3× 10−6 m and 8× 10−3 m, respectively.

In the design of the state and parameter filters (EKF,
EnKF) and estimator (MHE), the model augmented with
4 parameters (Ks, θs, α, and n) is used. The initial guesses
of the initial states and parameters in the filters and
estimator are listed in Table 1.

For the EKF and EnKF, the weighting matrices Q and R
are designed as the auto-covariance matrices of ωx and ν
with the standard deviations mentioned before. However,
the diagonal elements of Q corresponding to augmented
parameters are 0, because the parameters are assumed to
be constant. In simulations, 10−20 is used to approximate
the value 0 and to ensure the positive definiteness of the
matrix. The diagonal elements of P corresponding to the
states are configured as the square of 3 × 10−3 and those
of parameters are configured as the square of 3×10−2. For
the designed EnKF, 100 ensembles are used.

For the design of MHE, the estimation window size is
selected to be 8 hours. The weighting matrices P , Q, and
R retain the same ratio with respect to those used in EKF

Fig. 3. Selected trajectories of the process state and
estimated states using MHE, EKF, and EnKF

and EnKF, but with a much bigger magnitude to ensure
the numerical stability of the associated optimization
problem. In addition, the P matrix is constant for all the
optimizations. The constraints of the states, parameters,
and the model uncertainty are listed in Table 2. The
upper and lower bounds of the term ω̂p are 0 because the
parameters are constant.

The root mean square errors (RMSEs) in terms of states
and parameter are used to evaluate the performance of the
MHE, EKF, and EnKF. They are shown below:

RMSEx(k) =

√∑Nx
i=1(x̂i (k)− xi (k))2

Nx
(13)

RMSEp(k) =

√∑Np
i=1(p̂i (k)− pi (k))2

Np
(14)

First, we performed simulations assuming that the param-
eter θr is known and is the same as the value used in the
actual system. Figures 3 and 4 show some representative
estimated states and all the parameters using MHE, EKF,
and EnKF, which are also compared with their true values.
Figure 3 shows the state trajectories of the top node, a few
middle nodes, and one bottom node. From the figure, it
can be seen that the top node has more dynamics because
it takes time for irrigated water to pass from the upper
part and to the lower part. In terms of state estimation
performance, from Figure 3, it can be seen that MHE and
EnKF give very much more accurate state estimates than
the EKF. Note that from Figure 3, it can also be seen that
the estimates of the 12th state (h12) converge faster than
the other estimates. This is because it is a sensor node.
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Table 2. Lower and upper bounds used in MHE

x̂ (m) K̂s (m/s) θ̂s (m3/m3) α̂ (1/m)) n̂ ω̂x ω̂p

Lower bounds -1.00 2.31× 10−6 0.344 2.88 1.25 -∞ 0.00
Upper bounds −1.00× 10−4 3.47× 10−6 0.516 4.32 1.87 ∞ 0.00

Fig. 4. Trajectories of estimated parameters using MHE,
EKF, and EnKF, compared with their actual values

In terms of parameter estimation, Figure 4 shows the
results. From the figure, it can be seen that only MHE
is capable of estimating the parameters, whereas those
estimated by EKF and EnKF diverge from their true
values. This may be because of the constraints used in
MHE. These constraints provide more useful information
to MHE in addition to the measurements.

The average RMSEp over investigated time, associated
with the MHE, EnKF, and EKF are 0.0270, 0.0789,
and 0.261, respectively. The average RMSEx, associated
with the MHE, EnKF, and EKF are 0.0513, 0.0110, and
0.131, respectively. These values further confirm that the
MHE and EnKF have better performance than EKF in
estimation of the states, and the MHE outperforms both
EnKF and EKF in parameter estimation.

6. CONCLUSIONS

In this work, we have investigated simultaneous parameter
and state estimation using MHE, EKF, and EnKF applied
to an agro-hydrological system. A procedure was proposed
to find the appropriate parameter set for estimation based
on observability of the augmented system and the sen-
sitivity of the outputs to the parameters. Our method
recommends to consider four parameters with respect to
hydraulic conductivity, saturated soil moisture, and van
Genuchten-Mualem parameters in estimation. The min-
imum number of sensors was determined based on the
maximum multiplicity theory. Simulation results showed
that MHE can provide the better parameter and state
estimation performance as compared to EKF and EnKF.
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