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Abstract: With the development of the modern industries, the requirement for comprehensive and 
effective monitoring scheme of the industrial production process is growing significantly. Conventional 
monitoring methods treat the deviations as the abnormities and thus result in the invalid monitoring 
results, because the dynamic information cannot be extracted accurately, which may be caused by the 
transient process or new operation conditions, and real faults cannot be separated from the normal 
process changes. To cope with this limitation, a moving window slow feature analysis is proposed in this 
paper. First, the temporal dynamic features of the industrial production process are extracted to separate 
the temporal dynamics from the steady state. Second, an adaptive monitoring strategy is presented to 
accurately acquire the normal changes of the production process, including the normal shift of operation 
conditions and the slow time-varying behaviors, through updating model parameters and monitoring 
statistics when a query sample comes. In this way, the real dynamic anomalies can be distinguished from 
the normal dynamic behaviors and reduce the false alarms effectively. Finally, the effectiveness and 
practicality are demonstrated through an evaporation process. 

Keywords: moving window slow feature analysis, adaptive monitoring, alarm systems, evaporation 
process. 



1. INTRODUCTION 

With the development of the instruments and measure 
technology, numerous sensors are positioned in various 
operating units to reveal the status of the industrial 
production process (Souza et al., 2016). Due to the huge 
amount of process data stored in the data bank, data-driven 
monitoring approaches can transform the historical data to 
process information and effectively detect faults and 
abnormal events in the process, where accurate mechanical 
models are hard to be constructed(Yan et al, 2016). 

As the data-driven method, multivariate statistical process 
monitoring (MSPM) techniques, including principal 
component analysis, partial least squares and their derivative 
methods, have been studied and achieved the remarkable 
success in the recent decades (Dong et al., 2018, Jiang et al., 
2016, Wang et al., 2018), but they may trigger false alarms in 
the practical application because of the time-varying 
behaviors of the production processes, such as equipment 
aging, load changes, catalyst deactivation and preventive 
maintenance. Traditionally, once the deviation between the 
actual monitoring data and the preset control limits of the 
monitoring model occurs, the fault alarms are raised. 
However, the deviations may be resulted from the transient 
process which could be well-compensated by the control 
strategy or the normal shifts of the operating conditions, so 
the operators and engineers have to distinguish these 
unnecessary false alarms based on their experience and 

knowledge in practice, which reduces the work efficiency and 
even ignores the real faults.  

To remove the false alarms, an alternative process 
monitoring method based on slow feature analysis (SFA) has 
been proposed recently (Shang et al., 2015, Zhang et al., 
2017). Unlike the conventional MSPM methods, SFA-based 
monitoring method can better describe the temporal 
behaviors in the process through the extracting the slow 
latent variables, hence, the temporal dynamics could be 
isolated from the steady conditions and the reasons for the 
temporal dynamics could be analyzed by constructing 
different monitoring statistics. The meaningful information 
provided by SFA-based monitoring model can help operators 
and engineers separate the real faults from the nominal 
dynamics in the process. To maintain a good monitoring 
performance, adaptive schemes should be implemented to 
update the SFA-based monitoring model. Shang et al. (2018) 
proposed a recursive SFA method to update the monitoring 
model when new samples are collected. Though the false 
alarms can be reduced, the nonlinear variation features cannot 
be captured effectively because SFA is a linear method. Jiang, 
et al. (2019) presented a locally weighted SFA based on just-
in-time learning framework to deal with the missing data and 
predict octane number barrel values, but the continuity of 
time series production data could be violated. Yu, et al. (2019) 
proposed a recursive exponential SFA method to extract the 
nonlinear features and update the monitoring model. 
Nevertheless, as the new collected samples increase, the 
complexity and computational burden of the monitoring 
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model will be a challenge. Therefore, how to effectively 
address the issues of nonlinear and slow time-varying 
characteristics and correctly update the monitoring model to 
precisely distinguish the normal process changes from the 
anomalies should be further studied. 

To solve the aforementioned limitations, an adaptive 
monitoring scheme integrated moving window (MW) and 
SFA, named as MWSFA, is proposed. As slow and stable 
changes occur in the process, it is necessary to update 
MWSFA model from time to time so that the complex 
nonlinear features of the process data can be well captured 
and the different operating conditions can be well adapted. 
Besides, the temporal dynamics and steady state can be 
separated, and the real dynamic anomalies and the normal 
process dynamic behaviors can be distinguished based on the 
developed static and dynamic statistics for decreasing the 
false alarms.  

The remainder of the paper is structured as follows: 
Section II the preliminaries of SFA are briefly revisited. The 
detailed procedures of the proposed MWSFA method are 
presented in Section III. Section IV discusses the 
effectiveness and practicability of the MWSFA method via 
an evaporation production process. Finally, the conclusions 
are drawn in Section V. 

2. REVISIT OF SFA 

SFA method can extract features based on the temporal 
slowness, which contain more relevant information about the 
process. It aims at finding a set of function  g x  that maps 

the time series data  tx  to their features  ts (Zhang et al., 

2012). SFA method can be described as an optimization 
problem (Wiskott et al., 2002), 

    2min   j j t
t s s   (1) 

Subjects to            0j t
s                            (2) 

                  2 1j t
s  (3) 

     :   0i j t
i j  s s  (4) 

where s  indicates the velocity of the feature, which is 

     1t t t  s s s , and 
t

s  represents the time averaging 

of s , which can be formulated as    
0

0

t

t t
t t t dt s s . 

For the linear SFA, the mapping functions are 

  T
j jg x w x , where jw  is the weight of the jth function. 

When the time series data x  is zero mean, the optimization 
problem of SFA can be transformed into (Yu et al., 2019), 

 

min   

. .    0,    

         1,    

j

T
i i

T
i j

T
i i

s t i j

i j

 

 

w
w Aw

w Bw

w Bw

  (5) 

where T

t
A xx   and T

t
B xx . 

Consequently, the Lagrangian multiplier method can be 
applied to solve this generalized eigenvalue decomposition 
(GED) problem, which is, 

 AW = BW   (6) 

where  1 2, , , mW = w w w , and   is a diagonal matrix, 

which consists of the singular values of 1B A . 

     Finally, the features s  can be calculated as, 

 s Wx   (7) 

According to the variation speed of features, s  can be further 
divided into  

  ,
T

d es s s   (8) 

where ds  indicates the slow variation of data which tend to 

catch essential process variations, and es  means the residual 

features with fast variations which is regarded as noise. The 
number k  of slow features can be determined when the 
cumulative percentage (CP) of the derivative values reaches a 
preset threshold value, which is defined as, 

 2 2

1 1

CP 1
k m

i it t
i i 

  s s    (9) 

3. METHODOLOGY OF MWSFA 

3.1  The derivation of MWSFA 

Assume that a pair of data block as 

 1 2

T N M
N

 X x x x  , where N  and M  are the 

number of samples and variables, separately. Firstly, the 
normalization should be done for the data, 

 1( )T
std N X X

 X X 1 m Σ   (10) 

where 11 T M
NN

 Xm X 1   is the mean vector of X , 

 
1
, ,

N

M Mdiag    X x xΣ   , whose diagonal entries 

( 1, , )
i

i M x   is the standard deviation of the ix , and  

  11,1, ,1 NT

N
 1  . 

      The covariance of T

t
xx  and T

t
xx   can be presented as, 

  1T
std std std N A X X    (11) 

 T
std std std NB X X   (12) 

where stdX  is the first-order derivative of stdX . 
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From the perspective of moving window, the new data 
block is added while the old one is dropped out, which means 

the model data set is changed from  1 2

T

NX x x x  

to  2 3 1
ˆ T

N X x x x , and its corresponding mean 

vectors 
X̂

m  and standard deviation 
X̂

Σ  are also updated, 

which can be calculated as, 

  ˆ 1 1N+ N XX
m + x xm   (13) 

 
  

  
 

2 2

1 1 12 2

2
ˆ

1

1

1 1
i i

i i

i i i
N NN N

N N N N

N
    

 
 

 



X X

x x

x m m x x
 (14) 

  
1ˆ ˆ ˆ, ,

N
diag   x xX

Σ    (15) 

     Hence, the normalized updated data block is, 

 1
ˆ ˆ

ˆ ˆ( )T
std N

 
X X

X X 1 m Σ   (16) 

Accordingly, the updated derivations of ˆ
stdA  and ˆ

stdB  

should be calculated for updating the monitoring model, and 
the updated features ŝ  could be obtained for monitoring new 
operation state. 

According to the Eq.(12), the relationship between ˆ
stdB   

and stdB  can be derived as follows, 

   
  

     

1 1
ˆ ˆ ˆ ˆ
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B X X

B
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  (17) 

According to the Eq.(11), the relationship between ˆ
std   

and std  can be represented as, 
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 (18) 

     Therefore, the updated matrix ˆ
stdA and ˆ

stdB  can be 

iterated by the previous data information instead of 
recalculation, which reduces the calculation loadings. Then, 
according to Eq.(6), the singular value decomposition (SVD) 
is applied to solve the GED problem for obtaining the 

corresponding eigenvector matrix Ŵ , and the updated 
features ŝ  could be obtained by Eq.(7). 

3.2  Adaptive monitoring scheme based on MWSFA 

The static deviation and dynamic fluctuation of the process 
are analyzed according to two pairs of monitoring statistics 
indices (static and dynamic indices), respectively.  

The static indices are utilized for evaluating the systematic 
static variation and residual information, which are 

 2 2T
d d d kT  s s    (19) 

 2 2T
e e e M kT  s s    (20) 

where 2
dT  and 2

eT  represent the systematic tendency and 

residual information of the production process, respectively. 
Because s  obeys independently Gaussian distribution, 2

dT  

follows a χ² distribution with k  degrees of freedom, and 2
eT  

follows a χ² distribution with M k  degrees of freedom. 

     The dynamic indices are developed for considering the 
temporal fluctuation in the process. To be specific, the 
distribution of dynamic variations can be measured by 

 2 1
, 1

T
d d d d d k N kS g F

  s s     (21) 

 2 1
, 1

T
e e e e e M k N M kS g F

    s s     (22) 

where  1 2, , ,
T

d ks s s s    and  1 2, , ,
T

e k k M s s s s    . d    

and e  are the empirical covariance matrix of ds  and es , 

respectively.     2 2 1 1dg k N N N N k       and 

     2 2 1 1eg M k N N N N M k         .Because both 

ds  and es  obey multivariate Gaussian distribution, 2
dS   

follows a scaled F  distribution with k  and 1N k   

degrees of freedom, and 2
eS  follows a scaled F distribution  

     The control limits should be estimated first when using the 
static and dynamic indices for monitoring the process. 
Initially, the production process is running normally. With 
the confidence level of  1  , the monitoring scheme can 

be summarized as follows, 

Case 1: 2 2
,d kT    , 2 2

,e M kT    , 2
, 1,d d k N kS g F     and  

2
, 1,e e M k N M kS g F     , all the statistic indices are under their 

corresponding control limits, which implies the process keep 
well controlled and no faults alarm should be triggered 
during this data block, then calculate the statistic indices for 
monitoring the next time period when new data arrive. 

Case 2: 2 2
,d kT   , 2 2

,e M kT    , 2
, 1,d d k N kS g F     and 

2
, 1,e e M k N M kS g F     , all the statistic indices exceed their 

corresponding control limits, which indicates the process 
suffers from a static deviation and the control function fails to 
reduce the interference at this time period. There are serious 
faults in the new added data, which should be removed, and 
the fault alarm should be triggered to take further actions. 

Case 3: 2 2
,d kT    , 2 2

,e M kT    ,  2
, 1,d d k N kS g F    and 

2
, 1,e e M k N M kS g F     , the static indices go beyond their 

corresponding control limits while the dynamic indices 
remain normal, which clues the control function eliminate the 
interference by the compensation of closed loop, even in a 
new working condition. This interference may result from the 
normal shift of operation conditions, so that no fault alarm 
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should be triggered. Because of the new operation condition, 
the previous static indices should be updated. When enough 
samples are obtained from the new working condition, the 
MWSFA model are rebuilt and adaptive monitoring scheme 
are implemented continuously. 

Case 4: 2 2
,d kT    , 2 2

,e M kT    ,  2
, 1,d d k N kS g F    and 

2
, 1,e e M k N M kS g F     , the static indices are under the control 

limits while the dynamic indices violate the control limits, 
which means the new added data contain interference, which 
would lead to the dynamic variation of process. Although this 
interference may be eliminated by the control function, the 
production process should be checked timely in case of 
serious faults occurred. 

3.3  The procedure of the MWSFA monitoring scheme 

Define the initial normalized data block N MX  , whose mean 

values are Xm and standard deviation matrix 

 
1 2
, , ,

N
diag   X x x x . Calculate the transform matrix 

 1 2, ,
T

kW w w w  by SFA, select k  slowest features, and 

set the confidence limits of static indices 2
,k  , 2

,M k  and 

dynamic indices , 1,d k N kg F   and , 1,e M k N M kg F      , where    

is the level of significance. The procedure of the adaptive 
monitoring scheme based on MWSFA, whose flowchart is 
presented in Fig 1, are described as follows. 

 

Figure 1. The flowchart of MWSFA adaptive monitoring 
scheme based on MWSFA 

1. Normalize the query data un
queryx  by the mean value and 

standard deviation matrix of  N MX , 

   1un
query query

  X Xx x m    (23) 

2. Extract the features of  queryx , 

 d T
query d querys W x   (24) 

 e T
query e querys W x   (25) 

where  1 2, , ,
T

d kW w w w ,  1 2, , ,
T

e k k M W w w w . 

     3. Calculate the static indices 2
dT  and  2

eT , 

  2 Td d
d query queryT  s s   (26) 

  2 Te e
e query queryT  s s   (27) 

     4. Computer the dynamic indices 2
dS   and  2

eS , 

  2 Td d
d query queryS  s s    (28) 

  2 Te e
e query queryS  s s    (29) 

where  =d T T
query d query Ns W x x  and  =e T T

query e query Ns W x x  .   

Nx  is the last sample of data block N MX  , which is also 

normalized by Xm  and X  . 

     5. Compare with the control limits and analyze the query 
data based on the above 4-case monitoring scheme to make 
the corresponding actions. 

4. CASE STUDY 

In this section, the closed-loop evaporation process is applied 
to validate the effectiveness and practicality of the proposed 
MWSFA method. The feed materials will be evaporated by 
the steam to produce the product in the evaporation process. 
In the evaporator, the material level should be in the safe 
range, in case of evacuation and overflow, so the level 
controller should be used to adjust the level. Besides, the 
steam provides the heat for evaporating the feed materials to 
obtain the required product, and the quantity of heat will have 
an effect on the quality of the product, hence the steam flow 
should also be controlled by the controller for adjusting the 
quantity of heat. The evaporation process control diagram is 
shown in Fig 2. 

 

Figure 2. The evaporation process control diagram 

In this study, the product composition  px   and feed flow 

Fw  are chosen as the monitoring variables, which will be 

influenced by the steam quantity and product lines. 300 
normal samples are used to construct the monitoring model. 
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Then, the following 200 testing data are applied for detecting 
the state of the evaporation process. Based on the Eqs.(10) -
(22), the results are shown in Fig 3.  

 

 

Figure 3. The monitoring results by MWSFA for different 
conditions 

To validate the effectiveness of MWSFA for the different 
working conditions, the monitoring results by SFA without 
moving window scheme are shown in Fig 4. 

 

 

Figure 4. The monitoring results by SFA without moving 
window scheme for different conditions 

It is noticed that the static indices 2
dT  and 2

eT  exceeded the 

control limits from the 102nd sampling points, while the 
dynamic indices 2

dS  and 2
eS were still within the limits. Due 

to the changes of the production load, the working conditions 
were shifted from the original conditions for the requirements 
of the production. When enough new sampling data of the 
new working conditions are obtained, the monitoring models 
are updated for adopting the new working conditions based 
on the proposed MWSFA method. Hence, the static indices 

2
dT  and 2

eT  fell into the control limitations again from the 

199th sampling points in Fig 2, however, without moving 
window scheme, the static indices 2

dT  and 2
eT  were over the 

control limitation from the 102nd sampling points to the end, 
which would lead to trigger the false alarms. 

Similarly, 200 testing data are selected to obtain the 
monitoring results for the transient process caused by the 
interference. The monitoring results are shown in Fig 5. 

 

 

Figure 5. The monitoring results for transient process 

Due to the interference in the evaporation process, the 
dynamic indices 2

dS  and 2
eS  were over the control limits 

from the 50th sampling points. Thanks to the close-loop 
control functions, the interferences were eliminated from the 
136th sampling point and the dynamic indices 2

dS  and 2
eS  

were within the control limitations again. Though the fault 
alarms are unnecessary, the timely check should be 
implemented for detecting the latent fault factors. 

Another 200 sampling data with fault information are used 
for testing the proposed MWSFA method. The monitoring 
results are presented in Fig 6.  
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Figure 6. The monitoring results for fault information 

In Fig 6, the static index 2
dT  and dynamic index 2

dS  

violated the control limits from the 49th sampling points, 
respectively. Given that 2

dT  and 2
dS  are calculated by the 

extracted slow features, which reflects the essential process 
variations, it reveals the real fault occurred and the fault 
alarm should be triggered. According to the process analysis, 
the valve for the feed materials was out of control and the 
corresponding maintenance actions should be taken in time. 

5.  CONCLUSION 

In this paper, an adaptive monitoring scheme integrated SFA 
and moving window is developed for distinguishing the real 
dynamic faults and reducing the nuisance alarms in the 
process. The proposed MWSFA method cannot only extract 
slow features to better capture the general tendency of the 
process state, but also can update the monitoring model with 
the new arriving samples for adapting the slow time-varying 
behaviors in the process. Based on the proposed MWSFA 
method, the temporal dynamic information of the process can 
be separated from the steady state completely for analyzing 
the temporal behaviors of the process. Besides, the real 
anomalies can be distinguished effectively from the normal 
behaviors, so the invalid alarm can be removed and help 
operators focus on the real process faults. The effectiveness 
of the MWSFA-based adaptive monitoring scheme is 
validated by a practical production process and the results 
demonstrated the MWSFA method can accurately detect the 
real process faults and adapt the normal process variations. 
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