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Abstract: Linear machine (LM) has been recently proposed (Airan et al., 2017) for solving
the point location problem which arises in explicit model predictive control (e-MPC). LM
associates a linear discriminant function with each critical region identified in the offline phase
in e-MPC. The solution to the online point location problem in the LM approach then simply
corresponds to the region whose discriminant function attains the largest value amongst all
the discriminant functions. LM involves two steps: (i) identification of neighbouring critical
regions, and (ii) finding the discriminant functions by writing constraints involving discriminant
functions of neighbouring pairs of regions. Both these steps involve solving linear programming
(LP) problems. Similar to any other optimization problem, the constraints of the LP are satisfied
with some tolerances. Even though theoretically sound, the resulting LM may not accurately
identify the critical region due to the numerical errors arising from these tolerances. In the
current work, we identify some conditions which can be used as an aid by the user to judge
the accuracy of LM results. In particular, we give a necessary condition for step (i) whose
violation will yield incorrect misclassification for some point location problems. We also propose
a sufficient condition whose satisfaction guarantees the accuracy of linear machine solution
despite numerical errors which may have crept in during step (ii) of the LM design. This
condition needs to be evaluated for each specified point during the point location phase. We
illustrate these ideas on the well known quadruple tank system.
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1. INTRODUCTION

Over the last few decades, model predictive control (MPC)
has emerged as the preferred advanced control tool for
many industries such as refineries and power plants (Qin
and Badgwell, 2003), and automobiles (Hrovat et al.,
2012). MPC involves solving an optimization problem at
each sampling instant. Solving the optimization problem
in real-time is a challenging activity for large dimensional
systems or systems with fast sampling.

Over the years, explicit-MPC (e-MPC) has emerged as
an attractive option for mitigating the computational
challenges associated with online optimization for lin-
ear systems (Bemporad et al., 2000). Based on multi-
parametric programming, e-MPC is based on the insight
that the structure of optimization problems solved by
MPC does not change with time, and only the values of
the optimization-parameters such as the current states and
input variables change. e-MPC thus has two phases- an
offline phase where the optimization problem is analyzed
offline to obtain the so-called critical regions in the para-
metric space and the associated control law for each critical
region. The online phase corresponds to the online imple-
mentation of e-MPC wherein the pre-computed solution is
evaluated at the parameter values which become available
online. This in turn, requires solving a point location prob-
lem to identify the critical region containing the parameter

values realized at the current time instant. Thus, the real-
time MPC optimization problem is converted to solving a
point location problem. For a problem with large number
of critical regions, solving the point location problem in
real-time is itself challenging.

The point location problem has garnered significant in-
terest in the research community (Oberdieck et al., 2016)
and several approaches have been proposed such as binary
search tree (Tøndel et al., 2003), multi-way search tree
(Mönnigmann and Kastsian, 2011), hash tables (Bayat
et al., 2011), descriptor function (Baotić et al., 2008) and
linear machine (Airan et al., 2017).

In the current work, we focus on the linear machine (LM)
approach (Airan et al., 2017) which draws inspiration from
multi-category pattern classification. A key feature of the
LM approach is that the required online computational
complexity is constant for all points in the parametric
space and is independent of the critical region containing
a specific realization of the parameter (Airan et al., 2017).
This facilitates appropriate hardware design for e-MPC
implementation for a given linear system.

The LM approach associates a linear discriminant func-
tion with each critical region which was identified in the
offline phase in e-MPC. The solution to the online point
location problem in the LM approach then corresponds to
the region with the highest discriminant function value.
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Generation of the LM involves two steps (Airan et al.,
2017): (i) identification of neighbouring critical regions,
and (ii) finding the discriminant functions by writing ap-
propriate constraints involving discriminant functions of
neighbouring pairs of regions. Both these steps involve
solving linear programming (LP) problems. Similar to any
other optimization problem, the numerical solution of LP
requires user to specify various tolerances. Even though
theoretically sound, the resulting LM may not accurately
identify the critical region due to the numerical errors
arising from these tolerances. In the current work, we
identify some conditions which can be used as an aid by the
user to judge the accuracy of LM results. In particular, we
give a necessary condition for step (i) whose violation will
yield misclassification for some point location problems.
We also propose a sufficient condition whose satisfaction
guarantees the accuracy of LM solution despite numerical
errors which may have crept in during step (ii) of its design.
This condition needs to be evaluated for each specified
point during the point location phase. We demonstrate
these ideas on the well- known quadruple tank system.

The rest of the article is organized as follows: Section
2 briefly discusses relevant background material; Section
3 discusses quadruple tank problem; Section 4 discusses
numerical issues in design of linear machine; Section 5
presents our main contribution, namely determination of
a few conditions to check the correctness of neighbour
identification procedure as well as the obtained linear
machine. Finally, Section 6 concludes the paper.

2. RELEVANT BACKGROUND

2.1 Explicit Model Predictive Control

The conventional linear MPC problem can be written
as a multi-parametric quadratic programming (mp-QP)
problem as (Bemporad et al. (2000)),

min
z

1

2
(zTHz) s.t. Gz ≤W + Sx (1)

where, z ∈ Rp is the vector of decision variables, x ∈
X̃ ⊂ Rd is a vector of parameters and H, G, W , S are
constant matrices. X ⊂ X̃ denotes the set of feasible
x also known as the parametric space. Bemporad et al.
(2000) show that the explicit solution to (1) is given by
piecewise affine (PWA) functions of the parameter vector
x associated with respective critical regions (polyhedral
partitions) of X. The critical regions are defined as:

CRi = {x ∈ X|Aix ≤ bi}, i = 1, 2, .., nr (2)

where, CRi refers to the ith critical region, nr is the
number of critical regions, and Ai ∈ Rnfi

×d and bi ∈ Rnfi

define the inequalities which characterize the ith critical
region (Airan et al., 2017). The intersection of CRi and
the hyperplane Ai

jx = bij defining the jth inequality of CRi

is known as the jth facet of CRi. The CRs have disjoint
interiors, CRi ∩ CRk = φ, ∀i 6= k and CRs encompass
the entire parametric space ∪nr

i=1CR
i = X (Spjøtvold

et al., 2006). The polyhedral partition {CRi}nr
1 will be

represented as P. The PWA explicit solution is:

z∗(x) = Ωix+ ωi, ∀x ∈ CRi, i = 1, 2, .., nr (3)

where, Ωi ∈ Rp×d and ωi ∈ Rp. These PWA functions
present the solution to the mP-QP problem and are

evaluated to obtain the values of the manipulated variable
to be implemented in the process in real-time.

2.2 Linear Machine

In the pattern classification area, linear machine is a
classifier for multi-category classification problems (Duda
et al., 2001). The point location problem in e-MPC is
similar to a pattern classification problem if the critical
regions are considered equivalent to classes. The linear
machine classifier L , {gi(x)}nr

i=1 associates a linear
function gi(x), known as linear discriminant function, with
each critical region i such that (Airan et al., 2017):

gi(x) > gk(x), ∀x ∈ CRi, k = 1, 2, . . . , nr, k 6= i (4)

The linear discriminant functions are of the following form:

gi(x) = αi
1x1 + αi

2x2 + . . .+ αi
dxd + αi

0

= (αi)Tx+ αi
0, i = 1, 2, . . . , nr (5)

Given the CRs (2) in the parametric space, designing LM
involves obtaining coefficients αi ∈ Rd and αi

0 ∈ R, i =
1, 2, . . . , nr such that (4) is satisfied.

To obtain LM, Airan et al. (2013) used the hyperplanes
of adjacent regions as natural switching boundaries where
the discriminant functions for adjacent regions switch the
inequality sign in (4). In particular, Airan et al. (2013)
proposed a two-step procedure:
(1) Identifying all adjacent (neighbouring) pairs of critical
regions (referred here as adjacency oracle).
(2) Determining linear discriminant functions based on the
adjacency oracle provided by step (1).
This is briefly discussed next (Airan et al. (2013, 2017)).

Determination of adjacent critical regions : Critical re-
gions CRi and CRk are defined as adjacent if CRi ∩CRk

is d − 1 dimensional. To check for adjacency, Airan et al.
(2013) first checked if they shared a common hyperplane
by comparing the defining inequalities of the two regions
under consideration. Regions which did not share a com-
mon hyperplane could not be adjacent regions. However,
Formulation I (6) was solved for regions which shared a
common facet corresponding to hyperplane Hi

j∗ .

Formulation I: Adjacent Region Identification

max
t,x

t (6a)

s.t. x ∈ (CRi ∩ CRk ∩Hi
j∗) (6b)

t ≤ −A
i
lx+ bil
||Ai

l||
, l = 1, 2, ..., nfi , l 6= j∗ (6c)

t ≤ −A
k
mx+ bkm
||Ak

m||
, m = 1, 2, ..., nfk , m 6= j∗ (6d)

Formulation I is a linear programming (LP) formulation
which identifies if two CRs are adjacent, where Ai

l corre-
sponds to the lth row of the ith region’s A matrix and nfi
represents the number of facets in the ith region (similarly
for region k). Formulation I attempts to identify a point
x on the j∗th facet of the two regions which is farthest
possible from the other facets of the two regions. The two
regions are declared as adjacent i.e. their intersection is
d− 1 dimensional, if the LP is feasible and t > 0.
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Determination of discriminant functions :
This step is executed after the adjacency oracle from the
previous step becomes available. The key idea in this step
is to write down the relationship between discriminant
functions of adjacent regions. To illustrate, let CRi and
CRk be adjacent regions corresponding to common hy-
perplane Hi,k = {x ∈ X|Ai,kx = bi,k}. Further, let CRi

be on the negative side (Ai,kx ≤ bi,k) of this hyperplane
and CRk be on the positive side (Ai,kx ≥ bi,k). From the
definition of linear machine (4), it can be concluded that:

−gi(x) + gk(x) = βi,k(Ai,kx− bi,k), ∀(i, k) ∈ NR (7)

where, βi,k > 0 is a scaling factor and NR is a set con-
taining all the pairs of indices corresponding to adjacent
regions. Equation (7) states that discriminant function of
CRi attains values greater than the discriminant function
of CRk on the negative side of the common hyperplane and
vice-versa. Further, the two discriminant functions attain
equal values for points lying on the common hyperplane.
Using (5), (7) can be written as:

(−αi + αk)Tx− αi
0 + αk

0 = βi,k(Ai,kx− bi,k),

βi,k > 0, ∀(i, k) ∈ NR (8)

Equation (8), written for all nf pairs of adjacent regions
determined by Formulation I, can be expressed as:

Gy = 0 (9)

where G ∈ R(nf (d+1))×(nr(d+1)+nf ) is a known matrix and
the vector y ∈ R(nr(d+1)+nf ) of unknowns is:

y , [(α1)T α1
0 (α2)T α2

0 ..(α
nr )T αnr

0 β1 β2 ..βnf
]T (10)

with β1, β2, . . . , βnf
being the nf scale factors. Equa-

tion (9) may have multiple solutions since any y ∈
Null Space(G) will satisfy the equation. However, the so-
lution y should be such that it not only satisfies (9), but
also corresponds to positive scale factors (8). Additionally,
it should ensure well-separated discriminant functions.
Considering these requirements, Formulation II was posed
(Airan et al., 2013) as presented next:

Formulation II: Generation of Linear Machine

max
s,y

s (11a)

s.t., s ≤ βl, l = 1, 2, . . . , nf (11b)

Gy = 0 (11c)

− 1 ≤ αi
j ≤ 1, i = 1, 2, ..., nr, j = 0, 1, ..., d (11d)

0 < βl ≤ 1, l = 1, 2, ..., nf (11e)

Formulation II is an LP with objective function (to be
maximized) being the minimum of all positive scaling
factors. A large value of objective function indicates well
separated discriminant functions. In Formulation II, with-
out loss of generality, the magnitudes of all the coefficients
of the discriminant functions as well as the scale factors
have been bounded by one.

Airan et al. (2017) have presented a formal proof of the
correctness of Formulation II namely, if Formulation II is
feasible and the scaling factors are positive then linear
discriminant function will be the greatest for the region
to which the point belongs. A key assumption in this
proof is that we have correct adjacency identification from
step (1) and the proof fails to hold if there is incorrect

identification. Airan et al. (2017) also proved that if
Formulation II is infeasible, LM does not exist.

2.3 Linear Machine Tree

For a given polyhedral partition of the parametric space,
a LM may not always exist. Airan et al. (2017) showed the
violation of facet-to-facet properly as one condition under
which LM will not exist. The polyhedral partition P is said
to possess the facet-to-facet property if F i,k = CRi∩CRk

is a facet of both CRi and CRk for all d−1 dimensional in-
tersections F i,k. Airan et al. (2017) proposed construction
of LM tree when the facet-to-facet property is violated.
The LM tree is generated by modifying the polyhedral
partition by recursively splitting the partition into two
halves along the facet involved in maximum number of
violations until it reaches a half region which no longer
violates the facet-to-facet property. Such partitions when
encountered are called child nodes and LMs are developed
for them. During online implementation, the child node
containing the point is first identified by checking the
signs of hyperplanes used to split the original partition.
Subsequently, LM developed on the child node is used to
find the region to which the point belongs within the node.
The identified region in the child node is then mapped to
the CR in the original partition to solve the point location
problem (Airan et al., 2017).

3. ILLUSTRATIVE SYSTEM

In this work, e-MPC is applied on a quadruple tank
setup to illustrate the ideas proposed ahead. The model
equations are described in Johansson (2000). The system
parameters correspond to an experimental quadruple tank
setup available at IIT Bombay (Thosar et al., 2020)

A conventional quadratic cost MPC formulation was con-
verted to a mp-QP formulation using MPT (Herceg et al.,
2013) which generated the e-MPC solution. The state and
input variables were constrained within ±10 cm and ±10
Volts respectively. The cost function has weighting matri-
ces for state, input and terminal state which are specified
as I4×4, I2×2, and 04×4 respectively. The prediction and
control horizons were taken to be equal and were varied
from 3 − 8 to generate different e-MPC problems. The
following nomenclature will be used to refer to a polyhe-
dral partition generated from the system and parameters
described above: P-horizon(“horizon number”).

It was found that the selection of parameters across the
prediction horizons indicated above yielded polyhedral
partitions which violated the facet-to-facet property. For
such cases LM trees were constructed and LMs generated
for the child nodes. The nomenclature to refer to a child
node generated from the system and parameters described
above is:P-horizon(“horizon number”)-CN (“child node
number”). Hence, if the first child node in the LM tree
is generated from the specified mp-QP parameters with
horizon length 3, we call it P-horizon3-CN1.

4. NUMERICAL ISSUES

Formulations I and II are both LPs which invoke numerical
optimization engines. The LP solutions depend on the
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optimization solver and the underlying algorithm used.
Additionally, tolerances/thresholds on constraint viola-
tions used in the numerical procedure can also affect the
solution. For instance, strict positivity of objective func-
tion is critical for both LPs and is ensured by thresholds.
Various thresholds should be tuned to ensure robustness
and accuracy. For example, very tightly tuned parameters
(low thresholds) might not yield a LM via Formulation
II even when one exists. Loosely tuned parameters on
the other hand may incorrectly identified adjacent pairs
and incorrect linear machine via Formulation II. Here,
we investigated the effect of these tolerances and found
that the results are sensitive to the chosen values. Using
various instances of the e-MPC problem corresponding
to different horizon lengths for the quadruple tank prob-
lem, (Section 3), the thresholds are tuned and acceptable
range of thresholds is presented in Appendix A. However,
the obtained ranges are for the specific quadruple tank
problem considered here and may not work for other
systems/parameter settings.

It is thus desirable to develop numerical accuracy tests or
conditions whose satisfaction can confirm the correctness
of the LM obtained after solving Formulations I and II
with user specified tolerances, and are proposed next.

5. SOME NECESSARY & SUFFICIENT CONDITIONS

In this section we propose some conditions to evaluate ac-
curacy of results of the numerical optimization approaches
involved in obtaining LM solution to the point location
problem. We first present a necessary condition for correct
identification of adjacent pairs of regions.

5.1 A Necessary Condition for Accuracy of Formulation I
- Connected Adjacency Graph Test

A correct neighbour identification, would neither leave
out any neighbouring pair, nor will it identify two non-
neighbours as neighbours. Once Formulation I has been
executed for all the critical regions and a list of neighbour-
ing pairs obtained, we propose to construct an undirected
graph G(V,E) where V is the set of vertices and E is the set
of undirected edges. The vertices correspond to the critical
regions in e-MPC. Vertices i and k are joined by an edge
if CRi and CRk have been identified as neighbours using
Formulation I. Then the following can be stated:

Theorem 1. Necessary condition for adjacent region iden-
tification: A necessary condition for the correctness of
adjacent regions identification procedure is that the graph
G(V,E) should be a connected graph.

Proof. An undirected graph G(V,E) is said to be con-
nected if we can reach any vertex from any other vertex
by traveling along the edges (Deo, 2016). The proof of
the theorem follows from the fact that the critical regions
generated in the offline multi-parametric programming
step are such that ∪nr

i=1CR
i = X (Spjøtvold et al., 2006).

Thus, the CRs or groups of CRs cannot be isolated.

In case the adjacency graph is disconnected, it indicates
that at least one pair of adjacent regions has not been
identified by Formulation I. This may lead to an incorrect
LM despite Formulation II being feasible with a positive

Fig. 1. Adjacency graph for P-horizon5-CN1

Fig. 2. Adjacency graph for P-horizon5-CN1 with devia-
tion from tolerance Formulation I-II=10−7

objective function since a constraint of the form (7) on
the discriminant functions of the missing pair of adjacent
regions will be absent in Formulation II.

Note that the connectedness of the graph is just a nec-
essary condition and not a sufficient condition for the
accuracy of neighbour identification step. It is possible that
a non-neighbouring pair of regions has been identified as
a neighbouring pair by Formulation I due to the choice of
thresholds. This cannot be detected from adjacency graph.

Remark 1. Depth first search can be used to check con-
nectedness of an undirected graph (Deo, 2016).

Figures 1 and 2 illustrate two types of adjacency graphs
obtained after Formulation I for various instances of the
e-MPC problem for the quadruple tank setup (Section 3):

(1) Figure 1 shows a case where the graph is connected
i.e. the necessary condition is satisfied. The linear
machine obtained for this case resulted in accurate
point location. The tolerances used for Formulation I
in this case are the same as presented in Appendix A.

(2) Figure 2 shows a case where the graph is discon-
nected i.e. the necessary condition is violated. Critical
regions 14 and 17 at a child node in the LM tree
are isolated and have no neighbours and hence no
constraints on the discriminant functions of regions
14 and 17 get imposed in Formulation II.

5.2 A Sufficient Condition for Accuracy of Formulation
II- Online Verification Test

Once the adjacency oracle is obtained by step I (Section
2.2) of the LM generation approach, Formulation II is
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solved to obtain the discriminant functions and scaling
factors. As discussed in Section 2.2 tolerances for con-
straints are involved in Formulation II as well which may
affect the correctness of the resulting LM. We now pro-
pose a sufficient condition whose satisfaction by a given
parametric realization will guarantee the correctness of
the solution of point location problem given by the LM
for that realization. The proposed condition needs to be
checked during the online phase and is termed the “Online
Verification Test”.

For a pair of adjacent regions CRi and CRk, we define,

Gi,k(x) = −gi(x) + gk(x), ∀ (i, k) ∈ NR (12)

where NR is the set of all pairs of adjacent regions
identified in Step I of the Linear Machine approach.
Thus, Gi,k(x) is the difference of discriminant functions
of adjacent critical regions k and i. Further, let

P i,k(x) = Ai,kx− bi,k, ∀ (i, k) ∈ NR (13)

where Ai,kx = bi,k is the equation of the hyperplane
defining the common facet between critical regions i and

k. Let HSi,k
A = {x ∈ X|Ai,kx ≤ bi,k} be the negative half-

space of the hyperplane and HSi,k
B = {x ∈ X|Ai,kx ≥ bi,k}

the positive half-space. Without loss of generality, we
assume that CRi and CRk are in the negative and positive
half-spaces of the hyperplane, respectively. We now state
the sufficient condition for correctness of LM results for a
given parametric realization x = x∗.

Theorem 2. Given an accurate adjacency oracle and all
scaling factors βi,k > 0, for any x∗ ∈ X, if Gi,k(x∗) and
P i,k(x∗) have the same sign for all pairs (i, k) ∈ NR, then
the linear machine identification for x∗ is accurate.

Proof. The proof is on similar lines as the proof of
correctness of LM formulation in Airan et al. (2017). From
(7, 12 and 13) we know that theoretically,

−gi(x) + gk(x) = βi,k(Ai,kx− bi,k), ∀x ∈ X, ∀(i, k) ∈ NR

or, Gi,k(x) =βi,kP i,k(x), ∀x ∈ X, ∀(i, k) ∈ NR (14)

But since optimization solver solutions have numerical
inaccuracies, (14) does not hold exactly and we can write,

Gi,kx = βi,kP i,k(x)+ εi,k(x), ∀x ∈ X, ∀(i, k) ∈ NR (15)

Without loss of generality, assume that the given paramet-
ric realization x∗ ∈ int(CRi). We need to prove that gi(x∗)
has the largest value amongst all discriminant functions,
even if the errors εi,k(x∗) are non-zero, but assuming that
Gi,k(x∗) and P i,k(x∗) have same signs ∀(i, k) ∈ NR. We
know P i,k(x∗) < 0 since x∗ ∈ in(CRi). With P i,k(x∗)
and Gi,k(x∗) having the same signs, (14) yields gi(x∗) >
gk(x∗). This relation can be similarly shown to hold for all
regions adjacent to CRi. Thus, gi(x∗) is largest amongst
all CRi neighbours. It remains to show that gi(x∗) is
largest amongst non-neighbouring regions as well, i.e.

gi(x∗) > gk(x∗) (16)

where CRk is not a neighbour of CRi. Select a point xk ∈
int(CRk) such that the line joining xk and x∗ intersects
only d − 1 dimensional facets. Let w be the number of
regions encountered while traversing from x∗ to xk, with
the sequence of regions being {CRl1 , CRl2 , . . . , CRlw}
where l1 = i and lw = k are fixed. Let a pair of successive
regions CRlu , CRlu+1 in this sequence be adjacent regions
with common hyperplane H lu,lu+1 with

CRlu ⊆ HSlu,lu+1

A , and CRlu+1 ⊆ HSlu,lu+1

B . (17)

∴ x∗ ∈ HSlu,lu+1

A (18)

Since H lu,lu+1(x∗) and Glu,lu+1(x∗) have same signs,

glu(x∗) > glu+1(x∗) (19)

It is important to note that we did not use the exact
equality (7) which was part of the LM design formulation
to obtain (19). We instead used the given statement of
same signs for both H lu,lu+1(x∗) and Glu,lu+1(x∗) and the
positivity of all scaling factors. Applying (19) to all the
CRs encountered while traversing along the line joining
x∗ to xk, we obtain the desired result:

gi(x∗) = gl1(x∗) > gl2(x∗) > . . . > glw(x∗) = gk(x∗) (20)

=⇒ gi(x∗) > gk(x∗) (21)

It should be noted that this test is a sufficient condition
for guaranteeing accuracy of classification of the given
parametric realization x∗. Hence, if this test is violated,
accuracy of the region identified by the LM is not guaran-
teed. In such cases, sequential/binary search (Tøndel et al.,
2003) may be used to solve the point location problem.

5.3 Demonstration on Quadruple Tank System

We now demonstrate the utility of the online-verification
test by performing point location for the quadruple tank
system (Section 3). The parameters tabulated in Appendix
A (Table A.1) are used on the polyhedral partition P-
horizon8. It results in a total of 895 CRs, but as the facet-
to-facet property is violated, LM does not exist. The LM
tree modifies the polyhedral partition and results in 41
nodes with 21 child nodes out of which LM exists only for
6 child nodes. For the remaining 15 child nodes, sequential
search is used to solve the point location problem. Point
location is carried out as indicated in Section 2.3 and in
Airan et al. (2017). After identifying the region within
child node containing the point in contention, the online
verification test is used to validate the accuracy of the
finding. If the test fails, the LM finding is dropped and
a sequential search is used within the child node. The
identified region within the child node is mapped to the
original partition and renders the location of x∗. We
generate N = 500 random points in each of the 895 critical
regions and their identified location via the LM approach
is then compared with the true region. The percentage
of misclassified points is used as a metric to check the
accuracy of the approach.

Table 1. P-horizon8 LM classification results

#
Child
node

#
Re-
gions

% Misclassifica-
tion (no online
verification test)

% Misclassifica-
tion (with online
verification test)

%
False
alarm

1 77 29.5 0 65. 9

2 55 5.5 0 14.8

3 7 0 0 0

4 77 7.8 0 47.4

5 56 35.7 0 26.8

6 8 0 0 0

A detailed analysis for each child node of the LM tree
associated with P-horizon8 is presented in Table 1. It is
seen that for several child nodes, instances misclassified
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without the online verification test are rectified after on-
line verification test is performed. Whenever the online
verification test is not passed, an alternate point location
method (sequential search) is employed. The online verifi-
cation test is a sufficient condition only, and hence there
are instances where the online verification test fails and yet
the linear machine classification is correct. The percentage
of such instances is presented in the last column of Table
1 under the heading “False Alarm”.

6. CONCLUSIONS

In this work, we focused on addressing the issue of correct-
ness of LM in presence of numerical errors in the LM gen-
eration procedure. These numerical errors are inevitable
in any numerical optimization procedure. We proposed a
necessary condition (to be checked offline) for checking
the correctness of adjacent regions identification. we also
proposed a sufficient condition (to be deployed online) for
guaranteeing the correctness of the LM result for a given
parametric realization. LM based e-MPC solution to the
quadruple tank system was investigated to highlight the
utility of the proposed conditions. The issue of correctness
in presence of numerical errors is a generic issue potentially
affecting not only various other point location methods
but also the key step of generation of critical regions in
the parametric space. There is need to investigate these
issues in more detail to enable robust and accurate e-MPC
implementations.
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Appendix A. FORMULATION I AND II NUMERICAL
PARAMETERS

The optimization engine used is IBM ILOG CPLEX
Optimization (IBM). An indicative range of permissible
constraint tolerances generated by testing on variations
of the quadruple tank system (Section 3) listed (Table
A.1) and were established by post processing the results
obtained from the CPLEX LP implementation.

Table A.1. Constraint tols.: Indicative ranges

Constraint tol-
erance name

Corresponding con-
straint

Tolerance
range identified

Potential
neighbour

Equations to match
hyperplanes

10−5 − 10−4

I-1 (6a) (t > 0) 10−9−5×10−9

I-2 (6c & 6d) 10−6 − 10−5

II-1 (11a) (s > 0) 10−10 − 10−8

II-2 (11c) 10−9 − 10−8

II-3 LHS of (11e) 10−10 − 10−8

II-4 RHS of (11e & 11d) 10−8 − 10−5

As can be seen in Table A.1, most tolerances have narrow
ranges and hence may not be valid for other systems.
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