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Abstract: This paper concerns an application of a recently-developed nonlinear tracking
technique to trajectory control of autonomous vehicles at traffic intersections. The technique
uses a flow version of the Newton-Raphson method for controlling a predicted system-output
to a future reference target. Its implementations are based on numerical solutions of ordinary
differential equations, and it does not specify any particular method for computing its future
reference trajectories. Consequently it can use relatively simple algorithms on crude models
for computing the target trajectories, and more-accurate models and algorithms for trajectory
control in the tight loop. We demonstrate this point on an extant predictive traffic planning-and-
control method with our tracking technique. Furthermore, we guarantee safety specifications by
applying to the tracking technique the framework of control barrier functions.

1. INTRODUCTION

In a recent work (Wardi et al. (2019)), we proposed a
new approach to output tracking of dynamical systems
that appears to be effective while requiring modest com-
puting efforts. Its underscoring technique is based on a
standalone integrator with a variable gain, designed for
stability and small tracking errors. The integrator is de-
fined by a flow version of the Newton-Raphson method for
solving algebraic equations. These equations are defined
by attempting to match a predicted system’s output to
a predicted value of the reference target. Furthermore,
increasing the controller’s rate can stabilize the system,
increase its stability margins, and reduce its tracking error
even (in some cases) if the plant-subsystem is unstable and
not of a minimum phase.

Formally, consider the system depicted in Figure 1, where
the reference input r(t), the control signal u(t), and the
output y(t) are in Rm for a given m = 1, 2, . . .. Suppose
that the plant is a dynamical system with the state
equation

ẋ(t) = f(x(t), u(t)), x(0) := x0, (1)

and the output equation

y(t) = h(x(t)); (2)
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Fig. 1. Basic control system.

here the state variable is x(t) ∈ Rn, x0 := x(0) ∈ Rn is
a given initial state, and the dynamic-response function
f : Rn × Rm → Rn and output function h : Rn → Rm

satisfy the following assumption:

Assumption 1. 1). The function f : Rn × Rm → Rn

is continuously differentiable, and for every compact set
Γ ⊂ Rm there exists K > 0 such that, for every x ∈ Rn
and for every u ∈ Γ,

‖f(x, u)‖ ≤ K
(
‖x‖+ 1

)
. (3)

2). The function h : Rn → Rm is continuously differen-
tiable.

This assumption guarantees a unique continuous, piecewise-
continuously differentiable solution x(t) to Eq. (1) for
every bounded, piecewise-continuous input u(t) and an
initial condition x0.

The controller is defined as follows. Fix T > 0. At time
t ≥ 0, let ŷ(t+ T ) be a predicted value of y(t+ T ), which
is assumed to depend on x(t) and u(t). We denote this
dependence by the functional notation

ŷ(t+ T ) = g(x(t), u(t)), (4)
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and assume that the function g : Rn × Rm → Rm is
continuously differentiable. The output predictor that we
use is based on simulating the system, at time t, over the
time-interval [t, t+ T ], with the initial condition x(t) and
the constant input u(τ) := u(t) for all τ ∈ [t, t+ T ]. Thus,
we numerically solve the equation

ξ̇(τ) = f(x(τ), u(t)), ξ(t) = x(t) (5)

by the forward-Euler method, then we define

ŷ(t+ T ) := ξ(t+ T ). (6)

We mention that the future reference r(t + T ) also may
have to be estimated by a suitable predictor (e.g., Wardi
et al. (2019)), but we assume here that it is known exactly
at time t in order to simplify the discussion.

The controller is defined by the following equation,

u̇(t) = α
(∂g
∂u

(x(t), u(t))
)−1(

r(t+ T )− g(x(t), u(t))
)

(7)

with given gain α > 0 and initial condition u0 := u(0); we

implicitly assume that the partial Jacobian ∂g
∂u (x(t), u(t))

is nonsingular along the trajectory (x(t), u(t)) in the
forthcoming discussion. The tracking convergence of this
controller has been analyzed in Wardi et al. (2019), and
the results are summarized in the expanded version of this
paper published in the Arxiv (Shivam et al. (2020)).

Thus far, the development of the aforementioned tracking
technique has focused on its fundamental structure, theo-
retical convergence results, and various examples including
an inverted pendulum and motion control in platoons
(Wardi et al. (2019)). Presently our main interest is in
applications to autonomous vehicles, and especially in
trajectory control of swarms and platoons. Such problems
often are being addressed by Model Predictive Control
(MPC) or related techniques; see e.g., (Kong et al. (2015);
Plessen et al. (2018); Kim and Kumar (2014)) and refer-
ences therein. Like MPC, our tracking technique is based
on prediction, but it is different from MPC in the following
ways. 1). It is not based on optimal control nor does it
specify a particular framework for computing future target
trajectories. 2). Its reliance on the Newton-Raphson flow
gives it a fast convergence. 3). The prediction horizon
may, but does not have to be short. 4). The predictor and
controller, defined by Eqs. (5)–(7), can be implemented in
real time by the forward Euler method.

The primary objective of this paper is to investigate how
the proposed tracking framework can complement the
prediction-based trajectory-control technique, developed
in Malikopoulos et al. (2018) for traffic management of
autonomous vehicles in urban road-intersections. This
technique is slated to optimize motion-energy consumption
of each vehicle while guaranteeing safety constraints. It
is in the flavor of MPC in that it solves optimal control
problems for computing future trajectories, but unlike
MPC it does not consider rolling horizons but a single
optimal control program for each vehicle approaching an
intersection. A salient feature of this technique is that it
uses a simple dynamic model for the vehicles, comprised of
a double integrator, thereby enabling closed-form solutions
to the optimal control problems. This gives an efficient
trajectory-computation for every vehicle, which scales well
with traffic loads at the intersections.

Our tracking technique complements the traffic control
framework of Malikopoulos et al. (2018) in the follow-
ing way. We first compute the target-trajectories of the
vehicles using the simple model and formula derived in
Malikopoulos et al. (2018), then we apply our technique
to a more complicated and realistic model for tracking the
computed trajectories. To this end we use a dynamic bicy-
cle model for the vehicles’ motion, a sixth-order nonlinear
model that has been extensively used in the control of
autonomous vehicles (see, e.g., Kong et al. (2015); Plessen
et al. (2018) and references therein). Furthermore, we ex-
tend the applications domain of Malikopoulos et al. (2018)
from a straight road to a curved road. Lastly, we examine
the treatment of safety constraints in the tight control
loop by incorporating control barrier functions with the
tracking technique.

The rest of the paper is organized as follows. Section
2 formulates the problem, Section 3 presents simulation
results, and Section 4 concludes the paper and outlines
directions for future research.

Statement of contributions. The contribution of the present
paper is twofold: Extending the framework of prediction-
based tracking in the context of trajectory control of
autonomous vehicles, and incorporating safety measures
through the use of barrier functions. The tracking tech-
nique has been applied to the dynamic bicycle model
(Shivam et al. (2019); Wardi et al. (2019)), and the rel-
evant contribution in this paper is in its application to the
control framework of Malikopoulos et al. (2018). Regarding
safety guarantees, control barrier functions have not been
applied to the tracking technique or, to our knowledge, to
a dynamic bicycle model.

2. PROBLEM FORMULATION

Our work is concerned with the management and control of
vehicle-flows at traffic intersections. Following Malikopou-
los et al. (2018), each one of the roads comprising an inter-
section consists of two zones: a control zone and a merging
zone. The merging zone is at the center of the intersection,
where lateral accidents are possible. The control zone is a
stretch of the road approaching the merging zone, where
the scheduling, planning and control of vehicles’ trajecto-
ries are performed. Once a vehicle enters the merging zone
its speed or lane cannot be changed.

Whenever a vehicle enters the control zone, a scheduler
computes the time and speed at which it has to enter
the merging zone based on the current and future states
(positions and velocities) of all the other vehicles concur-
rently in the intersection. Subsequently the trajectory of
the newly-arrived vehicle is computed by minimizing its
projected motion energy while maximizing the throughput
at the intersection, subject to safety and operational con-
straints. The safety constraints include a minimum inter-
vehicle distance and a maximum deviation from a lane-
center, while the operational constraints include bounds
on speed and acceleration. This trajectory-planning prob-
lem is formulated as an optimal control problem which
is parameterized by the states of all the other vehicles
concurrently at the intersection, hence it is different from
one vehicle to the next and consequently must be solved
in real time.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15943



The contribution of this paper is not in the aforementioned
scheduling and trajectory planning-and-control problem,
but in a tracking of its computed solution. Thus, the
tracking control is at a lower level than the optimal control
problem, and for that we use a bicycle model for the
vehicles’ dynamics, which is more accurate and detailed
than the double-integrator model.

The bicycle model that we use is the six-degree nonlinear
system described in Kong et al. (2015). Its state variable

is x = (z1, z2, v`, vn, ψ, ψ̇)>, where z1 and z2 are the planer
position-coordinates of the center of gravity of the vehicle,
v` and vn are the longitudinal and lateral velocities, ψ is
the heading of the vehicle and ψ̇ is its angular velocity. The
input, u = (a`, δf )>, consists of the longitudinal accelera-
tion and steering angle of the front wheels, respectively,
and the output, y = (z1, z2)>, is the center of gravity of
the vehicle. The dynamic equations are (see Kong et al.
(2015)):

ż1 = v` cosψ − vn sinψ,

ż2 = v` sinψ + vn cosψ,

v̇` = ψ̇vn + a`,

v̇n = −ψ̇v` + 2 (Fc,f cos δf + Fc,r) /m,

ψ̈ = 2 (lfFc,f cos δf − lrFc,r) /Iz, (8)

where m is the mass of the vehicle, lf and lr are the front
and back axles’ distances from the vehicle’s center of mass,
Iz is the yaw moment of inertia, and Fc,f and Fc,r are the
lateral forces on the front and rear tyres. These forces are
approximated by the following equations,

Fc,f = Cα,f

(
δf − tan−1

(
(vn + lf ψ̇)/v`

))
,

Fc,r = −Cα,r tan−1
(

(vn − lrψ̇)/v`

)
,

where Cα,f and Cα,r are the cornering stiffness of the front
and rear tyres, respectively.

Our tracking technique will be tested first on a curved
road, which does not quite fit in the framework of Ma-
likopoulos et al. (2018) due to its one-dimensional traffic
model of motion. Then we make a more careful examina-
tion of safety constraints which are addressed in real time
by control barrier functions, and for that we use a straight
road in order to highlight the effects of the safety controls.

3. SIMULATION RESULTS

We consider the control zone of a road approaching an
intersection, and as in Malikopoulos et al. (2018), assume
that vehicles do not change lanes and hence we focus on
a single lane. The motion dynamics of the vehicles follow
the bicycle model discussed in Section 2 with the following
parameter values as in Shivam et al. (2019): m = 2, 050 kg,
Iz = 3, 344 kg · m2, lf = 1.105 m, lr = 1.738 m,
Cα,f = 57500 N/rad, and Cα,r = 92500 N/rad.

Two experiments are conducted. In the first experiment we
consider only tracking without regard to safety constraints
in the tight loop. We compute the trajectories of the vehi-
cles by the formula derived in Malikopoulos et al. (2018),
then apply the tracking technique to ensure that the com-
puted trajectories are followed. In the second experiment

we define safety constraints in terms of minimum inter-
vehicle distance and maximum lateral deviations from the
lane’s center, and apply control barrier functions to ensure
that they are satisfied in the face of unexpected changes
to traffic conditions.

3.1 Tracking Control

We consider a road (lane) approaching an intersection,
consisting of 400m control zone and 30m merging zone,
and comprising a 30o arc of a circle with a radius of
821.23m. There are 5 vehicles in the experiment. They
arrive to the control zone at randomly-drawn times, all
at the same initial speed of 13.4 m/s and longitudinal
acceleration of 0. The initial heading of all the vehicles is
0o with respect to the direction of the lane, and therefore,
if the control gives effective tracking, they are expected to
remain close to the lane’s center and maintain a heading of
near 0o (with respect to the road) throughout the control
zone.

The arrival times of the vehicles to the merging zone and
the vehicle’s trajectories in the control zone are computed,
respectively, by the scheduling procedure and the optimal
control algorithm proposed in Malikopoulos et al. (2018).
Now it must be pointed out that that algorithm is ap-
plicable to straight roads since it is underscored by a
straight-line model of motion. Therefore, we compute the
trajectories as if the road is straight, and map the results
to the curved road according to the distance travelled.

To test the robustness of the controller with respect
to modeling variations, we induce an error of 100% in
the vehicles’ mass. Thus, the predictor equation (4) uses
twice the “real” weight of the cars which is used in the
simulations.

All the differential equations for the simulation and the
controller are solved by the Forward Euler method with
step-size of dt = 0.005 for the simulations, and ∆t = 0.001
for the controller. The controller speedup factor is set at
α = 100.

The results are shown in Figures 2-4. Figure 2 depicts the
graphs of the distance (arc-length) travelled by the five
vehicles through the control zone and merging zone, as
functions of time. The color-coded legend indicates the
order of the vehicles according to their arrivals to the
control zone. The vehicles’ distance-travelled graphs are
extended beyond their departures from the intersection at
the constant of 430m for the sake of a better presentation.
Apparently Car 1 moves at a constant velocity. In con-
trast, subsequent vehicles slow down in order to meet the
computed schedule of entering the merging zone, which is
more sparse than their arrival schedule to the control zone.

The tracking error for each vehicle, defined by the Eu-
clidean distances between its position and target reference
as computed by the optimal control program, is depicted
in Figure 3. Following an initial error of about 6 cm, the
vehicles settle, in about 3 seconds, to a steady-state error of
under 2 cm. The initial error is due to transients associated
with discrepancies between the vehicles’ initial poise and
their corresponding reference points. These transients ap-
pear identical for all the vehicles, because their respective
initial positions, velocities and steering angles are identical
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Fig. 2. Distances traveled vs. time, barely distinguishable from the

corresponding target trajectories.

Fig. 3. Tracking errors vs. time, under 6 cm during initial transient

phase, and under 2 cm thereafter.

Fig. 4. Vehicles’ longitudinal accelerations vs. time, under 5% of g.

when they enter the control zone. The asymptotic tracking
errors are due to the prediction errors and the curvatures
of the road; a test of this hypothesis by simulations is
described in Shivam et al. (2020). Since the tracking errors
are small relative to the distance travelled, the graphs in
Figure 2 are indistinguishable from corresponding graphs
of the reference trajectories, which consequently are not
presented in the paper.

Figure 4 depicts the graphs of the longitudinal acceler-
ations of the vehicles vs. time, and we observe initial
transients of under 0.48 m/s2. The graphs of later vehicles
are below the graphs of earlier vehicles. This is due to the
fact that all of the vehicles travel the same distance but
later ones do it in more time, hence have to decelerate
more than earlier vehicles. We also note that each graph
reaches zero acceleration at the final point of the control
zone, which is in compliance with the constraint that it
must travel across the merging zone at a constant speed.

3.2 Incorporation of Safety Constraints

We next extend the simulation setting described in the last
subsection to include safety constraints that are addressed
by Control Barrier Functions (CBF). Refs. Ames et al.
(2014, 2017) laid the groundwork for a CBF framework
which guarantees safety in the tight-loop control. The
framework combines control barrier functions with control

Lyapunov functions to achieve the dual purpose of effective
control while satisfying hard safety constraints. Shortly
thereafter it was applied to the control of multi-agent
systems and networks, with applications to mobile robots
and autonomous vehicles; see Wang et al. (2017) for an
initial work, and Ames et al. (2019) for a recent survey.
The gist of the CBF approach is to compute a control
signal based on a feedback law, then project it into a set
in the input space which guarantees safety. If the plant-
dynamics are control affine, the projection comprises the
solution of a quadratic program which may be computable
in real time. A brief summary of CBF in the context of the
problem described in this paper can be found in Shivam
et al. (2020).

To highlight the salient features of the CBF approach,
we henceforth consider only two vehicles travelling on a
straight, single-lane road. The first vehicle serves as an
obstacle for the second vehicle, hence its trajectory is
predetermined and not controlled. The second vehicle has
the same dynamic bicycle model as in Subsection 3.1, and
it is controlled by the same tracking technique described
there.

The first vehicle enters the control zone at time t = −5 s,
and the second vehicle enters it at time t0 := 0. The
first vehicle travels along the road and its speed profile
is shown in the blue graph of Figure 5. The piecewise-
constant velocities in the figure are 2 m/s, 1 m/s, and
2 m/s, respectively; its deceleration commences at time
t1:=50 s, and its acceleration starts at time t2:=75 s. It
travels along the lane without lateral deviations.

At the time the second vehicle enters the control zone
(road), t0 = 0, it is 10m behind the first vehicle. Its
target reference trajectory is r2(t) := r(t) = (2t, 0)>, lying
along the road. However, it enters the road at the initial
steering angle of 20o, or 0.35 rad from the direction of
the road. Therefore initially the second vehicle veers off
the lane, but is pulled back to it by the tracking control.
Thereafter it stays on the lane while attempting to track
its target trajectory. Without an application of the CBF to
the second vehicle, maximum deviation (lateral distance)
from the lane’s center is about 1.6m, which practically may
be unacceptable. Furthermore, after returning to the lane,
it runs into the first vehicle shortly after its slowdown.

To avoid the collision and limit the lateral deviation from
the lane, we impose the following two safety constraints:
(i) the second vehicle must maintain a distance of at least
5m from the first vehicle, and (ii) the lateral deviation of
the second vehicle from the center-lane must not exceed
0.5m. We label these the longitudinal constraint and the
lateral constraint. We design two corresponding CBF and
apply them jointly with the tracking controller. We point
out that the longitudinal dynamics of the second vehicle
are control-affine while its lateral dynamics are not control
affine; see the state equation (8). 1 Therefore the CFB
projection for the longitudinal constraint can be computed
by a quadratic program while the lateral CBF projection

1 We are aware of a transformation of the system that renders its
state equation affine with respect to both input controls (Rajamani
(2012)). However, we prefer to work with the current system in order
to test the controller in an environment where the state equation is
not control affine.
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has to rely on an alternative, ad-hoc algorithm. We next
explain the two control barrier functions.

Let us denote the position and velocity of the ith vehicle,
i = 1, 2, by pi ∈ R2 and vi ∈ R2, respectively.
Furthermore, define the relative displacement and relative
velocity of the second vehicle with respect to the first one
by ∆p := p1 − p2 and ∆v := v1 − v2. The purpose of
the CBF is to ensure that ||∆p|| ≥ d0 for a given d0 > 0
(d0 = 5m in our experiments). Therefore it is tempting
to define the safe set as S := {x ∈ R6 : ||∆p|| ≥ d0},
where x is the state variable of the dynamic bicycle model
defined by Eq. (8). However, this does not guarantee that
collisions cannot occur due to the inertia inherent in the
dynamic model.

To get around this difficulty we use an idea, developed in
Wang (2018), of defining a CBF in terms of the relative
velocity along the relative displacement. Denoted by v̂, it
is defined by

v̂ =
〈 ∆p

‖∆p‖
,∆v

〉
. (9)

Let ā > 0 denote the maximum-possible longitudinal
deceleration of the second vehicle, and define k := (2ā)−1.
Recall that the longitudinal acceleration is denoted by a`
and it is a part of the input (see (8)). Now, a simple
algebra shows that for every interval [t, t1] where the
first vehicle has a constant velocity, if a`(τ) ≡ −ā then
||∆p(τ)|| ≥ ||∆p(t)|| − kv̂(t)2. Therefore, to ensure the
forward invariance of the constraint set {x ∈ R6 : ‖∆p‖ ≥
d0}, we impose the condition that

‖∆p(t)‖ − kv̂(t)2 ≥ d0. (10)

This leads us to define the barrier function by h(x) =√
k(‖∆p‖ − d0)− ||v̂||. As a part of the safety control we

enforce the condition d
dth(x(t))+h(x(t)) ≥ 0 ∀t ≥ 0, which

implies that the set defined by (10) is forward invariant
(see Ames et al. (2014, 2017, 2019)). Therefore, we consider
the set defined by (10) as the safe set. Finally, we note
that the dynamic equation (8) is control affine in the
longitudinal acceleration, and hence the input control can
be computed by a quadratic program.

To define the lateral CBF, we only need the lateral
deviation of the vehicle from the lane’s center and its
velocity. Denote by y the lateral deviation, and let ymax

be the maximum allowed deviation. In analogy with (10),
the following condition ensures the maximum deviation
constraint,

ymax ≥
∣∣y + k

y

|y|
ẏ2
∣∣, (11)

where k := (2ã)−1 with ã denoting the maximum lateral
acceleration. We define the safe set to be the set satisfying
the inequality in (11), and correspondingly, we define the
barrier function h(x) := ymax − |y + k y

|y| ẏ
2|. Further

defining (after some trial and error) κ(h) = 15h3, it can be
seen that d

dth(x(t)) = κ(h(x)) ≥ ∀t ≥ 0 thereby ensuring
safety (see Ames et al. (2014, 2017, 2019)).

The input involved with the lateral deviation is the steer-
ing angle of the front wheels, δf . Since the state equation is
not control-affine in this input, its projection into the safe
set cannot be computed by a quadratic program. Instead,
we compute the projection by a bisection line search over
the allowable input set which is the interval [−π4 ,

π
4 ].
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Fig. 5. Vehicles’ velocities vs. time. The change in velocity of Car

2 is due to the action of the CBF.
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4

6

8

10

Fig. 6. Distance between the two vehicles. The decline starting at

50s is due to the action of the CBF.

The simulation results are shown in Figures 5-10. Figure 5
depicts the speeds of the first and second vehicles in blue
and red, respectively. The visible initial transient of the
red graph is due to the heading of the car when it enters
the road. Note the delay in the slowdown of the second
vehicle after the first vehicle; it is due to the fact that the
second vehicle starts reducing its speed not immediately
but when its distance from the first vehicle approaches
the minimum of 5 m. In contrast, there is no such delay
in the speedup since that would violate the minimum-
distance constraints. Figure 6 shows the graph of the inter-
vehicle distance, and we clearly see that it retains its
minimum value through and following the speedup of the
first vehicle.

Figure 7 depicts the graph of the lateral (normal) deviation
of the second vehicle from the lane’s center, which is
largely due to its initial heading of 20o. We mentioned
that without the lateral CBF the maximum distance is
1.6 m, and we observe that with the CBF, the maximum
distance is about 0.27 m. Figure 8 shows the graph of
the distance between the position of the second vehicle
and its target trajectory. Following an initial transient
the vehicle catches up and tracks its target trajectory
until the first vehicle slows down. It then rises during the
slowdown period due to the action of the CBF. After the
first vehicle speeds up, the second vehicle cannot close
down its tracking error since it is forced by the CBF to
keep the inter-vehicle distance of 5 m, hence the tracking
error assumes a constant value.

The next two figures show the two controls. Figure 9
depicts the longitudinal acceleration, and we notice jumps
that are due to initial transients as well as the slowdown
and speedup of the first-vehicle. Figure 10 depicts the
graph of the steering angle of the second car, and it
displays a transient due to the initial heading of the car.
Neither figure displays surprising results.
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Fig. 7. Distance of second vehicle from the lane-center. Without the

CBF the maximum distance is about 1.6m.
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Fig. 8. Tracking error of second vehicle. It cannot be reduced due

to the CBF.
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Fig. 9. Longitudinal acceleration of second vehicle.
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Fig. 10. Steering angle of second vehicle

4. CONCLUSION AND FUTURE WORK

This work applies a specific prediction-based, nonlinear
tracking technique to the trajectory control of autonomous
vehicles at traffic intersections. We guarantee safety speci-
fications by applying to the tracking technique the frame-
work of control barrier functions. Future work will focus
on developing robustness guarantees that will allow for
more realistic scenarios, where modeling inaccuracies and
external disturbances are taken into consideration.
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