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Abstract: With the rapid development and widespread application of robotic formation,
relative navigation problem has attracted extensive attention. In this paper, the relative
navigation problem for robotic formation applications is investigated, for which, we provide
a relative navigation method based on multi-sensor fusion. First of all, a data links enhanced
relative navigation scheme is proposed. Secondly, the underlying estimation problem behind
the relative navigation scheme is derived. Then, a recursive relative navigation algorithm
based on maximum a posterior estimation is provided for different multi-sensor combinations.
Finally, simulation experiments are performed to show the effectiveness of the proposed relative

navigation method.
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1. INTRODUCTION

In recent years, robotic formation application has been
an active and growing research area benefiting from the
evolving military and civilian demands, e.g. surveillance,
reconnaissance, rescuing, docking, and in-orbit servicing,
see Fosbury and Crassidis [2008], Horri and Palmer [2013],
Oh et al. [2015], Jothi [2007]. As one of the fundamental
research problems, formation control in multi-agent sys-
tems have received considerable attention from different
disciplines and been widely investigated.

Formation control, which is one of the most actively stud-
ied topics within the realm of multi-agent systems, gen-
erally aims to steer multiple agents to achieve prescribed
formation over a topology communication network. De-
pending on the types of sensed variables, existing forma-
tion control approaches can be roughly classified into three
categories, that is, position-based control, displacement-
based control and distance-based control (see Oh et al.
[2015], Han et al. [2018]). Anyhow, almost all existing
strategies utilize relative position measurements as control
inputs.

Nevertheless, in formation applications, there does not
exist effective sensors that can directly provide a relative
position measurement between two agents and GPS is still
the only choice in reality. An alternative option for GPS-
denied or GPS-jammed environments is to utilize research
of sensor network localization problem which is addressed
as a separate problem in the past.

Sensor network localization aims to determine the node
position in a static or dynamic sensor network. Depend-
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ing on the form of problem formulation, sensor network
localization problem can be mainly classified into two
categories, i.e. source localization problem (see Han et al.
[2018], Jiang et al. [2017],Han et al. [2018]Han et al. [2018]
Chai et al. [2013], Kexin et al. [2019]) and network local-
ization problem(see Simonetto and Leus [2014], Lin et al.
[2015], Oh and Ahn [2014]).

Source localization refers to the problem of estimating the
precise location of a source or neighboring agent based
on distance measurement, and for formation application,
it postulates that each agent carries out specific motions
during the entire process. Network localization aims to
estimate the node position in a global frame with the
given inter-sensor distance or angle measurement and
the location of known anchors. Compared with source
localization, no motion prior is needed and more suitable
for formation application.

There have been significant efforts in developing algo-
rithms and heuristics that can accurately and efficiently
localize the nodes in a sensor network. see Langendoen
and Reijers [2003], Mao et al. [2007]. Typical methods
involve standard nonlinear filtering in Cattivelli and Sayed
[2010], belief propagation techniques in Wymeersch et al.
[2009] and convex relaxation optimization techniques in
Simonetto and Leus [2014].

Our work differs from the literature in the sense that
an sequential maximum likelihood estimation method is
utilized to estimate the node position recursively and
a unified framework is provided to fuse information of
different sensors. In this paper, it is assumed that every
robot is equipped with data links as both information
exchanging media and distance measurement sensors and
a few anchor nodes are assumed to be with known position
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by setting up as static or equipping with global localization
Sensors.

The structure of this paper is organized as follows. In Sec-
tion 2, a data links enhanced relative navigation scheme is
proposed and the underlying relative navigation problem is
derived. In Section 3, an estimation algorithm framework
for relative navigation is provided. In Section 4, simulation
experiments for the data links enhanced relative naviga-
tion method are performed to show the effectiveness of
the proposed method. In Section 5, we summarize the
conclusions and future work.

2. PROBLEM FORMULATION

Physical configuration and estimation methods are two key
issues. In this section, we will propose a relative navigation
scheme and describe the underlying estimation problem as
follows.

2.1 Relative Navigation Scheme Design

There exist several types of navigation sensors for different
missions or mission phases, but the main sensors for
relative navigation are GPS, optical navigation sensors
(ONS) and data links (DL), see Horri and Palmer [2013],
Allende et al. [2015]. GPS is a type of absolute navigation
sensors and ONS is a type of relative navigation sensors.
As for data links, it can be multiplexed as distance sensors.

The three types of navigation sensors have different char-
acteristics and are used in different scenarios. GPS may
be the most common way for either absolute or relative
navigation, but on account of its low accuracy, performs
poorly in precise operation. ONS have high precision but
not suitable for large scale formation. Data links are typ-
ically used to communicate, but also be used for collision
detection and relative navigation. Summarize characteris-
tics of the three types of sensors as shown in Table 1.

Table 1. Characteristics of navigation sensors

Sensor Noise (1o0) Application Scene
GPS 50cm ~ 3m Autonomous formation flying
ONS 0.1cm ~ 10cm Precise 3D operations

DL 5cm ~ 30cm Collision avoidance

In Table 1, each type includes many specific sensors with
similar principles, and so, the noise term only provides
a rough range. Specific tasks require particular sensors,
and no single sensor can meet the needs of all tasks. It is
necessary to explore innovative combinations of different
sensors for complex application scenarios.

As described in Ranger [1996], data link network has the
measurement ability of formation topology, but cannot
determine the transformation relative to global or local
frame. It needs to rely on GPS or ONS to align with the
reference frame. On account of that, the relative navigation
scheme based on data links can be categorized into three

types:
(1) Set at least three robots static as base stations;

(2) Equip GPS for at least three robots;
(3) Equip ONS for at least three robots;

The three types of relative navigation schemes reduce
dependence on expensive GPS or ONS and are especially
important for large scale formation applications. Scheme
(1) ~ (3) can all be modeled as network localization
problem and we will give detailed description in the
following.

2.2 Measurement Model Description
1\
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Fig. 1. Sensing and communication topology of robots
formation

The sensing and communication topology of robots for-
mation system is as shown in Fig. 1, where the blue boxes
are common nodes and the red boxes are anchor nodes.
Amongst, F{ and F} (i,j € 1,2---N) are local frames
of robot ¢ and robot j respectively, and F, is the global
frame.

It is known that both absolute and relative navigation sen-
sors provide position measurements, just in different refer-
ence frames. If there are no absolute navigation sensors, a
local frame F}' can be chosen as the global reference frame
and measurements of other relative navigation sensors can
be represented in F'. In some sense, absolute and relative
navigation sensors are equivalent.

On account of that, establish a unified measurement model
for absolute and relative navigation sensors as below:

N =Di — Dr + Oy, (1)

where 7; is the measurement of relative position, p, is the
position of the reference frame origin, p; is the location
of robot ¢, and §,, is the random noise. The measurement
model of data links can be expressed as:

Pij = ||pl - p]” + 5pij (2)

where p; and p; are positions of robot 7 and j, p;; is the
measurement of distance between robot i and j, and d,,;
is the random noise.

2.3 Relative Navigation Problem Description

The motion process of robotic formation is expressed as
the state flow diagram Fig. 2(a) shows. The states of
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robotic formation at moment k are defined as a set of in-
dependent states Py := {p; }x, the observations of robotic
formation are defined as a set of independent measure-
ments (X, T'y) := ({mi}x, {pij}x) and the control inputs
of robotic formation are defined as a set of independent
inputs Vy, := {v;}x. Each term in {x;} represent the state
of robot i at time k, and i € 1,2--- N is the robot ID in
robotic formation.
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(a) State flow diagram of relative navigation problem

(b) Factor graph of relative navigation problem

Fig. 2. Diagram of relative navigation problem for robotic
formation system ( Fig (a) shows the state transition
process and Fig (b) expresses the motion process in
the form of factor graph )

The motion process of robotic formation can be modeled
as a first-order Markov process as shown in Fig. 2(b).
To simplify the derivation process, we use xk, Ur, 2k
to represent the state, measurements and control inputs
respectively, as follows:

T = Pk
Uk = Vk
ZE — (‘I‘k,I‘k).

The states, control inputs and observations of robotic for-
mation from moment 1 to T are defined as X:={xy }x=0.7,
U:={ug }r=1.7 and Z:={zy }r=1.7 respectively. Since that
the motion process obeys Markov property, the full prob-
ability formula can be expanded to:

p(X|U, Z) = p(wo) | [ pwxlwn—1, uk, 2). (3)
k=1

An important insight from equation (3) is that the global
estimation problem can be handled recursively because the
constraints exist only between adjacent states. This means
that an online estimator for relative navigation problem
can be used.

3. STATE ESTIMATION FOR RELATIVE
NAVIGATION SYSTEM

In this section, we derive a recursive state estimation
framework based on optimization methods for relative
navigation problems described in Fig. 2(b).
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3.1 Recursive State Estimation

As shown in equation (3), the global state estimation
problem degenerates into a series of local state estima-
tion problem. Then, the conditional probability density
function p(xk|rg—1,ur, 2zx) at time k is the only concern.
Based on the maximum a posterior estimation criteria, the
optimal estimation for zy is acquired by

j’: = argnﬁlﬂ%xp(xk|l’kfl7uk7zk) <4)

where 27 is the optimal estimation. Maximum a posterior
estimation can be rewritten using Bayesian inference:

P(2k|$k7 Tk—1, Uk)P($k|$k717 Uk)
P(zk|@R—1, up)

= arg H;aXP(ZMSCk,Ik—17uk)p($k|xk—1,uk) (5)
k

Iy, = arg max
Tk

= arg Hiaxp(zk|$k)P(xk|$k71, ug)
k

where p(zi|zk) is a likelihood term, p(zk|Tr—1,ur—1) is a
prior term and p(zx|zk—1,ux) is assumed to be subject to
uniform distribution.

Observation zj is typically composed of a set of indepen-
dent observations measured by different sensors, such as
z = {z}|s = 1,2,--- M}. Maximum a posterior esti-
mation of the multi-sensor fusion can then be derived as
follows:

Ak s
& = argmax p(aler—1, uk) [ [ p(zFlex) (6)

S

Assuming that noises of the likelihood term and the
prior term obey Gaussian distribution, the optimization
problem in equation (6) is equivalent to:

2y, ~ argmin —log p(zk|Tr—1,ug) Hp(zlﬂxk)
| (7)
2+ Yl
S

where X5 and ¥, are the covariances of observations and
control inputs, r; and r,, are the residuals of the likelihood
term and the prior term respectively. This method is
especially useful for multi-sensor fusion system, which can

add any independent observations into > ||r[|%. as in
S

~ arg min ||r,| 2.
Tk z

equation (7).
8.2 Covariance Update Mechanism

To make the recursive estimation possible, proper covari-
ance estimation methods need to be designed. The intu-
itive idea is to find a measure of the quadratic problem
inspired by marginalization tricks, see Barfoot [2017].

The cost function of relative navigation estimation prob-
lem is defined as

L=ral$, + Y lrsl
S

2
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and the second-order Taylor expansion of L at the optimal
value 27 is

. ey L ¥ -

L~ L(&) + J - (wk — &) + 5(9% — &) H (zy, — 1)
(8)
where J and H are the Jacobian and Hessian matrices
of cost function L respectively. If the state variable xy

obeys a Gaussian distribution, the covariance of x; can be
approximated by

Bl(zx — a3)’) = H™' (9)

when there is an inverse matrix H~!, see Segal and
Weinstein [1989] and Zhu et al. [2018]. Intuitively, the
smaller the curvature, the greater the uncertainty.

In practical applications, cost function L is only known
implicitly, or the explicit second derivative is difficult to
calculate, so Hessian matrix must be numerically com-
puted, e.g. by finite difference method. The numerical
calculation of H are given as follows:

‘ B 8L(0)‘ }
00; lo=6++n0,/2 00; lo=6=—n0,/2
1 [L(O*+ A6, + A8;/2) — L(6* + Ab,;/2)
Ab; [ Ab;
L(0* — AG;/2) — L(6* — Ab; — AG;/2)

(10)

where 6 is an alternative expression of xy; 6; and 60;
represent the i-th and j-th element of x; respectively.

3.8 Relative Navigation Algorithm

In Section 3.1, a unified estimation framework is proposed
to deal with the relative navigation problem of data link
enhanced relative navigation systems. Although there may
be multiple types of absolute or relative navigation sensors,
all sensors may be modeled by equation (1) regardless of
physical characteristics. In this section, we design the rel-
ative navigation algorithm based on equation (1) and (2),
and the algorithm flow is as shown in Algorithm 1.

In Algorithm 1, we use the Gaussian-Newton method
to solve the weighted least square problem efficiently,
see Madsen et al. [2004]. For the nonlinear optimization
problem, an initialization step is applied based on the
measurements of absolute or relative navigation sensors,
and then the optimal solution can be found.

4. SIMULATION EXPERIMENTS
4.1 Simulation Experiment Setup
As described in Section 2.1, here we mainly study two

types of data link enhanced relative navigation systems in
this paper, as follows:

Algorithm 1 Relative Navigation Algorithm

Input: The set of states and covariance estimated at time
k— ]-7 ( Pk*lv EPk—l )7
The set of observations at time &, ( X, 'y );
The set of control inputs at time k, Vy;

Output: The optimal state and covariance estimate at
time k, ( Py, Xp, );

1: Construct the objective function L based on current

observations and previous state estimate:

LPp) = 3 lIrvldy + 2 Irpls, +
vETE yel'y r
2
Z HTE’P,V)“E%—&-?‘F’,](_l

ve(Pr_1,Vi)
where 7%, r{ and 7(p vy are residuals from measure-
ment model and motion model respectively;
2: Initialize the iteration number as i = 0;
Initialize the optimization variable P, as f’](j);
3: repeat

4: Compute Jacobian matrix of objective function L:
; oL
JPY) = - .
(Pi”) 0P I1p,=pP?
5: Compute Hessian matrix of objective function L:
; 0*L
HPM) = 5|
(P7) OP% |lp,=p("
6: Compute the update step size of state variable 6Py:

6Py = H-L(P) - J(PY)

7 Update state variable P,(;):
(i+1) _ p(@) (4)
P, =P, - 0P,
: Update iteration number: ¢ =7 + 1;

9. until (||P\| < ¢)
10: )
11 if J(PY) > J,in then
12: No optimal solution found and terminate program;
13: else R .
14: Update the estimate value: P} = P,(;);
15: Update the covariance estimate: i’};k = H(PS));
16: end if
17: return ( Py, X3 )

(1) Scheme 1: Relative navigation system based on fusion
of ONS and data links;

(2) Scheme 2: Relative navigation system based on fusion
of GPS and data links;

In the simulation experiments, the number of robots in
robotic formation is set to 5, and the accuracy of different
sensors is set according to the previous analysis, as shown
in Tabel 2. The robotic formation is located in the x —y
plane and moves along a line.

Then we conduct simulation experiments based on Algo-
rithm 1 for Scheme 1 and Scheme 2 respectively, and the
results are illustrated below.
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Fig. 3. The spatial distribution estimation for robotic
formation at moment k& ( Fig (a) and (b) show
estimation results of the robotic formation space
distribution based on accurate ONS and inaccurate
GPS respectively. )

4.2 Relative Navigation Estimation FExperiment

The estimation results for the two schemes are as shown
in Fig. 3 ~ Fig. 5, where Fig. 3 represent the spatial
distribution of robotic formation in z —y plane at a certain
moment, Fig. 4 represent the offset error of estimation in
the motion process, and Fig. 5 represent the statistic of
random error for the robotic formation.

The topology of the robotic formation can be well es-
timated (black nodes) whether based on accurate ONS
or inaccurate GPS, and it is far better than pure mea-
surements of absolute navigation sensors (blue nodes in
Fig. 3(b)) and almost the same as pure measurements of
relative navigation sensors (blue nodes in Fig. 3(a)). Fig. 5
indicates that the topology of robotic formation is well
estimated for the total process regardles of the motion of
robotic formation.

Table 2. Experiment parameters setup

Sensors Noise (1o)
Data links 10 cm
ONS 5 cm
GPS 50 cm
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(a) Scheme 1
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(b) Scheme 2

Fig. 4. The offset error of estimation for relative navigation
system ( Fig (a) and (b) depict the offset error of
estimation based on accurate ONS and inaccurate
GPS respectively. )

Relative navigation estimates based on imprecise GPS
have larger offset errors than relative navigation estimates
based on precise ONS. Compensate the offset error man-
ually, and then the transformed formation configuration
(green nodes) is almost identical to the true value (red
nodes), as shown in Fig. 3(b). The offset error can also be
seen in Fig. 4. The offset error (Az, Ay, Af) in Scheme 1
is much smaller than that in Scheme 2 regardless of the
motion of robotic formation, meaning that the estimates
based on data links and GPS are not well aligned with the
reference frame.

Analyzing the experiment results, the distance measure-
ments of data link can keep relatively accurate estimation
of the robotic formation topology, and ONS or GPS are
mainly used to align the rigid topology with the reference
frame. The accuracy of ONS or GPS determines the offset
error, which is the main determinant of whether it can be
applied in practice.

Besides, from the perspective of practicability, the combi-
nation of data links and ONS makes large scale formation
applications possible because only a few relative obser-
vations are required. It has great advantages compared
to solutions with only ONS, thanks to its low cost, high
reliability, and high precision.
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Fig. 5. The statistics of random error for relative naviga-
tion system ( Fig (a) and (b) represent the random
error of estimation based on accurate ONS and inac-
curate GPS respectively. )

5. CONCLUSIONS

In this paper, we propose a data links enhanced relative
navigation scheme that reduces the dependence on relative
or absolute navigation sensors by reusing the navigation
functions of data links. Besides, an estimation algorithm
for relative navigation problems is derived, which is espe-
cially useful for multi-sensor fusion systems. According to
experiment results, the offset error is the main source of
error and mainly determined by the noise level of absolute
or relative navigation sensors. In the future, we will focus
on the physical characteristics of sensors and further study
the topology measurement problem of data links.
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