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Abstract: When a desired state is different from the state at which input cost becomes zero,
a naive application of the optimal control methodology may lead an ill-posed problem. In this
study, we propose a new method where the input cost is slightly changed so that the optimal
control problem is well defined. The method can realize an energy-efficient control, which
considers the actual energy consumption. We also confirm the effectiveness of the proposed
method via a case study of an example.
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1. INTRODUCTION

Optimal regulators are widely used to stabilize various
dynamical systems. In particular, Linear-Quadratic (LQ)
optimal regulators method as well as Linear-Quadratic-
Integral (LQI) control method is the most standard tech-
nique for the stabilization of systems described by linear
state equations. Numerical solutions of Hamilton-Jacobi
equations for the optimal regulators of low-dimensional
nonlinear systems can be also obtained easily by stable-
manifold methods (e.g. Yamashita and Shima (1998);
Sakamoto and van der Schaft (2008)).
It is often explained that an energy-conservative control
can be realized by regarding the input cost term in the op-
timal criterion as physical energy consumption. However,
in most actual control systems, matrices in the perfor-
mance criterion are used solely for adjusting parameters,
and controller design is focused only on the excellent char-
acteristics of the optimal regulator — asymptotic stabi-
lization, sector margin, and robustness. In these cases, the
optimality itself is neglected. On the other hand, in recent
years, the demand for energy saving control has increased,
and it is a natural requirement to realize energy saving by
using a widely used optimal regulator. Control technology
contributes to energy conservation via transient-response
improvement and selection of redundant actuators. This
study focuses on the former aspect. Transient response
is not related to energy consumption at a steady point
but considering that much energy in motor and engine
operation is consumed during acceleration, improvement
of transient response seems to have great significance for
energy saving.
Unfortunately, in some cases, physical energy-consumption
functions cannot be adopted as the input-cost terms in the
optimal control. This problem occurs for the systems that
? This work was supported by JSPS KAKENHI Grant Number
JP19H02157.

consume energy even at their steady point and momen-
tarily allow smaller inputs than the steady inputs. Such
systems include most chemical plant systems, mechanical
systems moving at steady state, and mechanical system
canceling gravity forces at the steady points. If the input
cost at the steady state is not zero, the time integral of the
cost function diverges and therefore the optimal control
problem becomes ill-posed.
To resolve the ill-posedness, the economic model predictive
control (economic MPC) approach (e.g. Ellis et al. (2014))
or usage of discount rate may be adopted, but these
methods have some problems on the asymptotical stabi-
lization to a prespecified point. The introduction of the
discount rate makes the asymptotic stability of the closed-
loop systems uncertain. To ensure the asymptotic stability
under the classical MPC methods, we must solve a static
optimal problem offline and add an adequate terminate
state cost function or a terminal-state constraint. Some
new economics MPC methods resolves these problem of
the stability by investigating turnpike properties (Grüne
(2013)) or using dissipativity (Müller et al. (2015)). More-
over, when an ill-posed infinite-horizon optimal control
problem is converted to an MPC problem or an opti-
mal control problem with discount rate, the state of the
closed-loop system does not converge to the minimizing
point of the state-cost function. Instead, it converges to
a compromised point between the input and state costs.
Artstein and Leizarowitz (1985) also proposed the concept
of overtaking criterion to solve this ill-posedness. For the
linear systems, the overtaking optimal control coincides
with the limit of finite-horizon optimal control when the
length of the control interval goes to infinity. However, the
steady state of the closed-loop system of the overtaking
optimal control is also a compromised point between the
input and state costs.
In some economic problem settings, both the state and
input cost terms have the same dimension, which repre-
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Table 1. Comparison of the characteristics between the methods for resolving ill-posed optimal
control problems.

Economic MPC Discount Rate Overtaking Criterion Proposed Method
Guaranteed stability X

(guaranteed for
some methods)

X X

Applicable to nonlinear systems X X X
Online computational cost Large Small Small Small
Keeping original cost functional ? ? X ?
x(+∞) Compromised point Compromised point Compromised point Minimizer of the state cost

sents the money per a unit time. For such problems, the
convergence to the compromised point between the state
and input costs is a preferred characteristic, where the
static optimization for finding the best operating point is
performed simultaneously. However, in many cases, the de-
signer of the control system wants to assign the final steady
state to a specified point and makes the minimizing point
of the state cost the specified steady state. The economic
MPC method, discount-rate method, and the overtaking
optimal control method cannot fulfill this requirement.
In this work, we propose a new method to recover the well-
posedness of optimal control having incompatible state
and input cost functions. Our method slightly modifies
the input-cost term so that the modified optimal control
problem becomes well-posed. The closed-loop system of
the proposed method is globally asymptotically stable, and
the final steady state becomes the minimizing point of
the state-cost function. The feedback gain becomes asym-
metric even when the controlled object is a linear system,
which realizes energy-efficient control. The modified input
cost approaches to a positive-definite function, which is
not quadratic function, when the state is near the steady
point, and it gets closer to the original energy-consumption
function minus the steady input as the state goes away
from the steady state. The proposed modification is an
almost minimal change to ensure the asymptotic stability
and the well-posedness of the optimal-control problem.
A comparison among the MPC method, discount-rate
method, overtaking criterion, and the proposed method
is summarized in Table 1.

2. PROBLEM STATEMENT

We consider a nonlinear system
˙̃x = f̃(x̃) + g̃(x̃)ũ (1)

as an controlled object, where x̃ (∈ Rn) denotes the state
vector, ũ (∈ R) the input variable, and f̃(x̃) and g̃(x̃) are
smooth vector fields. We mainly consider the single-input
cases, but in the latter section we will extend our method
to systems with multiple inputs.
It is implicitly assumed that the input variable ũ reflects
a physical quantity, and that the energy consumption
becomes zero when ũ = 0. For simplicity, we assume that
the energy-consumption function can be expressed by a
quadratic function of ũ as rũ2. Let x̃0 (6= 0) denote a
specified steady state, and ũ0 be the nonzero steady input
which corresponds to x̃0. Therefore, the pair (x̃0, ũ0) must
satisfy the following relation:

f̃(x̃0) + g̃(x̃0)ũ0 = 0. (2)

We cosider a performance criterion

Jorig =
∫ ∞

0
L0(x̃− x̃0) + rũ2 dt, (3)

where the function L0(·) for the state cost is positive
definite with respect to x̃ − x̃0. The integrand in the
above equation needs to be asymptotic to zero as t goes
to infinity, for the integrability. However, since ũ0 is a
nonzero constant, there exists no steady state where the
state and input costs become zero simultaneously, and
hence the optimal control problem with the cost functional
(3) becomes ill-posed.
To resolve this ill-posedness for linear systems, Artstein
and Leizarowitz (1985) proposed the overtaking criterion,
and obtained an overtaking optimal control law. For linear
systems, an overtaking optimal control can be obtained
as the limit of the optimal solution for a finite-horizon
optimal control problem as the horizon length goes to
infinity. Specifically, for a linear system with an ill-posed
performance criterion

ẋ = Ax+Bu,

Jlin =
∫ ∞

0
(x− x0)>Q(x− x0) + r>Rudt,

the overtaking optimal control law 1 can be obtained by
u = −R−1B>(Px− g),

where P denote a positive-definite solution of a Riccati
equation

PA+A>P − PBR−1B>P +Q = 0,
and the offset term is defined as

g = (A−BR−1B>P )−>Qx0.

The control law consist of a fixed gain feedback with an
offset. However, the overtaking optimal solution does not
satisfy x(t)→ x0 as t→∞. Instead, the final steady state
becomes a compromised point between the state and input
cost terms. In the overtaking criterion, the restriction (2) is
not necessary and the steady state does not coincides with
P−1g generally. Therefore, specifying the steady state to
some point is not easy in general.
In actual control problems, it is usually required that the
steady state is designed as a user-specified point. Hence,
the convergence to the compromised point is not preferred,
and it is desired that the specified steady state can be
assigned as the minimizing point of the state cost function.
Moreover, considering the energy efficiency, the feedback
gain should be changed between a case where a larger input
energy is required and a case where less energy is required,
in the transient response. Therefore, in the linear systems,
1 Artstein and Leizarowitz (1985) obtained the solution for time-
variant x0, but for simplicity we only show the case of constant x0.
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an asymmetric gain is expected to be energy efficient, but
the overtaking control law has a constant gain.
This study aims to develop a method that modifies the
ill-posed optimal control problem to be well-posed, which
satisfies the following properties:
(a) asymptotical stability of the closed-loop system,
(b) easy assignment of the stationary state to a user-

specified point x̃0 satisfying (2), and
(c) realization of energy-efficient asymmetric gain.
To realize the above item (c), the modification of the
input-cost term should be as little as possible. In our
method, the modified cost term depends on the value of
the state vector. When the modification is unnecessary, we
adopt the original energy-consumption function minus an
offset as the input cost.

3. CONSTRUCTION OF ERROR SYSTEM AND
REMOVAL OF COST OFFSET

As well as many control studies, we regard the desired
stationary state as the origin by using a coordinate trans-
lation. We define the state and input errors from (x̃0, ũ0)
as

x = x̃− x̃0, u = ũ− ũ0.

The controlled object (1) and the cost functional (3) are
rewritten as

ẋ = f(x) + g(x)u, (4)

Jorig =
∫ ∞

0
L0(x) + r(u+ ũ0)2 dt, (5)

where f(x) = f̃(x+x̃0)+ g̃(x+x̃0)ũ0 and g(x) = g̃(x+x̃0).
From the condition (2), we can show that f(0) = 0. We
call (4) and (5) the error system and the original cost
functional, respectively.
By expanding the input cost of the performance criterion
(5), we obtain

r(u+ ũ0)2 = ru2 + 2ruũ0 + rũ2
0. (6)

In many control systems, only the first term of (6) is
adopted, but in this way the actual energy consumption is
not reflected by the new cost function. The third term
rũ2

0 of (6) is a constant, which is the main cause of
the divergence of the integral in (5). The third term
is independent from the input and state variables, and
removing this term does not affect the optimal solution.
Therefore, we consider a new performance criterion

Jshift =
∫ ∞

0
L0(x) + ru(u+ 2ũ0) dt, (7)

where the third term of (6) is removed.
Unfortunately, the optimal control problems with the new
cost functionals (7) remain ill-posed. The existence of an
input value that makes the input-cost term ru(u + 2ũ0)
negative induces the ill-posedness.

4. NECESSITY OF POSITIVE-DEFINITENESS

This section reviews why the state and input cost functions
are assumed to be positive-definite in the optimal control
theory.

We consider a general performance criterion

Jgen =
∫ ∞

0
L0(x) +N(u, x) dt (8)

for the nonlinear system (4). The positive definiteness of
the state cost function L0(x) is assumed. If a smooth value
function

V (x0) = inf
u(·)

Jgen|x(0)=x0

exists, it satsfies the Hamilton–Jacobi–Bellman (HJB)
partial differention equation

L0(x) + ∂V

∂x
f(x) + inf

u(·)

[
N(u, x) + ∂V

∂x
g(x)u

]
= 0. (9)

We assume that a minimal value in the calculation of the
infimum value in (9) exists. The optimal control law can
be derived from the value function V (x) as

u = u∗(x) = argmin
u(·)

[
N(u, x) + ∂V

∂x
g(x)u

]
. (10)

We assume that the input cost term N(u, x) is a continu-
ous function and strictly convex with respect to u for any
fixed x, and that N(u, x) → ±∞ as u → ±∞. Then, the
optimal feedback law u∗(x) becomes a continuous function
with respect to x. The time derivative of the value function
under the optimal control law can be calculated as

V̇ = −L0(x)−N(u∗(x), x),
using the HJB equation (9). If N(u, x) is positive definite
with respect to u for any x, the value function V (x) be-
comes a positive definite function, and the time-derivative
of V (x) is negative definite. Hence, under the assumption
of the positive-definiteness of N(u, x), the value function
V (x) can be regarded as a Lyapunov function, and the
asymptotic stability of the closed-loop system can be
proven.
To ensure the asymptotic stability, the positive definite-
ness of the input cost is assumed in most cases. However,
strictly speaking, it is not required that N(u, x) is positive
definite with respect to u. If L(x)+N(u∗(x), x) is positive
definite with respect to x, i.e., if

L(x) +N(u∗(x), x)
{
> 0 (x 6= 0)
= 0 (x = 0), (11)

the asymptotic stability can be guaranteed. The condition
(11) is weaker than the positive definiteness of N(u, x)
and L0(x) but cannot be verified without solving the HJB
equation (9). Therefore, the condition (11) cannot be en-
sured a priori. In this study, we adopt a sufficient condition
of (11). Namely, we assume that L(u, x) = L0(x)+N(u, x)
is positive definite with respect to both x and u. Under
this assumption, V (x) and V̇ (x) are positive definite and
negative definite, respectively. This assumption indicates
that minu N(u, x) may be negative when L0(x) has a
sufficiently large value. Meanwhile, N(u, 0), which is the
input-cost function at x = 0, should be positive definite
with respect to u.
In the next section, we construct a new input-cost term
N(u, x) so that L(u, x) = L0(x) + N(u, x) is positive
definite with respect to both x and u. Notice that the
dependency of the input-cost term on the state makes it
possible to relax the positive-definiteness condition.
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Fig. 1. Shapes of Ξ(v; k).

5. DESIGN OF MODIFIED INPUT-COST FUNCTION

In this section, we will design a new input-cost func-
tion. The modified function should approximate the orig-
inal cost function and satisfy the positive definiteness of
L(u, x).
First, we express the original function as

ru(u+ 2ũ0) = rũ2
0Ξ0(u/ũ0),

Ξ0(v) = v(v + 2).
Notice that Ξ0(·) includes neither r nor ũ0. Hence, Ξ0(v) =
v(v + 2) is a normalized expression of the original cost
function. In the following, we modify Ξ0(v) to a new
function, which depends on x and v.
When x = 0, the new function should be positive definite
with respect to v. This case is under the strictest condition,
because no negative value is allowed. Let Ξ1(v) denote the
modified function at x = 0. The function Ξ1(v) should
be close to Ξ0(v), positive definite, and strictly convex.
Moreover, to apply the stable-manifold method for solving
HJB equation, Ξ1(v) is preferred to be differentiable twice.
In this paper, we propose to choose the function as

Ξ1(v) =


v

(
v + 2− 3v + 8

16v3 + 4

)
(v ≥ 0)

v

(
v + 2 + 4(3v + 8)

v3/4− 4

)
(v < 0).

The proposed Ξ1(v) is a twice-differentiable, strictly-
convex, and positive-definite function. Ξ1(v) approximates
Ξ0(v) when |v| is sufficiently large, because

lim
v→+∞

Ξ0(v)− Ξ1(v) = 0, lim
v→−∞

Ξ0(v)− Ξ1(v) = 0.

The curve in Fig. 1 for k = 1 indicates the shape of Ξ1(v),
while the curve for k = 0 is for Ξ0(v). Of course, other
Ξ1(v) choices are possible, but the proposed Ξ1(v) satisfies
the requirements well.
We linearly interpolate the two functions Ξ0(v) and Ξ1(v)
by a parameter k (0 ≤ k ≤ 1) as

Ξ(v; k) = (1− k)Ξ0(v) + kΞ1(v)
(See Fig. 1). Since any linear combination of two strictly
convex functions is always strictly convex, the synthesized
function Ξ(v; k) is also strictly convex for any k (0 ≤ k ≤
1). From Fig. 2, we can confirm that

min
v

Ξ(v; k) ≥ k − 1 (0 ≤ k ≤ 1)

10.80.60.40.20

– 0.2

– 0.4

– 0.6

– 0.8

– 1

 min Ξ(�; �) 
�

 � 

� ‒ 1

Fig. 2. Minimal value of Ξ(v; k) vs. k.

holds. Hence, to fullfil L(u, x) = L0(x) + N(u, x) > 0 for
(x, u) 6= 0, we should choose k as a function of x satisfying

k(x)− 1 > −L0(x)
rũ2

0
, x 6= 0 (12)

and set the input cost to

N(u, x) = rũ2
0 Ξ
(
u

ũ0
; k(x)

)
. (13)

In this paper, we propose a method for choosing k(x) as

k(x) = max
(

0, 1− L0(x)
ηrũ2

0

)
, (14)

which satistfies (12) and 0 ≤ k(x) ≤ 1, where η is a positive
constant greater than 1. The input cost is determined by
(13), and the modified cost functional is given by (8),
(13), and (14). The modified function Ξ(v, k(x)) is not an
even function with respect to v, which makes the feedback
gain asymmetric. Hence, the inputs are selected by (10)
taking into account actual energy consumption so that
energy-efficient control can be achieved during transient
responses.

6. EXAMPLE

In this section, we apply the proposed method to an
example.
In order to show the effect of this method, we consider a
linear system

ẋ = Ax+ bu =
[

0 1
−1 1

]
x+

[
0
1

]
u

as a controlled object, and it will be clarified that the
generated input sequence behaves like a nonlinear system
and increases energy efficiency. An ill-posed performance
criterion

Jshift =
∫ ∞

0
x>Qx+ u(u+ 2) dt,

Q =
[
1 0
0 1

]
,

(15)

which should be minimized, is given. We apply the pro-
posed method to this problem and construct an optimal
regulator for the modified cost functions. The parameter is
chosen as η = 3. Since the new input cost is not quadratic,
we must solve an HJB equation generally, and the derived
control law becomes nonlinear. The HJB equation (9) and
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Fig. 4. The 2nd costate of the stable manifold of Hamilto-
nian system.

the control law (10) includes a static input-minimizing
sub-problem. However, the sub-problem has a convex op-
timized function on the one-dimensional space, and there-
fore can be solved efficiently and quickly online. We can
also use a table-lookup method for the online usage of the
solution of the sub-problem, because the minimizing point
only depends on the values of LgV (x) (=(∂V (x)/∂x)g(x))
and k(x).
In this section the HJB equation (9) is solved by a stable
manifold method (Yamashita and Shima (1998)). Since
Q > 0 and the system is controllable, the corresponding
Hamiltonian system

ẋ = f(x) + g(x)ū(x, p)

ṗ = −
(
∂L0(x)
∂x

)>
−
(
∂N(u, x) + p>(f(x) + g(x)u)

∂x

)>∣∣∣∣∣
u=ū(x,p)

ū(x, p) = argmin
u
{N(x, u) + p>g(x)u}
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Fig. 5. Time responses of state and input variables of
simulation result for the proposed control law.
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Fig. 6. Time responses of state and input variables of
simulation result for LQ regulator.

has two-dimensional stable manifold. The stable manifold
can be expressed as p = ϕ(x) assuming that it is projective
along the direction of x. It is well known that ϕ(x)> is
integrable, and

ϕ(x) =
(
∂V (x)
∂x

)>
.

holds. Therefore, by calculating many trajectories on the
stable manifold numerically offline and interpolating them,
we can obtain the value of ∂V (x)/∂x. The obtained
stable manifold for this example is illustrated by Figs. 3
and 4. Fig. 3 shows the interpolated ϕ1(x) and sample
trajectories, while Fig. 4 is for ϕ2(x). In these figures, red
curves indicate trajectories on the stable manifold of the
Hamiltonian system. The surfaces in Figs. 3 and 4 are
the results of a Bézier interpolation of these red curves,
where the 17th-order (per one variable) Bernstein basis
polynomials are used.
We make a simulation for the constructed control law,
where the value of ∂V/∂x is obtained by the interpolated
surfaces, and the static minimizing problem in (10) is
solved online. As a comparison, a simulation using linear-
quadratic regulator (LQR), where the cost function u(u+
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Table 2. Comparison of the control perfor-
mance and the consumed energy between the

proposed method and LQ regulator.

Proposed Method LQR∫
x>Qx dt 1.857 1.913∫

u(u + 2) dt 5.600 6.509

Jshift 7.457 8.422

2) in (15) is replaced by a quadratic cost u2, is also
performed.
Fig. 5 shows a simulation result for the proposed method
with an initial condition x(0) = (0.8, 1)>. Similarly, Fig.
6 shows a simulation result for the LQR, with the same
initial state as Fig. 5. Figs. 5 and 6 indicate the time-
responses of the state variables and the inputs. The state
for the proposed controller converges to the origin and
the asymptotical stability can be shown. The initial input
response of Fig. 5 has a negative large value, which is
a natural energy-saving behavior. Notice that the input
cost u(u + 2) has the same value for both u = 1 and
u = −3. During the situation when a negative input is
required, a somewhat large feedback gain is not energy-
wasteful, and the larger feedback gain can speed up the
state convergence. Moreover, the input near t = 5 has
larger negative values than exponential behavior in Fig. 6,
which is also the intended behavior.
We compare the state and input costs of the simulation
for the proposed method with those for LQR. Table 2
summarizes the costs for both the methods. The input
cost for the proposed method is smaller than that for LQR,
which shows the energy efficiency of the proposed method.
Moreover, we can see that the state cost for the proposed
controller is less than for LQR. This result is due to the
aggressive use of relatively large negative inputs so that
the proposed controller improves convergence speed.
In conclusion, the proposed method can achieve an energy-
efficient behavior for this example via the asymmetric gain.

7. EXTENSION TO MULTI-INPUT SYSTEMS

We can extend our method to nonlinear systems with
multiple inputs.
Consider a system
ẋ = f(x)+g(x)u = f(x)+g1(x)u1 + · · ·+gm(x)um, (16)
where u = (u1, . . . , um) (∈ Rm) is an input vector. The
objective functional

Jshift =
∫ ∞

0
L0(x) + u>R(u+ 2ũ0) dt (17)

is considered here, where R is a positive-definite matrix
and ũ0 (∈ Rm) is an offset. The matrix R can be decom-
posed as

R = S>S, S = ΓR1/2,

where Γ is an orthogonal matrix, i.e., Γ>Γ = I, which will
be determined later. Let α denote R1/2ũ0, and let ᾱ be the
normalized α, namely ᾱ = (1/|α|)α. We choose a matrix
Γ the first row of which coincides with ᾱ>. Since Γ is an
orthogonal matrix, the other rows annihilate ᾱ, i.e.,

Sũ0 = |α|Γᾱ = |α|e1,

e1 =


1
0
...
0

 ∈ Rm.

Consider an input-coordinate transformation

ζ = 1
|α|

Su.

The input-cost function can be expressed by ζ as
u>R(u+ ũ0) = u>S>S(u+ 2ũ0) = |α|2ζ>(ζ + 2e1).

Hence, the input cost includes a linear term of ζ1, where
ζ = (ζ1, . . . , ζm)>, and the rest becomes a quadratic form
with respect to ζ. Namely,

u>R(u+ ũ0) = |α|2{ζ1(ζ1 + 2) + ζ2
2 + · · ·+ ζ2

m}
= |α|2{Ξ0(ζ1) + ζ>r ζr}

holds, where ζr = (ζ2, . . . , ζm)>.
Modification of the input-cost function is applied to only
the term of ζ1. As for the single-input cases, Ξ0(ζ1) is
replaced by Ξ(ζ1; k(x)), where k(x) is defined by (14). The
modified performance criterion becomes

Jmod =
∫ ∞

0
L0(x) + |α|2 {Ξ(ζ1; k(x)) + ζ>r ζr}

∣∣
ζ= 1

|α|Su
dt.

It is obvious from the discussion in the previous sections
that the integrand of the new cost functional is positive
definite with respect to (x, u).

8. CONCLUSION

When the stationary input corresponding to a prespeci-
fied stationary state does not minimize the energy con-
sumption, the proposed method converts the inappropriate
optimal-control problem to a well-posed one via a minimal
modification of the input cost function. The modified input
cost depends on the state also and may have a negative
value when the state cost is sufficiently large. Via sim-
ulations, we have confirmed that the proposed method
contributes energy savings.
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