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Abstract: Energy storage plays an essential role in enabling greater uptake of renewable
generation. In many applications, energy storage must be used for multiple (sometimes
competing) purposes in order to provide the maximum possible economic return. A common
approach is to find an optimal sequence of charge and discharge rates for a set of discrete time
intervals across the horizon of interest. However, calculating optimal solutions at a high temporal
resolution can be computationally expensive. In addition, conditions can change instantly as
renewable generation fluctuates and loads are switched on and off. What is needed, therefore,
is an approach that can both track some long-term optimal trajectory, while still responding to
changing conditions in real-time. In this work, we propose two approaches that aim to achieve
this. In the first, we calculate a discrete optimal solution, but then convert this into a schedule
for simple rule-based controllers that can respond to changes continuously. In the second, we use
historical optimal solutions and rule-based schedules to train a neural network that generates
a similar schedule. We find that both approaches offer significant advantages over standard
discrete optimal solutions: they provide a similar amount of value (and in some cases more),
while being 30x less computationally expensive to compute.

Keywords: Energy storage operation and planning, real time optimization and control,
continuous control, dynamic programming, adaptive control by neural networks

1. INTRODUCTION

As the shift to renewable generation continues to gain
momentum in the energy sector, the role of energy storage
is becoming more and more important. Recent years have
seen sharp increases in energy storage deployments, both
at the large scale and at the small scale, and the Interna-
tional Energy Agency recently reported that behind-the-
meter energy storage deployments nearly tripled from 2017
to 2018 (Luis Munuera (2019)). However, the same report
indicates that new markets emerge where governments and
utilities have created supportive mechanisms, and energy
storage can remain an expensive proposition in many parts
of the world, with long payback times.

In most cases, energy storage can be used for multiple
different opportunities – often called “value streams” –
i.e. different ways to reduce cost or provide revenue. For
example at the large scale, a single energy storage system
may be used to time-shift renewable generation, provide
ancillary services, and bid into wholesale markets. At the
small scale, a single energy storage system may be used
to self-consume local renewable generation, conduct tariff
optimisation, or (recently) also bid into wholesale markets.

When multiple such opportunities exist, they are often
available at the same time and may compete with one
another. To get the most value out of an energy storage
system, it is therefore essential to calculate the optimal
operational strategy of the energy storage system over a
given horizon so that it is used for all of the available

opportunities in the best possible way. This strategy
typically takes the form of charge and discharge decisions
for each of several discrete time intervals throughout the
horizon – we call this the optimal charging solution.

How to calculate such a charging solution is a well studied
problem and many approaches have been proposed. For
example, several authors have used standard optimisa-
tion approaches such as linear programming (Babacan
et al. (2017)), quadratic programming (Ratnam et al.
(2015)), mixed-integer linear programming (Khalilpour
and Vassallo (2016); Hassan et al. (2017)), or mixed-
integer quadratic programming (e.g. as a benchmark in
Procopiou et al. (2019)). When there are significant non-
linear components to the problem (for example, battery
degradation models), then dynamic programming is a
useful way to find a near-optimal solution (Riffonneau
et al. (2011); Abdulla et al. (2016a); Latif et al. (2018)).
More recently, different forms of machine learning have
been applied to the problem – for example, by encoding
a model-predictive control policy using neural networks
(Kazhamiaka et al. (2019); Henri et al. (2018)).

In some scenarios, the charging solution is calculated in
static, regular intervals, for example day-ahead, once a
day. In other scenarios, the charging solution is calculated
repeatedly, taking into account changing conditions. Often
this is implemented in a model-predictive control manner,
where the first one (or several) decisions are applied, an
updated charging solution for a full horizon is calculated,
again the first one (or several) decisions are applied, and
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so on, in a rolling manner (Abdulla et al. (2016a); Petrou
and Ochoa (2019)).

However, the vast majority of approaches make charging
decisions across discrete time intervals and are not able
to adapt to changes in conditions that may happen at a
timescale smaller than the discretisation interval. In one
study, it was found that less than 10% of existing work in
this area uses a temporal interval smaller than 10 minutes
(Abdulla et al. (2016b)). There have been some attempts
to address this – for example by solving multiple dynamic
programs at multiple resolutions (Abdulla et al. (2017)),
or by using a mix of high and low granularity periods in a
mixed integer linear program (Petrou and Ochoa (2019)).
In many scenarios, however, decisions ideally need to be
made instantly: for example, demand can change at the
flick of a switch and passing clouds can lead to steep ramps
of solar generation over a matter of seconds.

In this work, we try to address this problem using two
different approaches. In the first, we calculate an optimal
charging solution over a discrete horizon, but then convert
this into an rule-based charging schedule for rule-based
controllers that can respond to changing conditions in real-
time. In the second complimentary approach, we choose a
rule-based controller by applying machine learning to pre-
viously calculated optimal control responses. In both cases,
the energy storage system is able to respond instantly
to changing conditions, while still following an optimal
trajectory over the chosen horizon.

2. USE CASE AND RULE-BASED CONTROLLERS

To demonstrate the performance of our methods we choose
a small-scale energy storage use case: a residential home
having rooftop solar photovoltaic (PV) and a Li-ion bat-
tery. However, our methods are not limited to this type of
scenario, and could be applied in the same way to different
sets of value streams, including for large scale systems.

We use data collected at a residential home near Mel-
bourne, Australia during the period March - June 2019.
This home has a rooftop solar PV system with a peak
capacity of 4.23kW, and many large loads such as a pool
pump, electric space heating and cooling, electrical hot
water, multiple refrigerators, etc. Solar generation and
electrical demand are separately metered and are obtained
at a resolution of 1-minute intervals.

Electricity is bought and sold using standard retail rates
available in this area. During peak consumption (weekdays
between 7:00 and 23:00) electricity costs 37.33¢/kWh, and
at all other times it costs 20.44¢/kWh (all dollar values are
in Australian currency). At any time, energy can be sold
back to the grid via a static feed-in tariff of 12¢/kWh.

We further assume that energy can be sold back to the grid
at wholesale market prices when these exceed the feed-in
tariff. While this is not fully realised yet (home owners
can not yet participate in the wholesale market directly)
we nevertheless consider this a reasonable and realistic
assumption, since retailers and aggregators increasingly
operate these systems on owners’ behalves, and are able
to participate directly in the market. In Australia the
wholesale energy market price is published online by the
market operator (AEMO (2019)).

As a battery model we use the specifications of a popular
existing commercial offering, which has a capacity of
13.5kWh and peak charge/discharge rates of +/- 7kW.

Three possible value streams exist:

(1) Solar self-consumption (SSC): Since there is a
high peak import tariff, it is advantageous for this
owner to store any excess solar generation and use
it to offset peak consumption at a later time. Every
kWh of energy stored in the battery for purposes
of self-consumption represents a value equal to the
difference between buying at peak (37.33¢) versus
exporting excess to the grid (12¢), in other words,
a value of 25.33¢/kWh.

(2) Tariff optimisation (TO): Since it is cheaper to
import from the grid at off-peak times, the battery
can also be used for tariff optimisation: charging when
the cost is low, and discharging to offset any local
consumption when the price is high. Every kWh used
in this way represents a value equal to the difference
between buying at peak and off-peak rates, in other
words 16.89¢.

(3) Market participation (MP): At certain times, the
wholesale energy market price can reach levels that
are higher than the off-peak cost of importing energy
(i.e. greater than $205/MWh). During such periods,
it can be advantageous to discharge the battery to the
grid. The per-kWh value in this case depends on the
market price in the interval under consideration. In
Australia’s National Electricity Market there are rare
occasions where it can spike to $12,000/MWh or more
(representing a value of $12 per kWh). However most
of the time, including in the time period considered
here, there are only occasional short periods where
discharging to the grid represents a value of 5¢ - 10¢
per kWh.

Each of the value streams can be represented by a simple
rule-based controller, as shown in Equations 1–3. A pos-
itive value for r indicates that the battery is charging, a
negative value indicates that it is discharging.

d : current demand g : current generation
i : current import tariff r : battery rate of (dis-)charge
imin : min import tariff rmax

c : max rate of charge
imax : max import tariff rmax

d : max rate of discharge
e : current export tariff

SSC: r = g − d (1)

TO: r =

{
rmax
c if i ≤ imin

−d if i ≥ imax (2)

MP: r =

{
rmax
c if i ≤ imin

−rmax
d if e > imin (3)

Examples of how these rule-based controllers perform over
the course of a day are presented in Figure 1b. Many
existing inverters already have different “modes” that
make it possible to implement these rule-based controllers
on real systems today. We note that this not a form of
fuzzy logic control: at any time the charge or discharge rate
can be determined exactly based on the rules applied, and
there is no need to convert any inputs to fuzzy variables.
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3. DISCRETE OPTIMAL SOLUTION

In this section, we describe the approach used to gen-
erate the optimal charging solution for the energy stor-
age system. We use a simplified version of a dynamic
programming-based approach that has previously been
extensively described and evaluated in Abdulla et al.
(2016a). We consider dynamic programming a useful way
to approach problems such as these since it can handle
cases where the optimal solution depends on non-linear
models (such as e.g. battery degradation models), and
since it can be extended to take stochasticity of forecasts
into account. Interested readers are referred to the paper
cited above for further information; here we only provide
a summary of the approach for completeness.

We assume we have forecasts for demand dt, generation
gt, import tariff it and export tariff et over a full discrete
future horizon, t ∈ [0, T ]. We are aiming to determine the
optimal charging solution of the battery, which consists of
a sequence of charge and discharge decisions rt over this
horizon (where positive values mean charging, negative
values mean discharging). We discretise the possible states
of charge (in %) that the battery may have into a set
s ∈ [0, S]. The dimension of state space A, dim[A] is
(S + 1)× (T + 1).

Let the battery capacity (in kWh) be Γ. Transition from a
state Asi,t to a state Asj ,t+1 is equivalent to a charge rate
decision of:

rt =
1

∆t
× sj − si

100
Γ × µ

where µ ∈ (0, 1] represents the (dis-) charging efficiency of
the energy storage system.

At any time t, the net impact nt on the grid can be
calculated as:

nt = dt − gt + rt
Positive values for nt mean that energy is being imported
from the grid; negative values mean that energy is being
exported.

The state transition cost C from a state Asi,t to a state
Asj ,t+1 can then be calculated as follows:

C(Asi,t, Asj ,t+1) =

{
nt × it, if nt ≥ 0

−1× nt × et, if nt < 0

In words, for any charge decisions leading to a net import
from the grid, the relevant import tariff must be paid; for
any charge decisions leading to a net export, the relevant
export tariff is received.

We determine the “cost to go” CTG for any possible state
As,t as the sum of the state transitions having the lowest
joint total cost, using the recursive relationship:

CTG(Asi,t) = min
rt
{C(Asi,t, Asj ,t+1) + CTG(Asj ,t+1)}

The above is a standard way to set up a dynamic program-
ming problem (Bertsekas (2000)). The dynamic program
is solved using backward induction from the final interval
T . All final states Asi,T are initialised to zero. The only
exception is if there is a preferred final state of charge sk,
in which case the particular state Ask,T can be initialised
to a very low number (meaning that the solution will finish
in this state). The optimal policy from the current state

(a) Example data for a single day

(b) Continuous rule-based controllers

(c) Discrete optimal controllers

(d) Continuous schedule-based controller

(e) Continuous machine learning-based controller

Fig. 1. Evolution of battery state of charge across an
example day in response to different controllers

at t = 0 is a sequential charging solution for our battery
that minimises the total cost over the full horizon.

This charging solution is truly optimal when evaluated
over the discretised intervals used to generate it. However,
it is unlikely to be optimal when evaluated at a smaller
time resolution. For example, an optimal solution might
be calculated across 30-minute intervals over a 24-hour
horizon, but when it is applied to smaller intervals (such as
1-minute) it is no longer optimal, due to the many changes
in generation and demand that can take place over the
course of each 30-minute interval.

Examples of an optimal solution calculated at 30-minute
intervals and an optimal solution calculated at 1-minute
intervals are presented in Figure 1c.
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4. CONVERSION TO CONTINUOUS CONTROL

In reality, circumstances may change faster than 30-minute
intervals or even 1-minute intervals; they are changing in
real-time as loads are turned on and off and generation
ramps up and down (for example, due to passing clouds).
Energy storage systems need to be able to respond to
such changes instantly. Almost any commercial inverters
or charge controllers (which handle the charging and dis-
charging of the battery) are already designed for this. The
default mode of most inverters sold with small scale solar-
plus-storage systems is to conduct solar self-consumption,
and some further have the ability to specify set-point based
control to try to take advantage of tariff optimisation (for
example, “charge to 70% SOC by 7am”).

However, to really get the most out of an energy storage
system, it needs to do both: (i) look ahead over a given
horizon to anticipate which value streams are available at
what times (and what the battery’s SOC should ideally
be when transitioning from one mode to another), and (ii)
respond to changing conditions in real-time.

Much of the existing literature attempts to solve (i), but
for most optimisation methods, calculating solutions at
very high temporal solutions quickly becomes computa-
tionally expensive. Dynamic programming, such as the so-
lution proposed in Section 3, is one such example: since the
resolution of the state space must be increased in line with
the temporal resolution, an n-fold increase in temporal
resolution results in an order n3 increase in computational
effort (Abdulla et al. (2017)).

It is necessary, therefore, to focus increasingly on (ii):
responding to changing conditions in real-time. Very little
work has been done in converting a discrete optimal
solution into real-time control. In the remainder of this
section, we describe two different approaches that attempt
to contribute to filling this research gap.

4.1 Conversion using scheduling

In the first approach, we aim to convert a discrete optimal
solution into a schedule for rule-based controllers. The
initial idea for this approach has previously been proposed
in de Hoog et al. (2018); here we describe a more refined
version and provide a more extensive evaluation.

The main motivation for this approach is that we are
already able to express the known value streams as very
simple rule-based controllers (see Equations 1–3). As men-
tioned above, most existing inverters already have different
“modes” in which they are able to conduct these types of
stateless control. At the same time, we can expect that the
discrete optimal solution often chooses the same charging
rates that one of the known value streams would choose.
The key, therefore, is to compare the charging rates of all
known value streams with the charging rates specified by
the optimal solution: this makes it possible to know which
is the best available value stream at which time.

A discrete optimal charging solution has the format
[rt] ∀ t ∈ [0, T ], in other words a choice of a static
charge or discharge value for every interval in the horizon.
However, following the conversion of the optimal solution
into a schedule for rule-based controllers, the rule-based

(a) Charging rates for rule-based and optimal controllers

(b) Determining similarity of rule-based controllers to optimal

(c) Resulting rule-based charging schedule

Fig. 2. Generating a rule-based charging schedule

Algorithm 1 Determine similarity matrix

Input:
[rOPT

t ], the optimal charging solution;
C, the set of rule-based controllers to compare
smax, the similarity threshold;
Output:
[sct ], a matrix indicating binary measure of similarity

// Initialize
sct = 0 ∀c ∈ C, ∀t ∈ [0, T ]

for t ∈ [0, T ] do
for c ∈ C do

solve rct // using Equations (1)–(3)

if |rOPT
t − rct | ≤ smax: then
sct ← 1;

else
sct ← 0;

Algorithm 2 Generating the rule-based schedule

Input: [sct ], the binary measure of similarity
Output: [ct], the schedule of rule-based controllers

for t ∈ [0, T ] do

// If no controllers are similar, do nothing
if
∑

c∈C
sct == 0 then

ct ← DN

// If only one controller is similar, use that
if
∑

c∈C
sct == 1 then

ct ← k where skt == 1

// If multiple controllers are similar, find the one
having most consecutive intervals of similarity

if
∑

c∈C
sct > 1 then

ct ← m where
horizon(m, t) ≥ horizon(n, t) ∀m,n ∈ C
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charging schedule has the format [ct] ∀ t ∈ [0, T ], where
ct specifies which rule-based controller to use in interval
t. For example, while the optimal charging solution might
choose charging rates of [3.1kW, 2kW, -1.1kW, ... ] in the
first three intervals, the rule-based charging schedule might
choose to use [SSC, TO, SSC, ...] in the first three intervals
(see the descriptions of the value streams in Section 2).
The resulting behaviour for the discrete optimal solution
is to use the same rate of charge or discharge throughout
the entire interval, while the behaviour of the rule-based
charging schedule is that there can be continuous, instant
response to changing conditions throughout the interval.

The conversion of an optimal charging solution into a rule-
based controller schedule consists of two main steps:

(1) Determine similarity matrix of rule-based con-
trollers to optimal solution. This process is de-
scribed in Algorithm 1, and shown in Figures 2a and
2b. For every rule-based controller, its charge rates
are compared with the charge rates of the optimal
solution for every interval within the horizon. If they
are similar within a certain threshold, then that rule-
based controller is considered a candidate for that
interval. The reason that a similarity threshold is
required is that the optimal solution uses discretised
SOC intervals when calculating the charge rate, and
may therefore deviate from the rule-based controller
charge rates by a small amount.

(2) Convert similarity matrix into a schedule. This
process is described in Algorithm 2, and the resulting
schedule is shown in Figure 2c. In some cases, no rule-
based controller matches the optimal solution – to
handle this, an additional rule-based controller, Do
Nothing (DN), is introduced (which always has a
charge rate of 0). When there is exactly one rule-
based controller matching the optimal solution, that
controller is chosen. When there are multiple rule-
based controllers matching the optimal, the algorithm
chooses the one that matches the optimal solution
for the largest number of consecutive intervals – to
minimise transitions back and forth between different
controllers. This is represented in Algorithm 2 by the
function horizon(m,t).

The evolution of battery SOC in response to the use of
the rule-based schedule is shown in Figure 1d. As can be
seen, it closely matches the performance of the optimal
solutions.

4.2 Conversion using machine learning

To generate the rule-based schedule described in Section
4.1, we must always previously compute the discrete op-
timal charging solution. This can be very computation-
ally expensive, particularly when stochastic forecasts and
battery degradation models are considered (see Abdulla
et al. (2016a)). In addition, if we want to continually
take updated information into account (e.g. in a model-
predictive control-like approach), we have to repeatedly
calculate the full optimal solution. As an alternative, we
consider here the possibility of applying machine learning
(ML) to previously computed optimal solutions, in order
to develop a model that can generate a schedule of rule-

based controllers. Such a model can be instantly applied at
every interval without having to recalculate a full optimal
solution and without having to go through the process of
generating a rule-based schedule.

As the basis for our ML model we explored linear regres-
sion, decision trees, extra trees, random forests, support
vector regression, and several forms of long short-term
memory (LSTM) neural networks. We present here the
outcomes of the one that performed the best: an LSTM
network with a convolutional layer (CNNLSTM). Such a
form of neural network is well-known for fitting sequential
data, and for identifying specific patterns in sequential
data.

The neural network we ultimately used is presented in
Figure 3. It consists of a convolutional long short-term
memory layer (ConvLSTM2D, cf. Shi et al. (2015)) whose
outputs are then flattened to form an activation vector.
A number of fully connected layers with added dropout
combinations follow the ConvLSTM2D layer. The ML sched-
ule is obtained from a soft-max activated fully connected
layer at the output. The type of filter, kernel sizes in

Fig. 3. The neural network used to learn the controller
schedule using the historically computed rule-based
schedule. Output X is a ‘soft-max’ activated categor-
ical variable that represents the controller or series of
controllers.
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Fig. 4. (Top) Fitting the neural network presented in
Figure 3 with training data; (bottom) Normalized
confusion matrices representing the neural network’s
prediction performance over training and test data.
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the convolutional layer and the dropout activations in
the (hidden) fully connected layers were carefully chosen
over an extended period of trial and error to obtain the
best training performance. The neural network takes in as
inputs:

• x intervals of past generation, demand, tariff, and
price information,
• x intervals of past optimal schedule,
• x intervals of past rule-based schedule (if available),
• y intervals of available forecast variables,

and predicts the controller or series of controllers that
are to be implemented for the subsequent y intervals.
It is important that the past rule-based schedule that
is given as input is obtained from the actual conversion
from optimal (and not the machine learning prediction) in
order to avoid redundancy errors. Given that the neural
network is predicting controller schedule, categorical
cross-entropy has been chosen as the loss parameter
that is to be minimized. An adaptive moment estimation
based optimizer, Adam, (Kingma and Ba (2014)) is used
for estimating the weights.

The neural network is trained on three months’ worth of
data. The test set is 20 days long. Its training performance
is shown in Figure 4 (top) and is based on x = 6 and
y = 1. The training reaches an accuracy of 84% in about
125 epochs. The confusion matrices in Figure 4 (bottom)
show the categorical prediction accuracy/distribution of
the trained neural network on both the training and test
data. The diagonal elements in the confusion matrices are
relatively larger than off-diagonal elements – indicating
high training and test accuracy (≈69%).

There is a slightly lower accuracy for the SSC controller
than for the other controllers in the test data. This may
be due to the fact that the SSC controller is more likely
to recommend charging rates of zero (when generation
and demand are similar), leading to misclassifications as
DN (do nothing). We consider this unlikely to lead to
significantly reduced performance.

The output of the trained neural network for the scenario
previously presented in Section 4.1 is shown in Figure 5.
As can be seen, it closely matches the rule-based schedule
generated in Figure 2c. There are a couple of differences:
the ML-based solution does not identify opportunities for
market participation and is less likely to suggest DN (do
nothing) – presumably since there are very few instances
of these controllers in the training set. However, when we
compare the evolution of battery SOC in response to the
use of the ML-based schedule (Figure 1e), we still find
that it closely matches the performance of the rule-based
schedule and the optimal solutions.

Fig. 5. Machine learning based schedule

5. EVALUATION

We now evaluate both of our continuous control ap-
proaches (the rule-based schedule and the machine-
learning based schedule), and compare them to the discrete
optimal solutions, and to each of the individual rule-based
controllers. Since we are using data from a single site, these
results can be considered indicative only, and we leave a
more extensive evaluation across multiple sites and periods
of the year as future work. However, the dataset contains
complete 1-minute solar generation and demand values
across the full training and testing periods, meaning that
the relative benefits of the respective controllers can be
evaluated more realistically than other studies using lower
resolution.

5.1 Financial cost

Since the ML-based schedule is trained on the first three
months of data, we perform a comprehensive cost compar-
ison only on the final 20 days of the dataset that were used
for testing – specifically June 1-20. The evolution of total
cost incurred for electricity in this household is shown in
Figure 6, and a relative comparison of the cost savings
provided by each controller is presented in Figure 7.

As can be seen, individual rule-based controllers provide
the smallest savings, with tariff optimisation providing
the most value. Since June is a winter month, this is
due to the low availability of solar generation and high
electricity demand due to space heating and cooling; in
other months we have found that typically solar self-
consumption provides the most value among the available
value streams when evaluated individually. In fact, tariff
optimisation provides a similar amount of value as the
more complex ML and Optimal 30 approaches; however,
we anticipate that this would not be the case over the
course of a full year, when these would presumably be
better at taking into account multiple different value
streams available at varying levels at different times of
year.

The optimal solution evaluated over 1-minute intervals
(Optimal 1 ) clearly provides the greatest savings. Since we
are using a 1-minute dataset, this represents the maximum
possible value that is available over this time period when
evaluating at 1-minute intervals. When the optimal solu-
tion is calculated across 30-minute intervals (Optimal 30 ),
the savings immediately drop, since the minute-to-minute
changes in demand and generation within each interval are
not taken into account.

However, the rule-based schedule (Schedule), which is
derived from the 30-minute optimal solution, provides a
high level of value, and is the next best controller after the
1-minute optimal solution. The machine-learning based
schedule (ML) achieves almost the same amount of savings
as a 30-minute optimal solution.

It is worth noting that the financial benefits of energy
storage in this case appear not to be that large; however we
note again that this is a small case study to demonstrate
the feasibility of the proposed approaches. In many other
evaluations across broader datasets the value of optimally
controlling energy storage has been evaluated more exten-
sively (e.g. Abdulla et al. (2016a)).
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Fig. 6. Comparison of performance across full testing period (left), with zoomed in version of final three days (right)

Fig. 7. Financial cost savings attained across full testing
period

...

Fig. 8. Time required (in seconds) to generate a complete
24-hour solution on a standard laptop

5.2 Computational cost

When comparing the computational cost, the picture looks
quite different. Figure 8 shows the amount of time it takes
(in seconds) to calculate a full solution for a 24-hour
horizon for each controller, using a standard laptop (2.9
GHz Intel Core i7 processor).

The 1-minute optimal solution takes more than 8 minutes
to find a 24-hour solution, while the 30-minute optimal
solution requires 15 seconds. The rule-based schedule,
which is derived from the 30-minute optimal solution,
takes only an additional 0.5s. In other words, the rule-
based schedule is more than 30 times faster to compute
than the 1-minute optimal schedule.

By comparison, each of the rule-based controllers and the
machine learning based schedule are able to generate a full
24-hour solution (at 1-minute intervals) in less than half a
second. It should be noted that the time it took to conduct
the training of the neural network used in the machine
learning model was not included in this comparison, since
it is assumed that this can be done offline prior to its
implementation.

5.3 Discussion

The above results highlight the importance of converting
discrete optimal solutions into some form of continuous
control. The majority of the existing literature on opti-
mal operation of energy storage assumes that a solution
calculated at discrete time intervals is sufficient. How-
ever, as this work has shown, a high-resolution optimal
solution can be very computationally expensive. When
implemented in a rolling horizon, model-predictive type of
way, this means that updated information and changing
conditions cannot be taken into account while an updated
solution is being computed.

The two methods proposed in this work provide a valu-
able trade off between a computationally expensive, high-
resolution optimal solution, and a fast but myopic rule-
based controller. We have shown that it is possible to
follow a long-term approximately optimal trajectory, while
still being able to respond to real-time changes locally. The
rule-based schedule provides more value than the machine
learning based schedule, but also takes longer to find a
24-hour solution.

In this work we have not considered the impact of fore-
casting accuracy on the optimal solutions and rule-based
and ML schedules. We anticipate that the scheduling-
based approaches are likely to provide further advantages
over discrete optimal solutions when inaccurate forecasts
affect the results. In future work we hope to explore these
impacts in more detail and conduct a more extensive eval-
uation across multiple sites and times of year. There would
also be great value in considering the impacts of operation
on battery degradation for each of these approaches, and
whether they are able to effectively take this into account.

6. CONCLUSION

Energy storage is playing an increasingly important role
in our energy systems as more and more renewable gener-
ation is being installed. However, energy storage remains
expensive and for such systems to be economically justifi-
able, typically they need to be used for multiple different
purposes. As a result, it is important to operate them in an
optimal way, or as close to optimal as possible, to obtain
the maximum possible value available.

Much existing work in this area provides methods for
calculating an optimal charging solution, consisting of
static charge and discharge decisions over discrete time
intervals across some horizon. However, for most applica-
tions, conditions change in real-time, and both generation
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and demand can have steep ramps at the minute or sub-
minute level. It is necessary therefore to find solutions for
operating energy storage that are able to both follow an
optimal trajectory over a given horizon, while still being
able to respond to changing conditions and sudden events
in real-time.

In this work we have proposed two approaches that aim
to achieve this. The first uses an optimal solution gener-
ated at low resolution (such as e.g. 30-minute intervals),
and converts this into a schedule for a set of rule-based
controllers that can instantly respond to changing con-
ditions within each interval. The second uses an optimal
solution and schedule calculated on previous data to train
a neural network that can generate a similar schedule
for rule-based controllers. Both the rule-based schedule
and machine-learning based schedule provide several ad-
vantages. They are considerably faster to compute (30x
faster) than a high-resolution discrete optimal solution,
and provide more value than any rule-based controller used
on its own.

It is hoped that the results presented here contribute to
a broader effort to control our energy storage systems
more effectively, thus enabling a faster and more cost-
effective transition to greater penetration of renewables
in our energy generation mix.
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