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Abstract: Complex distributed supply chains, e.g., in the automotive industry, need to cope with high 

product variety. Digital image processing can use specific geometric and optical properties of parts and 

components for determining their type and thus needs no external markers. It is thus well applicable to 

supply chain processes that involve direct handling of many different product components and need no 

individual identification of items. An example of such a process is counting items of different product types 

during packing. In this paper, we use deep learning-based digital image processing methods in order to 

distinguish and count the number of objects of two different types of automotive components in 

standardized transport bins, detected by time-of-flight (ToF) depth sensors. Classical watershed object 

counting methods are adapted to depth data and support the fast generation of training data for the deep 

learning-based classification methods. The proposed method is applied to an automotive supply chain, and 

it is demonstrated that car components can be counted with good reliability during packing into transport 

bins. Thus, digital image processing can be useful to supplement auto-identification and sensor 

technologies and complete digital end-to-end monitoring of supply chains. 

Keywords: Supply Chain Monitoring, Supply Chain Transparency, Digital Image Processing, Deep 

Learning 



1. INTRODUCTION 

Operations in global production networks are influenced by 

disruptive events, like product mismatches, quality deviations 

and delays. These may result in the requirement of post-

treatment, additional emergency transports, downtimes and 

production loss as well as changes to the final product (Ivanov 

et al., 2016). Enhanced digitization and information exchange 

can increase transparency in production networks, which leads 

to faster identification and elimination of disruptions (Lanza 

and Treber, 2019). Auto-identification technologies 

(Finkenzeller, 2006) can identify individual objects, which 

allows real-time tracking of products (Musa et al., 2014). 

However, these technologies require external codes or tags. 

This is disadvantageous in several ways: they may adversely 

modify the quality and properties of the objects; the objects 

may be too small for their attachment, or be subject to 

conditions that damage them. For these reasons, external codes 

and tags may not be applicable in many processes that involve 

direct handling of individual objects. 

With the use of deep learning, image recognition can use 

inherent, characteristic, optically distinguishable properties, or 

features, of the objects for classification of objects (decision, 

whether an individual object belongs to a specific type of 

objects) without external tags. For this reason, deep learning 

based image recognition is well suited to monitor supply chain 

processes that involve direct handling of individual parts and 

require distinguishing only the type or variant of a part, but not 

to identify a unique individual part. Examples of such 

operations are sorting, picking, or packing. 

In this context, this paper makes the following contribution: 

Based on a case study from the automotive industry, we 

investigate the suitability of deep learning based image 

processing for automated classification (determining the type) 

and counting (determining the number) of different product 

components in transport bins, and in addition, the checking of 

their correct alignments. This requires the simultaneous 

detection of numerous, unsorted, tightly arranged objects at 

arbitrary positions. Our approach uses 3D geometric data 

generated by active time-of-flight (ToF) depth sensors and 

combines deep learning with a conventional watershed 

algorithm based segmentation method for the fast generation 

of training data for the CNN (Fig. 2). Depth sensors are 

particularly suited to distinguish between parts, which differ 

only in size, but not in color or geometric form. Using only 

color (intensity) data instead would make separation and 

distinction between many densely arranged objects of the same 
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color very difficult. In comparison to previous methods, CNN 

shows a markedly improved reliability and thus promises 

better performance. 

Our principal aim is a test employing a case study, whether our 

method works. Consequently, we apply the method to a use 

case involving the automated detection and counting of 

automotive components in standardized transport bins. The 

motivation is to automate the inspection in operations like 

packing, picking, warehouse entry, and warehouse exit, which 

are part of component sourcing processes and involve the 

handling of numerous identical or similar objects. It may serve 

to improve the order conformity of component sourcing 

processes in production networks in the automotive industry 

and decrease the related costs. 

2. RELATED WORK 

Existing image recognition methods for the detection of 

numerous tightly packed objects either use conventional 

segmentation, but not machine learning (Rahman and Islam, 

2013), or do not classify the objects, but use object density 

maps to estimate the number of objects (Onoro-Rubio and 

López-Sastre, 2016). 

Compared to classic image recognition algorithms, 

convolutional neural networks (CNN) provide enhanced 

capabilities for extracting deep information from image data 

(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014, 

LeCun et al., 2015). Applications include simple object 

detection (Ren et al., 2015), as well as more comprehensive 

tasks, like process monitoring (Staar et al., 2018) and real-time 

environmental analysis (Börold and Freitag, 2019). An 

exemplary application of CNN based image recognition in 

logistic processes is the automated classification of turbine 

spare parts in assembly and disassembly processes (Krüger et 

al., 2019). This application realizes the automated inspection 

of a single salient component and the determination of the type 

it belongs to, but not the detection of multiple densely packed 

objects in one image, as in our case. 

DESCRIPTION OF THE CASE STUDY 

A use case from the automotive industry is employed for 

testing the method. Sourcing processes in automotive 

production networks involve high product variety (Klug, 

2018). A single car includes several thousand different parts, 

sourced from many external suppliers. The transport of many 

smaller parts and components is done in standardized transport 

bins of fixed size. Predefined packing schemes regulate the 

location of parts inside the bins. 

Counting of homogeneous objects is a trivial task that requires 

no identification and can be done, e.g., by weighing or using 

light barriers. Counting becomes complicated if several 

different types of objects are present so that establishing the 

number of objects has to be combined with verification of the 

correct type. It becomes even more complicated if the correct 

position and orientation of parts need verification as well. By 

applying double verification, an automated assistance system 

can improve the manual verification of a human operator, so 

that both assist each other in detecting packaging defects. In 

this case, a low error rate of the assistance system may be 

tolerable if it reduces the probability of errors compared to the 

non-assisted employee and increases the packing productivity. 

Today’s supply chain processes with a large number of process 

variants for individual customers of a supplier and frequent 

modifications of the parts and products require high flexibility 

and quick adaptability of the assistance system. In particular, 

the system should be able to recognize new types and variants 

of parts as well as different positions of these parts after limited 

training efforts. 

Our case study consists of the classification and the counting 

of coolant pumps, which are sourced by the car manufacturer 

from a component supplier. At the supplier, the ready-made 

pumps are packed into standardized transport bins for the 

transport to a logistic hub. After inserting the pumps, the filled 

bins are manually inspected, to verify that the number and 

alignment of the pumps conform to the orders. At the hub, an 

external logistic services provider (LSP) collects incoming 

components from different suppliers and consolidates them as 

well as other components into containers for further transport 

to the OEM by truck, container vessel, and train. The LSP does 

not handle individual pumps, but only the filled bins as a 

whole. At the manufacturer’s goods receipt, incoming bins are 

rechecked on a sample basis. Finally, after intermediate 

storage, the bins are provided at the corresponding stations at 

the assembly line, where the pumps are manually taken out and 

assembled into cars. The problem we address is verifying at 

the supplier as well as at the OEM that the required numbers 

of pumps are packed into the transport bins (Fig. 1). 

. 

 

Fig. 1. Standardized automotive transport bin with pumps 

The pumps are available in two different sizes, with mostly 

identical shapes and colors. A bin may contain between 20 and 

40 tightly packed pumps of either type in just one layer. Thus, 

some pumps may cover parts of others, but the essential 

structural characteristics of the pumps remain visible. Each 

pump has to be checked for correct alignment in the bin, too. 

4. IMAGE RECOGNITION APPROACH 

4.1 Experimental setup 

The set-up and algorithm flow are illustrated in Fig. 2. For data 

acquisition, we use the consumer-grade ToF and intensity 

sensor Microsoft Kinect v2. The sensor has to be located at a 

minimum distance of 0.70 m above the bin, so that the bin falls 

completely within the visible range. The components in the bin 

must not be layered so that all components can be detected. 
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Fig. 2. Experimental set-up and algorithm workflow 

 

The components are placed close together in the bin. There are 

occlusions between objects, but the essential visual 

characteristics of the pumps remain visible. Since the 

components also have to be checked for correct alignment, it 

is necessary to determine the exact position of each pump. 

Altogether, 130 sequences, each of 30 frames, are generated. 

It is vital that the training data contains as much data variation 

as possible. From a set of 30 frames of the ToF sensor data, a 

consolidated depth image is created by calculation of mean 

intensity and depth and standard deviation of depth. After 

segmentation, the depth image data is fed into a deep learning 

net (CNN), where objects are detected and classified and 

subsequently counted. Training data is generated using a 

watershed algorithm combined with several thresholds. The 

mentioned aspects are described in the following sections. 

4.2 Pre-processing of sensor data 

Due to its discrete nature, the photon shot noise of the ToF 

sensors corresponds to a Poisson distribution (Büttgen et al., 

2005). Since the number of interacting photons per pixel is vast 

and the sensor puts out an internal mean depth value computed 

from several measurements rather than discrete measurements, 

the said noise distribution can also be approximated by a 

Gaussian distribution. 

 

Fig. 3. Depth image, depth and standard deviation profiles for 

indicated exemplary horizontal pixel line 

Due to the static structure and the fixed number of frames, no 

online functions are needed, and all calculations are performed 

after data capturing. In comparison to the data from a single 

depth frame, we can achieve a higher data quality by temporal 

filtering and calculate additional information for the object 

recognition algorithm. First, by calculating the mean depth 

image over the entire sequence, we significantly improve 

surface estimation quality and object recognition. Second, we 

calculate the standard deviation for each pixel as a standard 

deviation image. 

Since the number of photons emitted depends on the surface 

inclination and material properties, it is related to the noise 

level (Fig. 3). Features such as edges and material changes are, 

therefore, detectable in the standard deviation image. Thus, the 

calculations mentioned above provide additional value for 

detection. The data is calculated as follows: 

Since the ToF sensor returns a zero value if the depth 

measurement was not successful, a map ℳ containing the 

number of valid depth measurements for each pixel in the 

sequence of all depth images 𝐷1 to 𝐷30 must be created first. 

The parameter 𝑝𝑥𝑦
𝑀   denotes the corresponding count allocated 

to the pixel at position (x, y) according to equation (1): 

𝑝𝑥𝑦
ℳ = ∑ 𝑓(𝑝𝑥𝑦

𝐷𝑘)𝑛=30
k=1  with 𝑓(𝑝𝑥𝑦

𝐷𝑘) = {
1, 𝑖𝑓  𝑝𝑥𝑦

𝐷𝑘 > 0 

0, 𝑒𝑙𝑠𝑒
} (1) 

The values of map ℳ are then used to calculate the averaged 

depth image ℛ. The arithmetic mean depths of all valid pixels 

are calculated according to equation (2). The parameter 𝑝𝑥𝑦
𝑅  

denotes the mean depth of the pixel at the position (x, y), while 

𝑝𝑥𝑦
𝐷𝑘 denotes the depth of the corresponding pixel of the k-th 

individual frame. 

𝑝𝑥𝑦
𝑅 =

∑ 𝑝𝑥𝑦
𝐷𝑘𝑛=30

𝑘=1

𝑝𝑥𝑦
𝑀  (2) 

In addition to the mean value, the standard deviation 𝑑𝑥𝑦
𝐷  of 

each depth point is calculated for the map 𝑆 by using equation 

(3). Again, only valid measurements are considered. 

𝑝𝑥𝑦
𝑆 = √∑ (𝑝𝑥𝑦

𝐷𝑘−𝑝𝑥𝑦
𝑅 )

2
𝑛=30
k=1

𝑛−1
 (3) 

Analogously the intensity data is calculated. No spatial 

filtering is used because the general idea of deep learning is to 

use raw data wherever possible so that the network can adapt 

to this data. 
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The experimental set-up ensures that all components placed in 

the observed bin are located entirely within the visible range 

of the sensor. The efficiency and robustness of the counting 

method are increased by considering only the relevant area 

within the bin. All depth points of the upper edge of the bin are 

located at approximately identical distances from the sensor 

plane. The binary mask K is created according to equation (4), 

by considering only those pixels from the consolidated depth 

image R, whose depth values belong to the defined depth 

interval [𝑠1 , 𝑠2], with 𝑠1 as lower and 𝑠2 as upper limit. These 

include all measuring points K of the edge as well as additional 

points within the bin. 

𝐾 =  [𝑠1 , 𝑠2]  ∩  ℛ (4) 

A floodfill algorithm segments the bin using K. The remaining 

pixels contain the area within the bin. The bounding box, i.e., 

the smallest possible rectangle that encloses all remaining 

pixels, now borders exclusively on the area where the objects 

to be counted are expected. In the further course, only this 

cropped data area is used. The following pre-processed data is 

used for later training and recognition: The depth data from the 

averaged depth image 𝑅 with corresponding standard 

deviations 𝑆 and the averaged infrared image. All three data 

channels are normalized and lossless stored. 

4.3 Deep learning based detection of unsorted objects 

To test the suitability of CNN to detecting densely arranged 

objects, we rely on CNN detector and classification networks 

with a proven record in object detection. As a first CNN 

architecture, we combine Faster Regional Convolutional 

Neural Networks (R-CNN) (Ren et al., 2015) with ResNet101 

(He et al., 2016) and alternatively with Inception v2 (Szegedy 

et al., 2016) base networks. Generally, a CNN detects different 

objects in an image in two steps: First, areas are marked, where 

objects can be found. Subsequently, these region proposals are 

classified. Faster R-CNN networks contain a specialized 

proposal network that uses a previously created feature map to 

mark areas with objects. Subsequently, each region proposal is 

passed forward into the classifier network. The Faster R-CNN 

networks offer excellent results on the COCO data set [19]. 

As a second CNN architecture, we combine a Single Shot 

MultiBox Detector (SSD) network (Liu et al., 2016) with 

Inception v2 and alternatively with MobileNet (Howard et al., 

2017) as base networks. SSD networks require only one 

internal forward pass through the CNN with short computation 

times. Detections are here determined by testing a fixed set of 

bounding boxes of different locations, sizes and aspect ratios. 

ResNet101 and Inception v2 are classification networks that 

have achieved good results in combination with both Faster R-

CNN and SSD. MobileNet is a classification network designed 

for low memory requirements, which we include for test 

purposes, as it is suited for mobile devices. 

4.4 Generation of training data 

CNNs require thorough training to achieve reliable object 

detection. Our training data consists of pre-processed sensor 

data from the actual process, which are annotated with labels. 

Each label indicates the position and class of an object. To 

generate labeled data, we have implemented a watershed 

algorithm and several threshold procedures. This procedure is 

similar to (Raman and Islam, 2013), but it takes the potential 

of the depth data into account. The resulting labels may contain 

errors, but these are easy to correct manually afterward. 

Of the available data set of almost 4,000 image instances, 80% 

have been used for training and 20% for the subsequent 

evaluation of the CNN. As already stated in chapter 4.1, the 

training data must contain as much data variation as possible. 

Therefore, in each sequence of 30 frames, the position and 

orientation of the bin changes, the number and orientation of 

the components vary, and even some entirely different, 

random objects are included. In addition, pumps are included 

that lie upside down, sideways, or above another pump in the 

bin. For each new sequence, all objects have been completely 

rearranged. 

The algorithm works as follows: First, the average depth image 

ℛ is segmented by a threshold value s into the image S. It 

colors areas within a component white and gaps between the 

components black. A distance transformation then calculates 

the shortest Euclidean distance to a black pixel from image S 

as image D for each white pixel. By filtering with the threshold 

value d, areas are created in image E, which represent separate 

object proposals in averaged depth image ℛ. These object 

proposals have larger radii than d. The larger the smallest 

surface diameter, the larger the diameter of the proposed 

object. All object suggestions in the original image ℛ are used 

as a basis for the watershed method (Fig. 4). 

 

Fig. 4. Left: Distance image D, Right: Object Proposals E 

The boundaries of the objects grow stepwise until they meet 

other objects. The black areas of map S, i.e., the gaps between 

the components, are set as markers. They prevent the gaps 

from being added to the segment of a component. The result is 

a fully segmented image (Fig. 5). The algorithm has to be run 

separately for each object type (i.e., twice). First, the large 

pumps are identified and then removed from the depth image. 

Second, this calculation is repeated for the small pumps. 

Objects of the precisely same size cannot be distinguished 

since the components are identified by their rough geometry. 

The algorithm segments overlapping pumps correctly in most 

cases. Also, there are problems with the distance 

transformation in very dense arrangements where several 

objects merge (in the example left and right side). Within the 

scope of the capabilities, the algorithm is used to create 

annotations for components very quickly. 
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Fig.5. Segmented depth image, Labels (red: big, blue: small) 

Usually, labels contain the smallest possible rectangle around 

all pixels belonging to a segment. As in our case, this includes 

protruding parts such as the pump connections. Labels would 

always contain parts of the background. In object detection, 

learning through a large number of training images and 

different backgrounds allows the algorithms to learn the object 

independently of the background or surrounding objects. This 

principle cannot be used here since the labels always cover 

parts of other pumps as well as the same background. Tests 

have shown (Onoro-Rubio et al., 2016) that a net trained with 

such labels was not able to distinguish between the pumps, and 

therefore counting was not possible. In our scenario, both the 

components and the distance of the sensor to the component 

are always identical. Hence we arbitrarily determined a smaller 

label size and placed them in the area center of gravity of the 

segments (cf. Fig. 5). The bounding boxes are written into an 

XML file according to the annotation form of the Pascal VOC 

dataset (Everingham et al., 2010). Missing or incorrect 

annotations are corrected manually afterward. 

4.4 Training of the neural networks 

The training data set and associated annotations enable the 

training of neural networks of different architectures. The nets 

should be able to detect small and large pumps as well as 

misalignments and foreign objects. Consequently, the classes 

"large pump", "small pump" and "wrong" are used. 

All networks have to be adjusted for training. First, the number 

of classes is reduced from 80 (number of COCO dataset 

classes) to three. As a measure to reduce the training effort and 

the amount of specific training data, we use a method called 

transfer learning, a proven and frequently used procedure. It is 

capable of improving the performance of the CNN, 

particularly its capability to generalize objects (Yosinski et al., 

2014). Accordingly, we pre-train the CNN, using the freely 

available COCO dataset (Lin et al., 2014). This process is 

feasible in our case, as the features of the dataset are general 

enough to serve as input. Consequently, the first layers of the 

networks already recognize low-level features, and the 

subsequent layers are fine-tuned with our own pump training 

dataset. Due to different memory requirements, training 

parameters are adjusted separately for each network to achieve 

optimal training speed. 

The most critical adjustment in terms of efficiency is the 

adjustment of the batch size, which determines how many 

images can be trained as a batch at the same time. Both SSD 

based networks require relatively little memory and can be 

trained with a GTX 1080 8GB with a batch size of 24. In 

contrast, the Faster R-CNN with ResNet101 can only be 

trained with a mini-batch of two images due to higher memory 

requirements. As a result, training all the networks on a GTX 

1080 equipped workstation took between 6 and 8 hours. 

5. RESULTS 

The trained nets are evaluated with the remaining 20% of the 

data set. Correct detection means that a box has been defined 

for a class c where a ground truth bounding box is present (Fig. 

6). The mean Average Precision (mAP) is used as a measure 

of reliability. It was developed for the Pascal VOC Challenge 

and indicates the precision of a detector in a single scalar value 

in the interval mAP ∈ [0, 1]. For comparison, both the Average 

Precision for each class and the mAP are used to get an insight 

into how well the networks work. 

 

Fig. 6. Detected pumps and misaligned objects (Faster R-

CNN with Resnet 101) 

Table 1 illustrates the test results of the CNNs. Faster R-CNN 

with Inception v2 delivers the best result with a marginally 

better mean Average Precision. The SSD detector with the 

Inception v2 base network delivers comparable results but 

requires slightly less computing time. Since the measurements 

require one second, the time gain is not relevant in choosing 

this network over the other networks. The Faster R-CNN with 

the ResNet 101 base network only shows a slightly better 

performance with the larger pumps. 

Table 1 Evaluation results of tested CNN 

Network combinations Faster R-CNN SSD 

R101 V2 MNet V2 

Computing time on GTX 1080 [ms] 106 58 30 42 

Correct detection of large Pumps [%] 99.8 99.5 88.9 99.5 

Correct detection of small Pumps [%] 99.7 100 52.3 99.6 

Correct detection of unknown objects 

and misaligned positions [%] 

99.3 99.9 73.2 100 

mAP [%] 99.6 99.8 71.5 99.7 

Mnet = Mobile Net, V2 = Inception V2, R101 = ResNet101, 

mAP = mean Average Precision; Best values are marked fat. 

The SSD with MobileNet as base network does not produce 

any useful results. MobileNet is a small network that designed 

for mobile devices with low memory requirements, but a lower 

detection rate than that of the slightly slower SSD with 

Inception v2. In terms of bounding box quality, Faster R-CNN 

networks produce more accurate results than SSD-based 

networks. 

The results show that the method can detect, with good 

reliability, the number, positions, as well as the alignment of 

components belonging to a very limited number of different 

types in dense arrangements. The CNN architectures we used 

show high robustness and can separate many different object 
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classes. Therefore, we expect that the method will also be 

capable of distinguishing between a more significant number 

of different component types, e.g., all types of pumps that are 

inserted into bins at one work station. The method, however, 

cannot reliably distinguish between very similar sized and 

shaped components. 

6. CONCLUSIONS AND OUTLOOK 

We have investigated the suitability of deep learning and 

active depth cameras for counting of supply components. The 

results demonstrate that the chosen approach can achieve a 

sufficiently reliable counting of densely arranged objects in a 

short time to assist workers in counting different automotive 

components while they are put into standardized transport 

bins. The counting of components during packing into bins 

complements subsequent tracking of the parts by sensors 

attached to the transport bins by ensuring that components of 

the right types are supplied in the right quantities. Such 

enhanced, automated tracking of supply components can 

increase transparency within supply chains and thus their 

robustness against production, supply, and transportation 

disruptions. 

Future work will deal with distinguishing between a greater 

number of different product types. In addition, it will focus on 

the simulation-based creation of synthetic training data in 

order to reduce the costs for training data acquisition. 
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