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Abstract: This paper presents a distributed optimization algorithm tailored for solving optimal
control problems arising in multi-building coordination. The buildings coordinated by a grid
operator, join a demand response program to balance the voltage surge by using an energy
cost defined criterion. In order to model the hierarchical structure of the building network,
we formulate a distributed convex optimization problem with separable objectives and coupled
affine equality constraints. A variant of the Augmented Lagrangian based Alternating Direction
Inexact Newton (ALADIN) method for solving the considered class of problems is then presented
along with a convergence guarantee. To illustrate the effectiveness of the proposed method, we
compare it to the Alternating Direction Method of Multipliers (ADMM) by running both an
ALADIN and an ADMM based model predictive controller on a benchmark case study.

Keywords: Distributed control, Smart power applications, Predictive control, Structural
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1. INTRODUCTION

Energy generation is undergoing a rapid transition from
fossil fuels to renewable sources (Liserre et al. (2010)),
which poses a challenge to balance the unpredictable gen-
eration demand due to the highly stochastic nature of
renewable energy sources, and requiring advanced ancil-
lary service providers. Recently, Demand Response (DR)
programs utilizing the flexibility of power demand to pro-
vide services have been considered in the power systems
community (Siano (2014)). These programs cover collec-
tive load shifting, real time power regulation for load
balancing and capacity firming, which has been applied
to mitigate the uncertainty in renewable power genera-
tion effectively (Bitlislioglu (2018)). Because commercial
buildings, which are equipped with available heating, ven-
tilation and air conditioning (HVAC) systems, have a po-
tential to collectively offer ancillary services to the power
grid (Oldewurtel et al. (2012)). Smart grids connecting
multiple commercial buildings were developed recently in
the DR program to match the increasing power scale. In
this setting, individual buildings are coupled via the grid
operator. This yields a coordination problem, which can be
put in the generic framework of multi-agent optimization
and control (Bitlislioglu (2018)).

Typically, in order to meet the real-time requirement,
these multi-agent coordination problems are embedded in
a Model Predictive Control (MPC) framework (Rawlings
et al. (2017)), where the resulting problems have to be
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solved once during each sampling time, which requires
an efficient online solver. For this purpose, distributed
algorithms have already been developed (Bitlislioğlu et al.
(2017); Boyd et al. (2011); Braun et al. (2018)). A class
of these approaches is based on decomposition methods,
including primal and dual decomposition. In (Rantzer
(2009); Richter et al. (2011)), gradient-based dual decom-
position methods are used to solve the concave dual prob-
lem. Alternatively, semi-smooth Newton methods (Frasch
et al. (2015)) can be applied. In (Bitlislioğlu et al. (2017)),
an interior point method based on primal decomposition
was proposed, which writes all the inequality constraints
into the objective by using a primal barrier function (Boyd
and Vandenberghe (2004)). As a follow-up, (Bitlislioğlu
and Jones (2017)) proposed a primal-dual interior point
method, which further decomposes the resulting Newton-
step. However, such Newton-type methods are in gen-
eral only convergent if they are equipped with additional
smoothing heuristics and line-search routines. Compared
to the decomposition method, the Alternating Direction
Method of Multipliers (ADMM) has more reliable con-
vergence properties (Boyd et al. (2011); Hong and Luo
(2017)). Many variants of ADMM exploit the hierarchical
structure (Boyd et al. (2011); Goldstein et al. (2014)),
but, in practice, a heuristic pre-conditioner is required to
enhance convergence (O’Donoghue et al. (2016)).

This paper considers the case that the grid operator coor-
dinates a group of commercial buildings, which joins a DR
program. Section 2 introduces the problem formulation
based on (Bitlislioğlu et al. (2017)). Then, we reformulate
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the original problem by exploiting the decomposed struc-
ture of the building network, in which the local variables
are hidden. A distributed optimization problem is thus
yielded, where the decoupled objectives are non-smooth
Piece-Wise Quadratic (PWQ) functions with linear cou-
pling constraints. For solving this problem in the con-
text of MPC, Section 3 proposes a tailored Augmented
Lagrangian based Alternating Direction Inexact Newton
(ALADIN) method (Houska et al. (2016)), which comes
along with a convergence guarantee. ALADIN recently
has been proposed to solve multi-agent optimization prob-
lems (Jiang et al. (2017); Engelmann et al. (2019)). Similar
to ADMM, it requires the local agents to solve small-scale
decoupled problems and the central entity to deal with a
linear equation in every iteration. For this variant, a warm-
start strategy is further proposed to improve its online
performance. As a result, compared to ADMM, ALADIN
takes the same communication effort per iteration while
requiring much fewer iterations to converge to a desired
accuracy. This is illustrated by running both an ALADIN
and an ADMM based MPC controller in a benchmark case
study.

Notation: The set of symmetric, positive (semi-)definite
matrices in Rn×n is denoted by (Sn+)Sn++. We use notation

1n = [1 . . . 1]> ∈ Rn for all n ∈ N. For a given matrix
Σ ∈ Sn+ the notation

‖x‖Σ =
√
x>Σx

is used. Moreover, we call a function f : Rn → R ∪ {∞}
strongly convex with Σ ∈ Sn+, if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
t(1− t) ‖x− y‖2Σ

is satisfied for all x, y ∈ Rn and all t ∈ [0, 1]. Finally,
the Kronecker product of two matrices A ∈ Rk×l and
B ∈ Rm×n is given by

A⊗B = (aijB)i,j ∈ Rkm×ln.

2. PROBLEM FORMULATION

This section introduces a hierarchical optimal control
problem for coordinating a group of commercial buildings,
which join a Demand Response (DR) program.

2.1 Tracking Model of Single Building

This paper considers a building network in which each
building has a central heating control system. The dy-
namics of the i-th building can be described by a linear
input-output system,

xi,k+1 = Aixi,k +Biui,k + wi,k ,

yi,k = Cixi,k +Diui,k ,
(1)

where state xi,k ∈ Rnxi denotes the temperatures of
the thermal zones of the i-th building, ui,k ∈ Rnui the
thermal cooling energy input to the building at time step
k and wi,k ∈ Rnwi the system disturbance. The output
yi,k ∈ Rnyi denotes the mean zone temperatures and
coefficient matrices Ai, Bi, Ci, Di depend on the specific
buildings.

For a given reference room temperature yref
i , the following

tracking optimal control problem can be constructed,

min
ui

N−1∑
k=0

(∥∥yi,k − yref
i

∥∥2

Qi
+ ‖ui,k‖2Ri

)

s.t.



∀ k ∈ {0, ..., N − 1}
xi,k+1 = Aixi,k +Biui,k + wi,k,

yi,k = Cixi,k +Diui,k

xi,0 = x̂i,

y
i
≤ yi,k ≤ yi,

ui ≤ ui,k ≤ ui

(2)

with ui = [u>i,0 . . . u>i,N−1]>. Here x̂i is the initial state,

[y
i
, yi] and [ui, ui] denote box constraints on the system

outputs and control inputs, respectively. The matrices
Qi ∈ Snxi

+ and Ri ∈ Snui
++ are symmetric positive semi-

definite and positive definite such that Problem (2) is
a strongly convex quadratic programming (QP) prob-
lem (Borrelli et al. (2003)). In the following, we represent
the states and outputs as an affine function of the initial
state x̂i and control inputs ui by using the recursive
derivation

xi,k+1 = Ak+1
i x̂i +

k∑
j=0

Ak−ji (Biui,j + wi,k)

for k = 0, ..., N − 1 such that the dynamics (1) can be
written in the dense form

xi = Aix̂i + Bui ui + Bwi wi
yi = Cixi +Diui

with xi, yi and wi defined analogously to ui. Thus, we can
rewrite the objective of (2) as a quadratic cost

fi(ui) = u>i Hiui + 2h>i ui

with matrix Hi � 0 and vector hi given by

Hi = (CiBui +Di)>Qi(CiBui +Di) +Ri ,
hi = Hi(CiAix̂i + CiBwi wi − 1N ⊗ yref

i ) ,

and the constraints as a polyhedral set

ui ∈ Ui := {u ∈ RNnx | Eiui ≤ ei}
with matrix Ei and vector ei given by

Ei =

 CiB
u
i +Di

−CiBui −Di
I
−I

 , ei =

1N ⊗ yi − CiAix̂i − CiBwi wi
CiAix̂i + CiBwi wi − 1N ⊗ yi

1N ⊗ ui
−1N ⊗ ui

 .
Here, we use notation Qi = diag(Qi, ..., Qi) and Ri =
diag(Ri, ..., Ri). The constraint set Ui is convex and com-
pact Braun et al. (2018) such that Problem (2) has a
unique solution with respect to a given initial state x̂i.
Next, we will present the coordination problem based
on (2).

2.2 Multi-building Coordination

In this paper, we consider a smart grid with M commercial
buildings, which join a DR program and are coordinated
by a grid operator. The goal of coordination is to balance
the voltage surge caused by a large renewable energy
generation such as solar plant. We denote by θi,k the active
power injection or consumption from the i-th building. It
is a linear function of ui,k,

θi,k = Fiui,k , (3)
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with energy transfer matrix Fi for all k = 0, 1, ..., N − 1.
Moreover, the overall power magnitudes vk ∈ R can be
represented as an affine map of θi,k, i = 1, ...,M given by

vk =

M∑
i=1

Giθi,k + ṽk (4)

for all k = 0, ..., N − 1. Here, ṽk is given by the predicted
voltage magnitudes at time step k, in p.u., Gi models the
effect of the injections from the i-th building on the overall
voltage magnitudes. In addition, vk needs to satisfy the
box constraints

v ≤ vk ≤ v (5)

for all k = 0, ..., N − 1. The optimal coordination problem
can be formulated as

min
p,θ,u

M∑
i=1

(
fi(ui) +

N−1∑
k=0

πkθi,k

)

s.t.



∀ k ∈ {0, 1, ..., N − 1}
θi,k = Fiui,k , i = 1, ...,M

vk =

M∑
i=1

Giθi,k + ṽk ,

v ≤ vk ≤ v ,

ui ∈ Ui , i = 1, ...,M .

(6)

The used demand response criterion is defined by the sec-
ond term in the objective, which is the economic cost of the
electricity. Here, πk denotes the price of the electricity. If
we substitute (3) into the objective and the constraints, (6)
becomes

min
u,v

M∑
i=1

(
fi(ui) +

N−1∑
k=0

πkFiui,k

)

s.t.



∀ k ∈ {0, ..., N − 1}

vk =

M∑
i=1

GiFiui,k + ṽk ,

v ≤ vk ≤ v

ui ∈ Ui , i = 1, ...,M .

(7)

The coupling between the buildings is modeled by the
global variable v = [v>0 · · · v>N−1]> in (4). In order to
design an efficient distributed optimization algorithm, in
the following, we will eliminate this variable and reformu-
late (7) into the standard distributed form, which is only
with local variables coupled by an affine equality.

2.3 Reformulation

Let us introduce auxiliary variables si,k ∈ R2 for i =
1, ...,M , k = 0, ..., N − 1. The constraints (4) and (5) can
then be reformulated as inequality constraints

gi(ui, si) ≤ 0 (8)

with

gi(ui, si) =


 ṽk − v

M
+GiFiui,k

v − ṽk
M

−GiFiui,k

− si,k

k∈{0,...,N−1}

for all i = 1, ...,M and the equality affine constraints

M∑
i=1

si = 0 (9)

with si = [s>i,0 . . . s>i,N−1]>. As a result, Problem (7) can
be rewritten as

min
z

M∑
i=1

f̃(ui) s.t.

 0 =

M∑
i=1

si | λ

zi ∈ Zi , i = 1, ...,M

(10)

with stacked variables zi = [u>i s>i ]>. Here, λ denotes the
Lagrangian multipliers of the affine equality constraints.
The decoupled objectives are given by

f̃i(ui) = fi(ui) +

N−1∑
k=0

πkFiui,k

and the constraint sets are denoted by

Zi =

{[
ui

si

]
∈ RNnui

+2N

∣∣∣∣ ui ∈ Ui , gi(ui, si) ≤ 0

}
.

Since (8) are affine inequalities, sets Zi are convex poly-
topes. In the following, the equivalence between (7)
and (10) is established.

Proposition 1. If Problem (7) is feasible with solution u∗,
Problem (10) has a solution ẑ = (û, ŝ) with û = u∗.
Reversely, if Problem (10) is feasible with solution ẑ =
(û, ŝ), û is the minimizer of Problem (7).

Proof. Let u∗ be a minimizers of Problem (7). Then, we
can construct a feasible point ẑ = (u∗, ŝ) of (10) as

ŝi,k =


GiFiûi,k −

1

M

M∑
i=1

GiFiûi,k

−GiFiûi,k +
1

M

M∑
i=1

GiFiûi,k

 . (11)

For any feasible point z = (u, s) of (10), u is also feasible
for (7). Thus, we have

M∑
i=1

f̃(u∗i ) ≤
M∑
i=1

f̃(ui) .

This shows that ẑ is a minimizer of (10). Similarly, for
the other direction, let ẑ = (û, ŝ) be a minimizer of (10).
For any feasible point u of (7), we can construct a feasible
point z = (u, s) of (10) based on (11) such that

M∑
i=1

f̃(ûi) ≤
M∑
i=1

f̃(ui) .

Therefore, û is a minimizer of Problem (7). �

Concerning Problem (10), due to the strong convexity
of fi(·) and compact polyhedron Z, the optimal solution
(u∗, s∗) of (10) is unique with respect to u∗ but not s∗.
Therefore, we further introduce a least-squares regulariza-
tion of si in the decoupled objective,

Fi(zi) = f̃i(ui) + µ‖si‖22 (12)

with a sufficiently small constant µ > 0. This regulariza-
tion enforces strong convexity of the problem and thus,
uniqueness of si. Note that in practice, this small regu-
larization does not lead to large changes of the optimal
solution, which will be numerically illustrated later.
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Next, we introduce the function Ψi : R2N → R≥ given by
the following multi-parametric QP (mpQP) problem

Ψi(si) = min
ui

Fi(zi) s.t. zi ∈ Zi (13)

for all i = 1, ...,M . According to Theorem 2 in (Alessio and
Bemporad (2009)), Ψi is a strongly convex PWQ function
and its solution map u?i : R2N → RNnui is Piece-Wise
Affine (PWA). In the following, we use the notation

Ψi(si) =
1

2
s>i Si(si)si + ri(si)

>si ,

where matrix Si(·) and vector ri(·) are piece-wise constant
with respect to si inside different critical regions (Borrelli
et al. (2003)). For a given si, we denote the active con-
straints at u?i (si) by

[Pi,1(si) Pi,2(si)]

[
u?i (si)
si

]
+ pi(si) = 0

with active Jacobian [Pi,1(si) Pi,2(si)], the matrices Si(si)
are given by

Si(si) = µI+

Pi,2(si)
>[Pi,1(si)H

−1
i Pi,1(si)

>]−1Pi,2(si)
(14)

with Si(si) ∈ S2N
++. Accordingly, the multi-building coor-

dination problem can be written as

min
s

M∑
i=1

Ψi(si) s.t.

M∑
i=1

si = 0 , | λ (15)

which is a strongly convex but non-smooth optimization
problem. In the following, we will design an algorithm for
solving (15) in a distributed manner.

3. ALGORITHM

This section proposes a distributed algorithm based on
ALADIN (Houska et al. (2016)) for multi-building coordi-
nation.

Algorithm 1 ALADIN for solving (10)

Initialization: Initial guess (s, λ), choose symmetric scal-
ing matrices Σi � 0 and terminal tolerance ε > 0.

Repeat:

1) Each building solves the decoupled QP

min
ξi
Fi(ξi) + λ>ξsi +

1

2
‖ξsi − si‖

2
Σi

s.t. ξi = (ξui , ξ
s
i ) ∈ Zi

(16)

for i = 1, ...,M in parallel and send solution ξsi to the
grid operator.

2) Terminate if ‖s− ξs‖ ≤ ε.
3) The grid operator collects ξsi and solve the equality

constrained QP

min
s+

M∑
i=1

1

2

∥∥s+
i − 2ξsi + si

∥∥2

Σi

s.t.

M∑
i=1

s+
i = 0 | ∆λ+

(17)

Then, update λ+ = λ+ ∆λ+ and spread (s+
i , λ

+) to
i-th building for all i = 1, ...,M .

3.1 Distributed Optimization with ALADIN

Algorithm 1 outlines to solve (15) by using a tailored
ALADIN algorithm. Similar to the standard ALADIN
method, Algorithm 1 alternates between solving (16) in
parallel and dealing with the equality constrained QP
problem (17) for consensus. Here, Problems (16) are equiv-
alent to

min
ξs
i

Ψi(ξ
s
i ) + λ>ξsi +

1

2
‖ξsi − si‖

2
Σi

, (18)

which are also mpQPs with input parameters (λ, si). Thus,
the solution maps of (18), denoted by

ξ?i (λ, si) , i = 1, ...,M ,

are piece-wise affine (Alessio and Bemporad (2009)). Due
to QP (17) without inequality constraints, the solution can
be worked out analytically,

∆λ+ = 2Λ−1

(
M∑
i=1

ξsi

)
with Λ =

M∑
i=1

Σ−1
i (19a)

s+
i = 2ξsi − si − Σ−1

i ∆λ+ , i = 1, ...,M. (19b)

Here, it is clear that the grid operator only needs to collect
the local solution ξsi and spread ∆λ+ to each building.
Compared to ADMM, Algorithm 1 takes exactly the same
communication effort as ADMM per iteration (Houska
et al. (2016)).

3.2 Convergence Analysis

As discussed in (Jiang et al. (2019)), the iterates of Algo-
rithm 1 converges globally with a linear rate. Furthermore,
if the scaling matrices are chosen as Σi = Si(si) with
Si(si) = Si(s∗i ) the exact Hessian of Ψi at the optimal s∗i ,
Algorithm 1 can further achieve a local one-step conver-
gence under a regularity condition (Frasch et al. (2015)).
Note that this choice of Σi requires prior knowledge of the
optimality of (15), which is in general impractical. How-
ever, in the context of Model Predictive Control (MPC),
the result of the last MPC iteration can be used to choose
Σi online, which has a potential to satisfy Σi = Si(s∗i ),
and thus, local convergence can be improved.

3.3 Online Implementation Details

In order to arrive at an efficient implementation, the
structure of (16) and (17) can be exploited as follows.

Online solver: When we apply Algorithm 1 as an online
solver for MPC, we can move the primal update (19b)
into the local phases such that a simplified version of
Algorithm 1 is given by

Parallel Step


λ+ = λ+ ∆λ ,

s+
i = 2ξsi − si − Σ−1

i ∆λ ,

ξ+
i = ξ?i (λ+, s+

i ) ,

(20a)

Consensus Step ∆λ+ = 2Λ−1

(
M∑
i=1

ξsi
+

)
. (20b)

Warm-start: In an MPC scheme, the initial guess of
Algorithm 1 can be initialized by shifting the horizon,

si = (s∗i,1, . . . , s
∗
i,N−1, 0) , i = 1, ...,M ,

λ = (λ∗1, . . . , λ
∗
N−1, 0) .
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This strategy has been used in the context of an ADMM
based model predictive controller for smart grids (Braun
et al. (2018)). Here, (s∗, λ∗) denotes the optimal solution of
the current MPC problem. Furthermore, for Algorithm 1,
we can set Σi = Si(s∗i ), which potentially improves the
local convergence as discussed in Section 3.2. Note that in
practice, matrix Si(s∗i ) might be ill-conditioned such that
a iterative linear equation solver is required to deal with
the equality constrained QP (17).

4. NUMERICAL RESULTS

This section illustrates the effectiveness of Algorithm 1 in
the MPC scheme by comparing it to the state-of-the-art
method ADMM.

In our implementation, both algorithms are executed as
the online solver for MPC. And the warm-start strategy
discussed in Section 3.3 is applied. Furthermore, in or-
der to obtain a fair comparison, we implemented a pre-
conditioner for ADMM by performing a modified Ruiz
equilibration (Ruiz (2001)) on the decoupled constraint
matrices Ei.

The data used to generate the benchmark is obtained by
using the EnergyPlus toolkit (Crawley et al. (2000)) and
the thermal model of buildings are generated with the
OpenBuild toolbox (Gorecki et al. (2015)). The length of
prediction horizon is chosen by N = 14 with sampling time
0.5 hour. Here, we consider three types of buildings with
different scales,

Type Large Middle Small

dimension of zi 280 98 70

dimension of ei 1036 308 196

where the first row represents the number of variables
and the second gives the number of inequality constraints
with respect to a single building. Moreover, an interval
constraint of v(k) is given by vk ∈ [0.95, 1.05] in p.u., and
the price πk = 1 is fixed for all k = 0, ..., N − 1.

Fig. 1. Difference between u∗(µ) and u∗(0) in [kW].

We consider a benchmark case study from (Bitlislioğlu
et al. (2017)) with a mix of 12 commercial buildings
including 2 Large, 7 Middle and 3 Small such that there
are 1456 variables and 4816 affine inequality constraints
in total. Regarding the choice of µ, Fig. 1 illustrates
the difference between the optimal solutions of (15) with
different µ 6= 0 and the result with µ = 0. The gap
‖u∗(µ)−u∗(0)‖∞ increases linearly with µ increasing. We
set the accuracy of the online solver as 10−4 such that we
choose µ = 10−1 in our implementation.

Fig. 2 and Fig. 3 show the convergence comparison be-
tween ALADIN and ADMM for two different online cases.
In the first one, the optimal active set is almost the same
as the previous MPC iteration. On the contrary, there are
some changes of the optimal active set arising in the second
case.

Fig. 2. Convergence comparison of Case I: ALADIN vs
ADMM.

Fig. 3. Convergence comparison of Case II: ALADIN vs
ADMM.
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Fig. 2 shows the comparison of an example of the first
case. For solving this particular problem, when we set
the tolerance to 10−4, ALADIN is five times faster than
ADMM. In this case study, 252 constraints are active at
the optimal solution. The warm-start strategy for initializ-
ing Σi improves the local convergence of ALADIN. Fig. 3
shows a comparison for the second case. In this example,
42 constraints are active at the optimal solution. ALADIN
just achieves a global linear convergence and is only three
times faster than ADMM.

5. CONCLUSION

This paper analyzed an optimization problem for coor-
dinating multiple commercial buildings. The problem bal-
ances the voltage surge of the building network by using an
energy cost defined demand response criterion. By intro-
ducing an auxiliary variable, the problem was reformulated
into a standard distributed form with decoupled PWQ ob-
jectives and coupled affine equality constraints. For solving
this non-smooth convex problem in an MPC scheme, we
proposed a tailored ALADIN method, which can warmly
start online and thus its convergence can be sped up. Our
numerical results illustrated the effectiveness of the warm-
start strategy and show that the ALADIN based MPC
controller outperforms the ADMM based controller.
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Bitlislioğlu, A. and Jones, C.N. (2017). On coordinated
primal-dual interior-point methods for multi-agent op-
timization. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), 3531–3536.

Borrelli, F., Bemporad, A., and Morari, M. (2003). Ge-
ometric algorithm for multiparametric linear program-
ming. Journal of optimization theory and applications,
118(3), 515–540.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers.
Foundations and Trends in Machine learning, 3(1), 1–
122.

Boyd, S. and Vandenberghe, L. (2004). Convex optimiza-
tion. Cambridge University Press.

Braun, P., Faulwasser, T., Grüne, L., Kellett, C.M.,
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