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Abstract:
This paper improves visual-inertial systems to boost the localization accuracy for low-cost rescue
robots. When robots traverse on rugged terrain, the performance of pose estimation suffers from
big noise on the measurements of the inertial sensors due to ground contact forces, especially
for low-cost sensors. Therefore, we propose Threshold -based and Dynamic Time Warping-based
methods to detect abnormal measurements and mitigate such faults. The two methods are
embedded into the popular VINS-Mono system to evaluate their performance. Experiments are
performed on simulation and real robot data, which show that both methods increase the pose
estimation accuracy. Moreover, the Threshold -based method performs better when the noise is
small and the Dynamic Time Warping-based one shows greater potential on large noise.
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1. INTRODUCTION

Visual-inertial systems have achieved great success during
the last decades, both on methods and applications. Huang
(2019) reviewed all kinds of visual-inertial approaches for
state estimation, with vision from direct (Usenko et al.,
2016) to feature-based (Mur-Artal and Tardós, 2017)
methods and fusion methods from filtering (Mourikis and
Roumeliotis, 2007; Li and Mourikis, 2012) to optimization
(Indelman et al., 2013; Qin et al., 2018). Also, Kuang et al.
(2019); Xu et al. (2019) applied spectral methods for visual
odometry. In addition, there are also multiple different
applications: augmentation reality for mobile device like
Google Tango 1 ; visual-inertial odometry on unmanned air
vehicles (Ling et al., 2016; Sun et al., 2018; Do et al., 2019);
visual-inertial systems on wheeled robots (Wu et al., 2017)
and tracked robots (Shan et al., 2019).

Assuming that the camera can provide reliable visual in-
formation, the inertial measurement unit (IMU) largely
determines the performance of visual-inertial localization.
The IMU is used to obtain the acceleration and angular
velocity of the system, which can be integrated to calculate
rough poses. However, it can also be the drift source of
inertial-based localization. Often visual-intertial systems
are applied to flying robots or robots using wheels on
smooth terrain and thus the reported performance of such
system is often good. But, as mentioned in (Shan et al.,
2019), the accelerometer equipped on a rescue robot is
susceptible to a lot of vibration and ground contact forces

? The first two authors contributed equally.
1 https://www.google.com/atap/projecttango.

Fig. 1. MARS Rescue Robot used for the experiments.

when the robot traverses on rugged terrain, which usually
causes unreliable localization. For example, robots might
fall down a step, so impulses appear on acceleration mea-
surements. After the double integration on acceleration to
get the pose, the noise enlarges substantially. Thus the
inertial-based localization fails.

In this work, we attempt to address such fault problems
with the application on rescue robots. In other words,
we focus on building robust and reliable visual-inertial
systems for robots operating on rough terrain. The reason
why we choose rescue robots as our main research object is,
that such fault conditions of IMU is more likely to happen
here than other robots which move on 2D planes, due to
the challenging terrains.

There have been some attempts already to try to deal
with the instabilities of the IMU resulting from different
causes, such as large noise, disturbance and disconnection.
Avram et al. (2015) detected the IMU bias fault based
on the known roll and pitch for a UAV. Quan et al.
(2019) fuses vision, wheel encoders and gyroscope tightly
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to increase the accuracy and robustness of localization.
Nguyen et al. (2009) proposed two model-based fault de-
tection and isolation methods to maintain the robustness
of a quadrotor, including parameter estimation and set
membership estimation. In addition, multi-IMUs are also
used to detect and isolate anomalies happened from each
sensor. For example, D’Amato et al. (2017) proposed a
filtering-based approach to detect faults on one of its two
IMUs; Eckenhoff et al. (2019) utilized even more IMUs to
address IMU failures.

The paper proposes Threshold -based and Dynamic Time
Warping (DTW (Berndt and Clifford, 1994))-based IMU
preprocessing methods, which make inertial based local-
ization more reliable and robust for low-cost robots. We
summarize our contributions as:

(1) Detect IMU abnormal measurement values by both
Threshold -based and DTW-based methods. Further
replace the measurement with reasonable data.

(2) Apply VINS-Mono on the processed data to illustrate
the effectiveness of the proposed methods.

(3) Make a rescue robot have more reliable self-localization
to achieve better performance.

The rest of this paper is organized as follows: Sec. 2
analyzes and states the problem of IMU measurements.
Then we propose the Threshold -based and DTW-based
methods to address this problem in Sec. 3. Afterwards,
experiments are performed on both simulation data and
real robot data to evaluate the proposed methods in Sec. 4.
Finally, we conclude our work in Sec. 5.

2. PROBLEM ANALYSIS

In this work, we diagnose the issue that the localization
of our rescue robot equipped with the low-cost RealSense
(see Fig. 1) often fails on rugged terrains when using the
popular VIsual Inertial System VINS-Mono (Qin et al.
(2018)). For that purpose, we firstly review the IMU model
used in this system. Then the real IMU data collected from
the rescue robot is used to analyze the localization failure
problem.

Table 1. Notation

aw The acceleration at world frame

ab The acceleration at body frame

ãb The measurement of acceleration at body frame

vw The velocity at world frame

wb The angular velocity at body frame

w̃b The measurement of angular velocity at body frame

n The white noise, n ∼ N (0, σ2)

ng The white noise at gyroscopes frame

ba The measurement bias at accelerometer frame

bg The measurement bias at gyroscope frame

gw The gravity at world frame

qb
w Rotation from world to body frame in quaternion

pi,qi The robot pose at time i

pw
i ,q

w
i The robot pose at time i at world frame

d The dimensionality of a single IMU measurement

P,Q Two time series of IMU measurements

P One of the template patterns to be matched to

Q The actual IMU measurements

N,M The length of P,Q

k The number of template patterns

2.1 IMU Model

Considering the white noise and the bias from the random
walk and ignoring the effect of scale, we can get the IMU
measurement model as follows,

w̃b = wb + bg + ng (1)

ãb = qb
w(aw + gw) + ba + na (2)

Since we have the derivative of position, velocity and
quaternion at time t,

ṗw(t) = vw(t) (3a)

v̇w(t) = aw(t) (3b)

q̇w
b (t) = qw

b (t)⊗
[

0
1
2w

b(t)

]
(3c)

the pose of robot at time tj is obtained by integration
during time interval [ti, tj ] :

pw(tj) = pw(ti) +
∫ tj
ti

vw
t (t)δt

+
∫ ∫

t∈[ti,tj ](q
w
b (t)ab(t)− gw)δt2

(4a)

vw(tj) = vw(ti) +

∫ tj

ti

(qw
b (t)ab(t)− gw)δt (4b)

qw
b (tj) =

∫ tj

ti

qw
b (t)⊗

[
0

1
2w

b(t)

]
δt. (4c)

Similarly, we also have the discrete version by replacing
ti, tj with k, k + 1 in proper way,

pw[k + 1] = pw[k] + vw[k]∆t+
1

2
aw∆t2 (5a)

vw[k + 1] = vw[k] + aw∆t (5b)

qw
b [k + 1] = qw

b [k]⊗
[

0
1
2w

b∆t

]
(5c)

where
aw = qw

b [k](ab[k]− ba[k])− gw (6a)

wb = wb[k]− bg[k] (6b)

or Runge-Kutta approximation, which takes the average
between current state and last state

aw =
1

2
[qw

b [k](ab[k]− ba[k])− gw

+ qw
b [k + 1](ab[k + 1]− ba[k + 1])− gw]

(7a)

wb =
1

2
[wb[k]− bg[k] + wb[k]− bg[k]] (7b)

2.2 Real Data Analysis

When the robot is static, its acceleration should also be
stable at local gravity. When the tracked robot moves on a
plane, the acceleration begins to change within an accept-
able interval. However, the impulses of the acceleration
may occur if the robot suddenly changes its state, such
as falling down from a step, which might result in large
drift in localization due to the double integration of the
acceleration. Fig. 2 displays the real IMU data during run-
time, which shows that the RealSense IMU has noise with
larger covariance and more unexpected impulses than the
Xsens IMU data. When the robot moves suddenly, such as
falling down, peaks representing big acceleration occur in
the IMU measurements (see Fig. 2(a)), which are the nor-
mal measurements. However, the IMU measurements with
larger noise from RealSense may contain the unexpected
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impulse (see Fig. 2(b)), which are the fault we want to
mitigate.

In a visual-inertial system, we consider two possible effects
of influence of the IMU on the pose estimation:

1) When the robot is abruptly accelerating, for example
due to bumping or falling, the IMU measurements may
not correctly reflect the changes according to the Nyquist
sampling theory, which leads to errors on velocity and
pose. For example, the robot starts to move and stop at
certain point. The start and the end velocity should be
zero, since the integral of acceleration through time is zero.
However, the estimated value might be non-zero during
run-time. Then the errors in acceleration accumulate in the
velocity due to the integration, resulting in unpredictable
estimation.

2) We find that instantaneous accelerations are highly
related to the robot instantaneous rotations. Based on
the formulation, if the instantaneous rotation is estimated
with small errors, the acceleration orientation will be
wrong and that error will accumulate in the velocity and
position.

It should be noticed that the performance of the visual
estimation is not discussed in this part. On one hand, if
the vision-based pose estimation is accurate, it will also
be influenced by the noise of IMU as constraints. On the
other hand, if the visual estimation fails, the IMU data
will be dominant in the visual-inertial system.

3. METHODOLOGY

For the inertial-based localization, the acceleration mea-
surements will produce significant impulses if the rescue
robot falls down or moves rapidly. Some of the impulses
lead the robot localization to fail, especially also because
it typically goes together with a large visual viewpoint
change and blurred images, both of which tend to let the
visual odometry fail. To make the inertial-based system
more robust and accurate, we divide the approaches into
two steps: fault detection and mitigation.

3.1 Fault Detection

As mentioned in Sec. 2.2, we want to detect the unexpected
impulse of IMU measurements. Following are Threshold -
based and DTW-based methods to detect these unex-
pected IMU impulses.

1) Threshold : One straightforward method is the Thresh-
old -based approach, which identifies any measurement be-
yond the specified threshold. However, the threshold tun-
ing is tricky: it should not affect any normal measurement
and be able to identify as many as possible abnormal
measurements. For example, the acceleration value when
the robot begins to move suddenly might be similar to that
when a glitch occurs.

2) Dynamic Time Warping (Berndt and Clifford, 1994):
The DTW algorithm is able to find the optimal match
between two time series. Furthermore, it could be used as
one kind of metric to measure the similarity of two time
series. The characteristic of DTW makes it suitable for our
qualification. When we apply DTW to detect the abnormal

Algorithm 1 DTW

Input Two slice P ∈ RN×d and Q ∈ RM×d.
Output distance

1: T ← array(M + 1) . index from 0 to M
2: T [0]← 0
3: T [i]←∞ for i ∈ {1, · · · ,M}.
4: for level ∈ {1, . . . , N} do
5: ul corner ← T [0]
6: T [0]←∞
7: for i ∈ {1, . . . ,M} do
8: min v ← dist(plevel,qi) + min(ul corner, T [i−

1], T [i])
9: ul corner ← T [i]

10: T [i]← min v
11: end for
12: end for
13: distance← T [M ]

IMU measurement, the stream of the IMU measurements
are grouped into slices of N non-overlapping samples. Our
approach is then detecting possible glitches slice-wise.

The detection is made by comparing the slices (time series)
of IMU readings against templates of normal IMU read-
ings. Those templates are previously collected and contain
representative examples of acceptable motion patterns of
the robot, e.g. driving on smooth ground with different
control input.

The measured IMU slices are compared against all tem-
plates. If the distance of the best fit is below a certain
threshold that measurement slice is classified as normal.
Otherwise that slice is considered abnormal.

The implementation details of DTW used in this work
can be found in Algorithm 1. It is with two slices of
measurement P ∈ RN×d and Q ∈ RM×d. We use the
concatenation of signals to represent the slice. N , M
are the discretized lengths and d is the dimension of
original measurements for comparison. The dimension d
is typically 3 for a 3-axis accelerometer or 6 when also
taking a 3-axis gyroscope into account.

The basic distance function for two vectors pi ∈ Rd,
qj ∈ Rd, which are the i-th and j-th rows of P and Q,
respectively, is

dist(pi,qj) = ||pi − qj ||2. (8)

To detect the abnormal measurement, multiple templates
are required, because different measurement patterns may
vary. The computational efficiency of the detection algo-
rithm is also important, due to the high frequency of the
IMU measurements. Assuming k templates with length
N and IMU measurements with length M , and M ≥ N
for convenience, then the time and space complexity of
detection for each test are O(kM2) and O(M), respec-
tively. Moreover, parallel computing is utilized to increase
the speed of the detection, since comparing with each
template is independent. In this case, the time complexity
is O(k

lM
2) (l is the number of parallel threads), and the

space complexity increases to O(lM).
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(a) Xsens IMU Measurement Sample (b) RealSense IMU Measurement Sample

Fig. 2. The run-time IMU measurements

IMU
Measurement

DTW

Threshold

Templates

VINS-Mono

Fig. 3. Overview of the three versions of our improved
VINS-Mono framework: red: Threshold version; blue:
DTW-based approach; dashed line: original VINS-
mono.

3.2 Fault Mitigation

After detecting abnormal IMU measurements we need to
replace those samples with other data, which will hopefully
lead to better visual-intertial localization results. We have
implemented the following strategies for the two detection
methods:

1) Threshold : After the fault is detected by a specific
threshold, we can replace the measurement with either
the threshold or the average of the last n samples. The
method inhibits the abnormal measurements, but it may
also break the balance of the original measurements.

2) Dynamic Time Warping : In contrast to replacing the
single measurement in the Threshold -based method, the
DTW-based method exploits a better way that combines
the replaced values with reasonable close previous mea-
surements. As discussed previously, we collect data tem-
plates from the robot at different states for fault detection.
If a fault is detected, the complete slice of IMU mea-
surements will be replaced by the best fitting template.
We think that this better keeps the balance of the accel-
eration measurements. The templates represent series of
the normal IMU measurements. It is reasonable, because
once abnormal measurements appear, a large DTW dis-
tance arises on the different templates. Since the captured
measurement slice still contains useful data beside the
abnormal, the closest template is still a good choice on
the pattern distribution.

(a) X-Y side view (b) X-Z side view

(c) Y-Z side view (d) Brief view

Fig. 4. Simulated trajectories and landmarks

Fig. 5. Noise on acceleration along z-axis

3.3 Integration to VINS Framework

To evaluate the performance of the two different fault
mitigation methods, we embedded the methods into the
VINS-Mono (Qin et al., 2018) system. Fig. 3 demonstrates
the improved system with the IMU abnormality mitigation
mechanism. Instead of feeding IMU measurements directly
into VINS-Mono (dashed line), fault detection and miti-
gation are applied beforehand. The proposed Threshold -
based (red part) and DTW-based (blue part) methods
are applied separately on IMU measurements. For the
Threshold -based method, we replace the abnormal values
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with the threshold when the abnormal measurements are
detected. For the DTW-based approach, we first try to
match the IMU measurements with all pre-obtained tem-
plates. If none is well-matched, it means the measurements
might be the glitch error which we want to mitigate. If that
is the case, the best fitting template is used as replace-
ment. Then the corresponding replacement takes over the
original data, leading localization into better performance.

4. EXPERIMENTS AND ANALYSIS

In this section, we compare the performance of the Thresh-
old -based and DTW-based framework with original VINS-
Mono on both simulation and real robot data. All the pose
estimation accuracy in the experiments is evaluated by
rpg trajectory evaluation 2 (Zhang and Scaramuzza,
2018).

4.1 Simulation

To exclude the influence of localization based on vision, we
perform simulation experiments with the same number of
feature points in each view. Thus we can concentrate on
the influence of the IMU to the visual-inertial framework.
In this experiment, the number of templates is k = 10
and they have a length of N = 10, the length of the
measured slices is M = 40 and the dimension for the 3-
axis accelerometer with 3-axis rate gyroscope is d = 6.
The simulated IMU and keypoints data are generated from
given trajectories and 3D landmarks, where 2000 poses and
36 landmarks are used in this simulation (see Fig. 4).

To make this data closer to real data, we add Gaussian
noise to the idealistic raw data. In addition, to simulate
the glitches, we add noise with bigger mean µ (offset) and
covariance σ to a few samples. As shown in Fig. 5, the
acceleration along the z-axis is influenced by noise with
different µ and σ and the green line represents acceleration
along z-axis with no noise.

Then we run the improved VINS-Mono system on these
datasets with different amounts of glitch to compare the
two fault mitigation approaches. Fig. 6 shows the results of
boosting localization accuracy with two different methods
and three different glitch settings. It is found that the
original VINS-Mono (red line) works well when the glitch
error is small (N (0, 1)) but its ability on pose estimation
decreases as the noise gets bigger. It is obvious that the
original VINS-Mono fails to localize when the glitch is too
large, where Threshold -based and DTW-based methods
improve the estimation results. In addition, Table 2 gives
a quantitative comparison, which shows that the DTW-
based method performs best. Tables 3 and 4 display the
overall relative translation and yaw error based on the
three glitch settings, which indicates that both methods
improve the performance of the original VINS-Mono sys-
tem. It can also be observed that the DTW-based method
yields better results than the Threshold -based one.

4.2 Real Robot Experiment

Finally, we test our approach also on a real robot. Firstly,
we collect IMU data templates from measurements when
2 https://github.com/uzh-rpg/rpg_trajectory_evaluation

Table 2. Root mean square of translation on
simulation data

noise 0 1 noise 1 10 noise 50 10

trunc 0.04 0.14 0.32

dtw 0.06 0.15 0.06

original 0.06 0.15 18.05

Table 3. Overall relative translation error on
simulation data

trunc dtw original

7.00m 0.16 0.07 2.50

14.00m 0.26 0.10 3.03

21.00m 0.37 0.14 3.54

28.00m 0.43 0.17 4.02

35.00m 0.51 0.20 4.29

Table 4. Overall relative yaw error on simula-
tion data

trunc dtw original

7.00m 0.61 0.08 9.47

14.00m 0.49 0.08 9.66

21.00m 0.53 0.09 10.96

28.00m 0.51 0.10 12.81

35.00m 0.55 0.10 14.71

the robot moves smoothly on different states, including
straight moving, circling, climbing and downhill. Then
IMU data is captured in the test terrain to compare with
templates during detection.

In this experiment, the number of templates is k = 10
and they have a length of N = 40, the length of the
measured slices is M = 40 and the dimension for the 3-axis
accelerometer is d = 3.

We do not take the angular velocity into account for
two reasons. Firstly, the angular velocity is captured by
a gyroscope, which is not largely affected by the robot’s
acceleration; Secondly, the visual odometry already has
trustworthy results on orientation estimation, which is
different from the translation of visual odometry, which
suffers from an unknown scale factor.

The real robot experiments are performed on the small
rescue robot standard test scenarios build with wooden
ramps. The hardware platform to run VINS-Mono is
an Intel NUC (i7-8559U@2.7-4.5GHz and 16GB Memory
without GPU) connected to an Intel RealSense D435i
camera. Image and IMU data are all captured by this
camera. Additionally, the ground truth robot poses are
captured with an OptiTrack 3 System. The multi-threaded
C++ DTW implementation only takes about 0.6ms for
each computation with all templates, which is about four
times faster than single thread.

When collecting templates for the DTW-based method,
we should ensure that no abnormal IMU data is included.
For that, these templates can be generated from either
high-end IMUs (like Xsens) or the reliable historical mea-
surements of cheap IMUs. In these experiments we use the
latter approach.

Fig. 7 depicts the IMU measurement and fault detection
and mitigation results, which show the efficiency of the

3 https://www.optitrack.com
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Fig. 6. Improvement on localization with different methods and glitch errors
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Fig. 7. A sample of IMU measurement and fault detection and mitigation result by DTW detection method for trial 2.

proposed method. The Threshold detection method has a
quite straightforward result, which is not displayed in the
paper. The first one within red box is detected when robot
fall down from a ramp. The second one within red box is
detected when the x−acceleration has an extremely high
impulse.

Fig. 8 shows the results of the real robot experiments,
which indicate that both methods improve the perfor-
mance. The DTW keeps a better appearance compared
to the ground truth, ignoring the scale factor from Trial
1. It should be noted that the groundtruth is shorter than

the estimated ones due to the scaling problem instead of
missing data. The scale factor can be reduced further when
loop closures happen. In the Trial 2, our algorithm pre-
vents the odometry drift a lot on the x-axis. As introduced
in Sec 2, the presence of high acceleration impulses will
result in unpredictable estimations. The original VINS-
Mono has a large continuous drift due to a faulty IMU
measurement, which leads to a wrongly estimated large
velocity. However, the other two improved methods have
no endless drift. Even though there is a big gap between
the estimated result and the ground truth, the improved

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9849



−1 0 1 2 3 4

x [m]

0

1

2
y

[m
]

Original

DTW

Threshold

Groundtruth

(a) Trial 1 top view

0 2 4 6

x [m]

−1

0

y
[m

]

Original

DTW

Threshold

Groundtruth

(b) Trial 2 top view

−1 0 1 2 3 4

x [m]

0.0

0.5

z
[m

] Original

DTW

Threshold

Groundtruth

(c) Trial 1 side view

0 2 4 6

x [m]

−1

0

z
[m

]

Original

DTW

Threshold

Groundtruth

(d) Trial 2 side view

Fig. 8. Real robot trials on localization with different methods.

result shows larger probability to be reduced by further
optimization.

5. CONCLUSIONS

This paper analyzes the effect of abnormal IMU mea-
surements on visual inertial systems. Glitches in the IMU
measurement can make the estimated odometry inaccurate
and thus may result in failure of localization, a problem
which is especially severe for ground robots. This is be-
cause lots of noise is present on the IMU measurements
due to the ground contact forces. This paper proposes
two different IMU preprocessing methods, which are the
threshold -based and the DTW-based method.

We demonstrate our methods on both simulated data and
real robot experiments. The simulation experiment shows
that both methods are very well capable of detecting and
mitigating simulated abnormal IMU data and the quanti-
tative data reveals the DTW-based approach as superior to
the threshold method. Furthermore, these two methods are
able to improve the accuracy of visual-inertial localization.
The real robot experiments also indicate a good detection
of IMU glitches. But the experimental results of the inte-
gration into the VINS-Mono framework remain somewhat
inconclusive, since the framework exhibits a significant
overall scaling problem for all experiments. Moreover, the
proposed two methods have limited improvement on local-
ization for rescue robots.

As future work will further improve the VINS integration
to remedy the scaling problems. Firstly, a more flexible
template generation will be developed instead of fixed
templates, to better represent the terrains information.
Secondly, the mitigation strategy will be changed from
the templates to data sampling from the distribution of
the original IMU measurements. Finally, we will test our
method on more difficult terrains and scenarios to show
the robustness.
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