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Abstract: A novel control law is proposed to attenuate the influence of input and output
disturbances for systems with vector output and sector bounded nonlinearities. The control law
is based on estimation of the disturbance in the output. Differently from the existing results,
the ultimate bound of the closed-loop system depends on only one component of the output
disturbance vector (as well as, on the input disturbance). The results are formulated in terms of
LMIs. The efficiency and advantages of the results over the existing methods are demonstrated
by numerical examples.
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1. INTRODUCTION

For practical implmentation of control methods it is im-
portant to take into account input and output distur-
bances Tao and Kokotovic (1996); Fradkov et al. (1999);
Popescu et al. (2017). The following control methods are
efficient in the presence of disturbances: H∞-control Chen
et al. (2015); Sanchez-Pena and Sznaier (1998), invariant
ellipsoid method Schweppe (1973); Polyak and Topunov
(2008), and method of rejection of sinusoidal disturbances
Bodson and Douglas (1997); Fedele and Ferrise (2013);
Pyrkin and Bobtsov (2016). However, the accuracy in
the steady state of Chen et al. (2015); Sanchez-Pena and
Sznaier (1998); Schweppe (1973); Polyak and Topunov
(2008); Bodson and Douglas (1997); Fedele and Ferrise
(2013); Pyrkin and Bobtsov (2016) depends on magnitudes
of all system disturbances.

Recently a new control method has been suggested in
Furtat (2017, 2018). This method decreases the resulting
ultimate bound of the closed-loop system. Differently from
Chen et al. (2015); Sanchez-Pena and Sznaier (1998);
Schweppe (1973); Polyak and Topunov (2008); Bodson
and Douglas (1997); Fedele and Ferrise (2013); Pyrkin
and Bobtsov (2016), the above bound depends only on
one component of the output disturbance vector (as well
as on the input disturbance). Thus, the control law of
Furtat (2017, 2018) may reject output disturbances with
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large magnitudes. However, the disturbances considered in
Furtat (2017, 2018) are assumed to be differentiable.

The objective of the present paper is to design a novel
method that rejects nonsmooth input/output distur-
bances.

The paper is organized as follows. Problem formulation
is presented in Section 2. Section 3 describes the control
law design under input and output disturbances. Section 4
contains the main results. Section 5 illustrates an efficiency
of the proposed method and its advantages compared with
the existing methods. Section 6 collects some conclusions.

Notations. Throughout the paper the superscript T stands
for matrix transposition; Rn denotes the n dimensional
Euclidean space with vector norm | · |; Rn×m is the set
of all n × m real matrices; the notation P > 0 for P ∈
Rn×n means that P is symmetric and positive definite;
λmin(P ) stands for the minimum eigenvalue of the matrix
P ; Ej = [0, ..., 0, 1, 0, ..., 0]T is a vector, where the jth
component is equal to 1 and other components are equal
to 0; Ẽ is the (n − 1) × n matrix obtained from the
identity matrix of order n by eliminating the ith row, i.e.
ẼT = [E1, ..., Ei−1, Ei+1, ..., En]; I is the identity matrix
of corresponding order; the notation Θ(χ) for χ ∈ R means

that lim
χ→0

Θ(χ)
χ = C, where C is a constant, diag{·} denotes

a block diagonal matrix.

2. PROBLEM FORMULATION

Let a plant model be described by the following equations

ẋ(t) = Ax(t) +Bu(t) +Dφ(x, t) +Gf(t), (1)

y(t) = x(t) + ξ(t), (2)
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where t ≥ 0, x(t) ∈ Rn is the unmeasured state vector,
n ≥ 2, u(t) ∈ Rm is the control signal, y(t) ∈ Rn is
the measured signal, f(t) ∈ Rv is the input disturbance
and |f(t)| ≤ κ1, κ1 > 0, φ(x, t) ∈ Rl is the unknown
nonlinear function satisfying the condition |φ(x, t)| ≤ χ|x|,
χ > 0, ξ(t) = [ξ1(t), ..., ξn(t)]T is the output disturbance

and κj2 = lim
t→∞

sup
t≥0
|ξj(t)|, κj2 > 0, j = 1, .., n. The matrices

A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×l, G ∈ Rn×v and the
constants κ1, κj2, j = 1, ..., n and χ are known.

Our objective is to design the controller that guarantees
the input-to-state stability (ISS) of (1) leading to ultimate
bound

lim
t→∞

sup
t≥0
|x(t)| < δ, (3)

where δ = Θ(κ2
1 + (κi2)2), the ith component due to the

designer choice. This is different from the existing results
Chen et al. (2015); Sanchez-Pena and Sznaier (1998);
Schweppe (1973); Polyak and Topunov (2008); Bodson
and Douglas (1997); Fedele and Ferrise (2013); Selivanov
et al. (2015); Pyrkin and Bobtsov (2016), where δ =

Θ(κ2
1 +

∑n
j=1(κj2)2). Moreover, unlike Furtat (2017, 2018)

the signals f and ξ may be not differentiable. Sufficient
condition for our objective is given below in Theorems 1.

Let us briefly describe the design method. Since plant (1),
(2) contains input and output disturbances, at least two
measurement channels are required for getting information
about these signals (thus, n ≥ 2). Let us consider the
ith equation in (1), (2) for getting information about
disturbance f . The other equations are used for getting
information about output disturbance. The output sig-
nal y contains output disturbances, therefore, we design
an algorithm that allows to estimate the part of out-
put disturbance vector without ith component, i.e. ξ̃ =
[ξ1, ..., ξi−1, ξi+1, ..., ξn]T (see ”Estimator of ξ̃” in Fig. 1,

where ξ̂ is the estimate of ξ̃). Thus, having information

about ξ̃, the state vector estimate x̂ is constructed and
used for design the control law (Fig. 1), reducing the
influence of f .

Fig. 1. The control scheme structure.

Remark 1. Let we know a priori, that there exists the
lth component of the vector ξ such that lim

t→∞
sup
t≥0
|ξl(t)| <

lim
t→∞

sup
t≥0
|ξk(t)| for l ∈ {1, ..., n} and k ∈ {1, ..., l − 1, l +

1, ..., n}. In this case, we will use the lth equation in
(1), (2) instead of ith equation, because with this choice

the ultimate bound δ in (3) will take the smallest value.
Otherwise, ξi(t) is chosen arbitrary.

3. CONTROL LAW DESIGN

Introduce the control law (see Fig. 1) in the form

u(t) = Kx̂(t), (4)

where the matrix KT ∈ Rn is chosen such that the closed-
loop system is ISS, the signal x̂(t) is the estimate of the
state vector x(t) obtained by

x̂(t) = y(t)− ẼTξ̂(t). (5)

Here ξ̂(t) is the estimate of ξ̃(t) = [ξ1(t), ..., ξi−1(t), ξi+1(t),
..., ξn(t)]T.

Further we design the algorithm for estimation of ξ̃(t).
Using relation

ξ(t) =

n∑
j=1

Ejξj(t) = ẼTξ̃(t) + Eiξi(t),

rewrite y(t) given by (2) as follows

y(t) = x(t) + ẼTξ̃(t) + Eiξi(t). (6)

Eliminate the ith equation in (6) and rewrite result w.r.t.

ξ̃(t). To this end, pre-multiplying (6) by Ẽ and setting

ỹ(t) = Ẽy(t), we have

ξ̃(t) = ỹ(t)− Ẽx(t). (7)

Integrating (1) in t and employing (7), we get

ξ̃(t) = ỹ(t)− Ẽ
∫ t

0

[
Ax(s) +Bu(s)

+Dφ(x(s), s) +Gf(s)
]
ds.

(8)

Denoting

Ã = ẼAẼT, Ã1 = ẼA, Ã2 = ẼAEi,

B̃ = ẼB, D̃ = ẼD, G̃ = ẼG
(9)

and substituting x(t) from (6) into (8), we have

ξ̃(t) =

∫ t

0

[Ãξ̃(s)− Ã1y(s)]ds+ ỹ(t)

−
∫ t

0

[B̃u(s) + D̃φ(x, s) + G̃f(s)− Ã2ξi(s)]ds.

(10)

The second row in (10) contains unknown functions φ(x, t),
f(t) and ξi(t), while the first row in (10) can be used

for design the estimate of ξ̃(t). Therefore, introduce the

estimate of ξ̃(t) (see ”Estimator of ξ̃” in Fig. 1) in the
form

ξ̂(t) =

∫ t

0

[
Ãξ̂(s)− Ã1y(s)

]
ds+ ỹ(t). (11)

As a result, the proposed algorithm is presented by control
law (4), (5) and output disturbance estimator (11). In
the next section we derive the closed-loop system and
formulate the sufficient condition for ISS.
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4. MAIN RESULT

Consider the output disturbance estimation error

e(t) = ξ̃(t)− ξ̂(t) (12)

and, taking into account (5), rewrite control law (4) as
follows

u(t) = K[x(t) + ẼTe(t) + Eiξi(t)]. (13)

Substituting (13) into (1), we get

ẋ(t) = (A+BK)x(t) +BKẼTe(t)
+BKEiξi(t) +Dφ(x, t) +Gf(t).

(14)

Since equation (14) contains the variable e, it is necessary
to obtain dynamics of e. Employing (10), (11) and (13),
differentiate (12) in t and rewrite result in the form

ė(t) = (Ã− B̃KẼT)e(t)− B̃Kx(t)− D̃φ(x(t), t)

− G̃f(t) + (Ã2 − B̃KEi)ξi(t).
(15)

Combine equations (14) and (15). To this end, introduce
the following vectors and matrices

xa(t) = col{x(t), e(t)},
ψ(t) = col{ξi(t), f(t)},

Aa =

[
A+BK BKẼT

−B̃K Ã− B̃KẼT

]
,

Ga =

[
D

−D̃

]
,

Fa =

[
BKEi G

Ã2 − B̃KEi −G̃

]
.

(16)

Employing (16), rewrite (14) and (16) in the form

ẋa(t) = Aaxa(t) +Gaφ(x, t) + Faψ(t). (17)

As a result, the closed-loop system (17) depends on ξi
and f only, while the closed-loop systems in Chen et
al. (2015); Sanchez-Pena and Sznaier (1998); Schweppe
(1973); Polyak and Topunov (2008); Bodson and Douglas
(1997); Fedele and Ferrise (2013); Pyrkin and Bobtsov
(2016) depend on whole vector ξ and disturbance f . The
following result is thus in order.

Theorem 1. Given a matrix K and a scalar α, let there
exist constants β > 0, τ > 0 and matrix P > 0 that
satisfy the following LMI

Ψa =

[
Ψ11 PGa PFa
∗ −I 0
∗ ∗ −βI

]
< 0, (18)

where Ψ11 = AT
aP +PAa + 2αP + τχ2CTC, ” ∗ ” denotes

a symmetrical block of a symmetric matrix, C = [I 0].
Consider (1) under control law (4), where x̂ is given by
(5) and (11). The solutions of this system are ultimately

bounded and (3) holds with δ =
√

β[κ2
1+(κi

2)2]

2αλmin(P ) .

Proof 1. For the ISS analysis of (17) introduce Lyapunov
function in the form

V1 = xT
aPxa. (19)

Employing (17) and (19), consider the following relation

V̇1 + 2αV1 − βψTψ = xT
a (AT

aP + PAa + 2αP )xa
+ 2xT

aPGaφ(x, t) + 2xT
aPFaψ − βψTψ.

(20)

Denoting

z(t) = col{xa(t), φ(x, t), ψ(t)},
Ψ = Ψa − diag{τχ2CTC,−I, 0},

represent (20) as follows

V̇1 + 2αV1 − βψTψ = zTΨz. (21)

Taking into account x(t) = Cxa(t) and |φ(x, t)| ≤
χ|x|, consider the following estimate φT(x, t)φ(x, t) ≤
χ2xT

a (t)CTCxa(t) in the form

zT(t)diag{χ2CTC,−I, 0}z(t) ≥ 0. (22)

According to S-procedure, inequalities (21) and (22) simul-
taneously hold, if LMI (18) holds. Thus, z(t) is ultimately
bounded. Therefore, x(t) and e(t) are ultimately bounded.
It follows from comparison principle and lim

t→∞
sup
t≥0
|ψ(t)|2 ≤

κ2
1+(κi2)2, that λmin(P ) lim

t→∞
sup
t≥0
|x(t)|2 ≤ lim

t→∞
sup
t≥0

(xT
a (t)×

Pxa(t)) ≤ 0.5α−1β[κ2
1+(κi2)2]. Thus, Theorem 1 is proven.

Remark 2. Let us show the boundedness of all signals in
the closed-loop system. Since the signals x and e are ulti-
mately bounded, then the signal u is ultimately bounded

from (13). The ultimate boundedness of ξ̂ follows from
(12). Therefore, the ultimate boundedness of ỹ follows

from (7). It follows from (11) that
∫ t

0

[
Ãξ̂(s)− Ã1z(s)

]
ds

is bounded. As a result, all signals are bounded in the
closed-loop system.

5. EXAMPLES

Example 1. Consider plant (1), (2). The known matrices
are presented as follows

A =

[−3 1 0
−3 0 1
0.1 0 0

]
, B =

[
0
1
2

]
,

D =

[
0.1
1.5
3

]
, G =

[−0.01
1.03
1.97

]
.

The unknown parameters and signals in (1), (2) are given
in the forms

φ(x, t) = sin(t)[sin(x1) + sin(2x2) + sin(3x3)] (χ =
√

14),
x(0) = [1 1 1]T,

f(t) = 1 + 2 sin(0.7t),
ξ1(t) = 1 + 10 sin(3t),
ξ2(t) = −2 + 7 cos(3t),
ξ3(t) = 0.01 sin(0.8t).

We will choose further the parameters of the proposed
control law. Let i = 3 in (7). Then

Ẽ =

[
1 0 0
0 1 0

]
, Ã =

[
−3 1
−1 0

]
, Ã1 =

[
−3 1 0
−3 0 1

]
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in (11). By using pole placement, we choose K = 20[1 1 3]T

in control law (4) such that A+BK is Hurwitz. LMI (18)
is feasible for setting parameters.

We will demonstrate the transients for the proposed con-
trol law and compare results with the state-feedback u =
Ky (where disturbances are not compensated), invariant
ellipsoid based algorithm Khlebnikov et al. (2011), high
gain robust algorithm Furtat et al. (2015), and speed-
gradient algorithm Orlov et al. (2017).

The high gain robust algorithm is presented by u =
−100[1 2 1]y. The speed-gradient algorithm is given by
u = −10BTy = −10[0 1 2]y. The invariant ellipsoid based
algorithm is presented in the form

ġ = Ag +Bu+ L(g − y),
u = Kg,

where the matrices L =

[−0.27 −0.66 −0.28
−0.69 −2.53 −2.99
−0.24 −2.95 −6.27

]
and K =

−[0.09 0.62 1.13] are calculated such that the ellipsoid
xTPx = 1, P > 0 has the smallest semiaxes.

The transients in x1(t), x2(t) and x3(t) are presented for
the controller u = Ky in Fig. 2, for the high gain robust
algorithm in Fig. 3, for the speed-gradient algorithm in
Fig. 4 for the invariant ellipsoid based algorithm in Fig. 5,
and for the proposed algorithm in Fig. 6. The transients in
Figs. 2–5 depend on ξ1, ξ2, ξ3, f , while the transients from
Fig. 6 depends on ξ3 and f only. The advantage of the
proposed control law is clearly seen: the ultimate bounds
under the control law u = Ky and the control laws from
Khlebnikov et al. (2011); Furtat et al. (2015); Orlov et al.
(2017) are at least 5 time larger (approximately 6.7, 7.8,
3.1 and 1.5) than the one under the proposed control law
(approximately 0.3).

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5

6

t

x1(t)
x2(t)
x3(t)

Fig. 2. The transients in x1(t), x2(t) and x3(t) are obtained
for the control law u = Ky.

Example 2. Consider the control of an amplidyne (see
Fig. 7). An amplidyne Kwakernaak and Sivan (1972);
Deshpande (2001); Macmillan (2016) is an electric machine
used to control a large dc power through a small dc
voltage. Amplidynes are used for electric elevators, point
naval guns, antiaircraft artillery radar, control processes

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

t

x1(t)
x2(t)
x3(t)

Fig. 3. The transients in x1(t), x2(t) and x3(t) are obtained
for high gain robust algorithm Furtat et al. (2015).
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x1(t)
x2(t)
x3(t)

Fig. 4. The transients in x1(t), x2(t) and x3(t) are obtained
for speed-gradient algorithm Orlov et al. (2017).

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

t

x1(t)
x2(t)
x3(t)

Fig. 5. The transients in x1(t), x2(t) and x3(t) are obtained
for invariant ellipsoid based algorithm Khlebnikov et
al. (2011).

in steelworks, remote control rods in nuclear submarine
designs, diesel-electric locomotive control systems. The
amplidyne electrical dynamics is described by
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0.8

1
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x1(t)
x2(t)
x3(t)

Fig. 6. The transients of x1(t), x2(t) and x3(t) are obtained
for the proposed algorithm.

ẋ =

−R2

L2

k1

L2

−R1

L1
0

x+

[
0
1

L1

]
(u(t) + f(t)), (23)

where x = [i1, i2]T, i1 and i2 are currents in first and
second windings accordingly, u = e0 is the input voltage,
e1 and e2 are the induced voltages given by e1 = k1i1
and e2 = k2i2, L1 and R1 denote the inductance and
resistance of the first field windings, L2 and R2 are those of
the first armature windings together with the second field
windings. According to Kwakernaak and Sivan (1972), the
following numerical values are used: R1 = 5 Ω, L1 = 0.5
s−1, k1 = 20 V/A, k2 = 50 V/A, R2 = 10 Ω, L2 = 10 s−1.

Fig. 7. Simplified representation of an amplidyne control
scheme.

Choosing i = 2 in (7), we have Ẽ = [1 0], Ã = −3 and Ã1 =
[−3 1] in (11). Let K = [10 1]T. Compare the proposed
algorithm with the static control laws u = Ky and
u = [0 1]y from Kwakernaak and Sivan (1972); Macmillan
(2016). LMI (18) is feasible for setting parameters.

Let f = 0.1 sin(0.7t)+d1(t), z1(t) = q1(x1)+100 sin(1.7t)+
d2(t), z2(t) = q2(x2) + 10−3 sin(0.5t) +d3(t) in the simula-
tions, where q1 and q2 are the quantization functions with
the quantization intervals are 0.5 and 0.05 respectively, the
signals d1(t), d2(t) and d3(t) are obtained by the band-
limited white noise blocks in Matlab Simulink with the
following parameters: noise power 1, 3, 10−4 and sample
time 0.1 (s), 0.01 (s), 0.03 (s) accordingly. The plots of

i1(t) and i2(t) are depicted in Fig. 8–10 for control laws
from Kwakernaak and Sivan (1972); Macmillan (2016) and
the proposed algorithm. The transients in Fig. 8 depends
on disturbances ξ1, ξ2 and f . In Fig. 9 the transients do
not depend on ξ1, but influence of the disturbance f is not
attenuated. The transients in Fig. 10 do not depend on
ξ1 also, but the influence of disturbance f is attenuated.
The advantage of the proposed control law is clearly seen:
the ultimate bounds under the control laws u = Ky and
u = [0 1]y (approximately 800 and 1.2) are at least 6
time larger than the one under the proposed control law
(approximately 0.2). The additional simulations show that
the proposed results are robust under small input and
output disturbances. Also, the simulations illustrate that
the proposed control law is efficient under unknown input
and output time-varying delays.

0 2 4 6 8 10
−1000

−800

−600

−400

−200

0

200

400

600

800

t

i1(t)
i2(t)

Fig. 8. The transients in i1(t) and i2(t) are obtained for
the control law u = Ky.
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2.5

t

i1(t)
i2(t)

Fig. 9. The transients in i1(t) and i2(t) are obtained for
the control law u = [0 1]y.

6. CONCLUSION

We have considered vector systems, where the full state
is measured with the disturbances. A novel method has
been proposed for attenuating the influence of input and
output disturbances. Differently from recent results Furtat
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Fig. 10. The transients in i1(t) and i2(t) are obtained for
the proposed algorithm.

(2017, 2018), the proposed design method does not require
the smoothness of disturbances. The proposed method
provides a better accuracy after transients, because the
the closed-loop system depends on only one component of
output disturbance vector and on input disturbance. The
simulations in numerical examples illustrate the efficiency
of the presented method and its advantages over alterna-
tive methods without disturbance compensation all distur-
bances. Also, the simulations illustrate that the proposed
control law is efficient under unknown input and output
time-varying delays.
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