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1. INTRODUCTION

This paper studies metaheuristics-based approximation of
two-dimensional probability distributions as a step toward
applications in control problems for discrete-time systems
with stochastic dynamics determined by an independent
and identically distributed (i.i.d.) process. The concept
of randomness is common in various fields, and devel-
oping a basis of taking it into account in control is an
important issue. For example, randomness in packet inter-
arrival times (Paxson and Floyd, 1995) could affect control
performance of networked systems when the sampling time
is affected by it and becomes aperiodic (Hetel et al., 2017).
When we consider using information of such randomness in
controller synthesis, we may have to search for controller
parameters satisfying some inequality conditions involv-
ing random variables (representing the randomness). The
search, however, becomes generally not simple since each
random variable could take a value among infinitely many
possible values; this issue will be revisited later for making
our point clearer. To circumvent this issue, we consider
approximating a given probability distribution underlying
stochastic systems by a discrete distribution with finite
support, which is theoretically and numerically tractable.

If the source of randomness is single and if we only
have to deal with one-dimensional probability distribu-
tion, then such approximation could be relatively sim-
ple. For example, in the case of evaluating the accuracy
of approximation by the Kolmogorov distance (Rachev
et al., 2013), the corresponding optimal approximation
can be analytically calculated without loss of generality
(Hosoe et al., 2019). Instead of the Kolmogorov distance,
other distances of probability distributions such as the
Kantorovich distance (Rachev et al., 2013) can be also
used in a simple fashion for the evaluation. In the case of
multi-dimensional probability distributions, however, the
situation is totally different, and the techniques used in the
one-dimensional approximation do not work, in general.
For example, even when each of two independent random

variables is approximated by a discrete distribution with fi-
nite support (having a fixed number of possible values) op-
timally in the sense of the Kolmogorov distance, the joint
distribution consisting of the two discrete distributions
does not generally become optimal for the original two-
dimensional distribution (i.e., about the two independent
random variables) under the restricted support; this is true
even in the simplest case of two uniform distributions.
Hence, we need to find another way of approximation
when the distributions are multi-dimensional. Our idea
here is the use of metaheuristics for tackling the approx-
imation problem viewed as an optimization problem in
terms of the Kolmogorov distance. In particular, we deal
with a genetic algorithm (GA) (Goldberg, 1989; Schwefel,
1995; Reeves, 2010) and simulated annealing (SA) (Van
Laarhoven and Aarts, 1987; Schwefel, 1995; Nikolaev and
Jacobson, 2010) for approximating two-dimensional prob-
ability distributions. Approximation of distributions is not
an issue unique to the field of automatic control, and
similar problems have been studied, e.g., in the field of
finance (Pflug and Pichler, 2011). The contributions of this
paper compared to such earlier studies are as follows: (i)
to associate the present approximation problem (which is
a part of the control problem) with GA and SA, and (ii) to
show effectiveness of our approximation methods using GA
and SA in a numerical example of stabilization synthesis.

To state the motivation of this study, and to confirm
the effectiveness of the proposed approaches easily, this
paper will basically deal only with linear systems with
stochastic dynamics. However, the approximation itself is
irrelevant to the system linearity, and the same approach
can be used for nonlinear systems as long as the dynamics
is determined by an i.i.d. process. In addition, there is
no theoretical restriction on the dimension of probability
distributions in our approximation approach, and higher-
dimensional distributions are expected to be tractable in
a similar fashion.
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This paper is organized as follows. Section 2 reviews exist-
ing results on the stabilization synthesis in the linear case
and state the motivation of this study in detail. Then, Sec-
tion 3 discusses our main results on metaheuristics-based
methods of approximation for two-dimensional probability
distributions through GA and SA. The effectiveness of
such methods are demonstrated with a numerical example
of stabilization synthesis in Section 4.

We use the following notation in this paper. The sets of
real numbers, non-negative integers and natural numbers
are denoted by R, N0 and N, respectively. The set of
n-dimensional real column vectors and that of m × n
real matrices are denoted by Rn and Rm×n, respectively.
The set of n × n symmetric matrices and that of n × n
positive definite matrices are denoted by Sn×n and Sn×n

+ ,
respectively. The Euclidean norm is denoted by ‖ · ‖.
The expectation (i.e., the expected value) of a random
variable is denoted by E[·]; this notation is also used for the
expectation of a random matrix. If s is a random variable
obeying the distribution D, then we represent it as s ∼ D.

2. DISCRETE-TIME LINEAR SYSTEMS WITH
STOCHASTIC DYNAMICS AND CONTROLLER

SYNTHESIS

2.1 Discrete-Time Linear Systems with Stochastic Dyna-
mics and Stability

To make the motivation of this study clearer, this section
first revisits stability conditions for discrete-time linear
systems with dynamics determined by an i.i.d. process.
Let us consider the Z-dimensional discrete-time stochastic
process ξ = (ξk)k∈N0

satisfying the following assumption.

Assumption 1. ξk is independent and identically dis-
tributed (i.i.d.) with respect to the discrete time k ∈ N0.

This assumption naturally makes ξ stationary and ergodic
(Klenke, 2014). For this stochastic process ξ, we denote
the cumulative distribution function of ξk and the corre-
sponding support by F(·) and Ξ , respectively.

Let us further consider the discrete-time linear system

xk+1 = A(ξk)xk, (1)

where A : Ξ → Rn×n, and the initial state x0 is assumed
to be deterministic. Since A(ξk) is a random matrix, the
dynamics of the above system is stochastic.

To define second-moment stability for system (1), we
introduce the following assumption.

Assumption 2. The squares of elements of A(ξk) are all
Lebesgue integrable, i.e.,

E
[

Aij(ξk)2
]

< ∞ (∀i, j = 1, . . . , n) , (2)

where Aij(ξk) denotes the (i, j)-entry of A(ξk).

Then, second-moment exponential stability (Kozin, 1969)
can be defined as follows.

Definition 3. The system (1) satisfying Assumptions 1
and 2 is said to be exponentially stable in the second
moment if there exist a > 0 and λ ∈ (0, 1) such that

√

E [‖xk‖2] ≤ a‖x0‖λ
k (∀k ∈ N0, ∀x0 ∈ Rn). (3)

This stability notion is known to be characterized by
a Lyapunov inequality as follows (Hosoe and Hagiwara,
2019).

Theorem 4. Suppose the system (1) satisfies Assumptions
1 and 2. The following two conditions are equivalent.

1. The system (1) is exponentially stable in the second
moment.

2. There exist P ∈ Sn×n
+ and λ ∈ (0, 1) such that

E
[

λ2P − A(ξ0)
T PA(ξ0)

]

≥ 0. (4)

2.2 Intractable Issues in Controller Synthesis for General
Distributions

Let us next consider the Z-dimensional process ξ satisfying
Assumption 1, and the associated system

xk+1 = Aop(ξk)xk + Bop(ξk)uk (5)

with input u, where Aop : Ξ → Rn×n, Bop : Ξ → Rn×m,
and the initial state x0 is assumed to be deterministic.
Then, the closed-loop system consisting of this system and
the state feedback

uk = Fxk (6)

with the static time-invariant gain F ∈ Rm×n can be
described as follows.

xk+1 = Acl(ξk)xk, Acl(ξk) = Aop(ξk) + Bop(ξk)F
(7)

The Lyapunov inequality for this closed-loop system is
given by (4) with A(ξ0) replaced by Acl(ξ0), i.e.,

E
[

λ2P − Acl(ξ0)
T PAcl(ξ0)

]

≥ 0. (8)

Hence, for stabilization synthesis, we need to search for P
and F satisfying the Lyapunov inequality (8) (under λ <
1). This inequality condition involves random variables
contained in the expectation operation, and a direct search
for such P and F is generally difficult. In addition, the
nonlinearity of the inequality with respect to P and F is
also an obstacle. Although our standpoint here is to only
consider stabilization synthesis as an example, these issues
are common in other controller synthesis problems.

Regarding stabilization synthesis, it is shown in Hosoe and
Hagiwara (2019) that (8) can be rewritten as a standard
matrix inequality with deterministic coefficients calculated
only with Aop(ξ0) and Bop(ξ0). The resulting matrix in-
equality can also be linearized without loss of generality,
and hence, the issues stated above can be resolved. How-
ever, this approach is not ensured to be available even for
other controller synthesis problems. To facilitate advances
in such problems for systems with stochastic dynamics,
this paper focuses on another approach to dealing with in-
equality conditions involving random variables (for details
of the other approach, see Hosoe and Hagiwara (2019)).
The approach is to separate the expectation-based matrix
inequality such as (8) into the expectation part and the
matrix inequality part by introducing an auxiliary map-
ping. With this approach, together with the conventional
techniques about linear matrix inequality (LMI) (Boyd
et al., 1994), we can show the following theorem (Hosoe
et al., 2019).

Theorem 5. Suppose ξ satisfies Assumption 1, and the
squares of elements of Aop(ξk) and Bop(ξk) are all
Lebesgue integrable (so that Assumption 2 is satisfied
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for the closed-loop system). There exists a state feedback
gain F that stabilizes the closed-loop system (7) if and
only if there exist X ∈ Sn×n

+ , Y ∈ Rn×m, a mapping
S : Ξ → Sn×n and λ ∈ (0, 1) satisfying

E [S(ξ0)] ≤ 0, (9)
[

λ2X + S(ξ⋆) XAop(ξ⋆)
T + Y Bop(ξ⋆)

T

∗ X

]

≥ 0

(∀ξ⋆ ∈ Ξ ). (10)

In particular, F = Y T X−1 is one such stabilization gain.

In the above theorem, S is the introduced auxiliary map-
ping. The inequality condition (9) and (10) can be ob-
tained from (8). As we can see, (10) is linear in the decision
variables for each fixed λ. Hence, the remaining issue is
only the treatment of ξ0 and Ξ in the condition, associated
with the introduced mapping S. If the support Ξ is not
finite, we have to search for a mapping S satisfying an
infinite-dimensional LMI condition, which is infeasible. To
circumvent this issue, this paper studies approximation
of the probability distribution of ξ0 (i.e., the cumulative
distribution F) by a distribution with finite support.

2.3 Equivalent Simplified Condition for Discrete Distribu-
tions

As mentioned above, solving the inequality condition (9)
and (10) is generally difficult. However, if the distribution
of ξ0, which we call the population distribution in the
following, is a discrete distribution with finite support, the
inequality condition reduces to a standard LMI, which can
be numerically easily solved. To see this, let us consider
as the population distribution the discrete distribution
D(q, p) with parameters q = [q1 · · · qQ] ∈ RZ×Q and
p = [p1 · · · pQ] ∈ R1×Q such that ξ0 obeying this
distribution takes the value qi with probability pi for
i = 1, . . . , Q. Then, (9) and (10) immediately reduce to

Q
∑

i=1

piSi ≤ 0, (11)

[

λ2X + Si XAop(qi)
T + Y Bop(qi)

T

∗ X

]

≥ 0 (i = 1, . . . , Q),

(12)

where Si ∈ Sn×n is a decision variable corresponding
to S(qi). This inequality condition consists of standard
finite-dimensional LMIs with decision variables Si (i =
1, . . . , Q), X and Y for each fixed λ. Hence, with a
bisection with respect to λ2, its solution leading to a
minimal λ can be easily obtained, which is optimal in the
sense of the convergence rate about exponential stability
(see Definition 3).

The above arguments imply that if the population distri-
bution can be approximated by D(q, p) with high accuracy
in some sense, the original inequality condition (9) and
(10) can be solved approximately, even when the support
is not finite. To make such synthesis possible, the following
section discusses approximation of two-dimensional distri-
butions using metaheuristics, as a first step toward multi-
dimensional approximation.

3. APPROXIMATION OF TWO-DIMENSIONAL
PROBABILITY DISTRIBUTIONS USING

METAHEURISTICS

In this section, we discuss specific methods of approximat-
ing two-dimensional population distributions with infinite
support. The index of accuracy of approximation we use
is the Kolmogorov distance. Since it is difficult to simply
extend the conventional methods of approximating one-
dimensional distributions as stated in Section 1, we here
take another way in which a genetic algorithm (GA) and
simulated annealing (SA) are employed. GA is known
to be good at global search, while SA is at systematic
search in the neighborhood of an initial state (Nikolaev
and Jacobson, 2010; Reeves, 2010). Hence, a combinational
use of these two algorithms may lead us to more accurate
approximation than using only one of them. After stating
the definition of the Kolmogorov distance as well as the
treatment of the cumulative distribution function of a
discrete distribution, we discuss GA-based and GA&SA-
based methods of approximation.

We use the following notation in this section. We denote
the cumulative distribution function of D(q, p) and the
vector corresponding to ξ0 respectively by FD(·) and U ,
where U ∈ Ξ ⊂ R2 and U =: [X Y]T . In addition, we
abbreviate F([X Y]T ) as F(X ,Y) for simplicity.

3.1 Kolmogorov Distance and Cumulative Distribution
Function of Discrete Distribution

The Kolmogorov distance for Z-dimensional distributions
is defined as follows (Rachev et al., 2013).

Definition 6. For given cumulative distribution functions
Fi : RZ → [0, 1] (i = 1, 2), the Kolmogorov distance
ρZ(F1,F2) between F1 and F2 is defined by

ρZ(F1,F2) := sup
U∈RZ

|F1(U) −F2(U)|. (13)

The purpose of our approximation is to construct D(q, p)
(i.e., FD) minimizing the above distance from the (two-
dimensional) population distribution (i.e., F).

The cost function for the approximation problem viewed
as an optimization problem is given by

ρ2(F ,FD) = sup
U∈Ξ

|F(U) −FD(U)|, (14)

which is denoted by dK for simplicity. Since FD is the
cumulative distribution of a discrete distribution with
finite support, this dK can be obtained by just calculating
|F(U)−FD(U)| at a finite number of U ∈ Ξ (Justel et al.,
1997). Hence, the distance computation is numerically
tractable when FD is fixed.

Let us next consider the situation where Q points
(Xi,Yi) (i = 1, . . . , Q) are on the XY plane, and FD(U) =
FD(X ,Y) is described by

FD(X ,Y) :=

Q
∑

i=1

∆hi · 1(−∞,X ]×(−∞,Y](Xi,Yi), (15)

where ∆hi and 1A(U) respectively denote the increment
of FD at the point (Xi,Yi) and the indicator function

1A(U) :=

{

1 (U ∈ A)

0 (U 6∈ A).
(16)
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By definition of the cumulative distribution,
Q

∑

i=1

∆hi = 1 (17)

should be satisfied. Then, a random variable obeying the
corresponding discrete distribution D(q, p) takes the value
qi = [Xi Yi]

T with probability pi = ∆hi for each i =
1, . . . , Q.

Here, to make the problem simple, we introduce the
constraint that the increment ∆hi of FD is uniform in
i = 1, . . . , Q. That is, p1 = · · · = pQ = 1/Q (recall
∆hi = pi), which naturally makes (17) satisfied, and FD

in (15) is given by

FD(X ,Y) =
1

Q

Q
∑

i=1

1(−∞,X ]×(−∞,Y](Xi,Yi). (18)

The problem of our approximation is to determine the Q
points (Xi,Yi) (i = 1, . . . , Q) of this FD that minimizes
dK for given F . Thus, our optimization problem can be
described as follows.

min
q

dK (19)

s.t. qi ∈ Ξ (i = 1, . . . , Q) (20)

pi =
1

Q
(i = 1, . . . , Q) (21)

3.2 Approximation Using GA

This subsection discusses a GA-based method of approxi-
mation, which produces a discrete distribution from a pop-
ulation distribution that tries to minimize dK as much as
possible. To associate the present approximation problem
with a GA, we first make a grid on the search area from
which (Xi,Yi) (i = 1, . . . , Q) in the XY plane are taken.
The search area here is given by [aX , bX ] × [aY , bY ] ∈ Ξ

with aX , bX , aY , bY ∈ R appropriately selected by using
information of the population distribution. The grid fine-
ness is characterized by an integer r (≥ 2). That is,

qi =

[

Xi

Yi

]

∈ Θ (i = 1, . . . , Q) (22)

is assumed to hold for the set

Θ :=

















aX +
bX − aX

r − 1
· v

aY +
bY − aY

r − 1
· w






∈ Ξ

∣

∣

∣

∣

∣

v = 0, . . . , r − 1;
w = 0, . . . , r − 1











(23)

consisting of the grid points in our GA-based approx-
imation; this restriction is used also in GA&SA-based
approximation discussed later. With this restriction, the
Q selection points to be determined can be dealt with in
GA. Thus, (20) in our optimization problem is replaced by
(22) and (23).

We next develop a specific GA-based method of approxi-
mating the population distribution. The basic concept of
GAs is shown in Goldberg (1989); Schwefel (1995); Reeves
(2010). Our specific method follows the basic concept, and
has some steps: Initialization, Selection, Crossover, and
Mutation. An additional idea that we use is elitism (Gold-
berg, 1989), which passes the best individual (called an
elite individual) of each generation to the next generation.

This will ensure dK to be monotonically non-increasing
throughout the generation changes in our method (the
details will be clearer soon). Our method starts from
Initialization with g = 0, where g denotes the generation
number. After Mutation, if g < gend, g is incremented
and we return to Selection, where gend denotes the last
generation number. If g = gend, our method ends. Each
step of our GA-based approximation method is shown in
the following.

Initialization

By taking into account the use of elitism, the number
of individuals M is assumed to be odd. In addition,
to improve the efficiency of search, the grid fineness r
is assumed to be a power of 2. Then, we first give a
rule that associates a candidate of the solution of the
problem (i.e., the coordinates of the Q selection points
in Θ, which we call the set of selection points with Q
pairs of binary strings that each of the individuals has
(which we call a binary representation of an individual).
By (22) and (23), the coordinates of (Xi,Yi) (i = 1, . . . , Q)
in the XY plane are determined by v and w. Hence, by
considering the set of (vi, wi), i = 1, . . . , Q that each of
the individuals is supposed to represent, a candidate of
the discrete distribution FD can be represented (recall
(18)) by each of the individuals. Here, vi and wi are
both representable by log2 r-digit binary numbers. Since
binary numbers are compatible with GA, we regard them
as the binary representation of an individual. That is,
we consider the correspondence relationship exemplified
as follows (Q = 3 and r = 27 = 128 in this example).

set of selection points

[

53 19 79
28 63 94

]

l correspond

binary representation

[

0110101 0010011 1001111
0011100 0111111 1011110

]

The first row of the set of selection points represents
vi and the second row does wi for i = 1, . . . , Q. With
these settings, we randomly generate an initial population
consisting of M individuals, each of which has the binary
representation for the set of Q selection points.

Selection

The index of accuracy of approximation is the Kolmogorov
distance between F and FD. We assign a number from 1 to
M to each individual and define the corresponding fitness
fj as

fj =
1

dK,j −
1

2Q

(j = 1, . . . , M), (24)

where dK,j is the Kolmogorov distance for individual j.
1/(2Q) is the Kolmogorov distance when optimal approx-
imation is achieved in the case of one-dimensional approx-
imation (Hosoe et al., 2019). We use this fitness because
1/(2Q) is a lower bound of dK,j under the current problem
settings.

The individual having the highest fitness in each gener-
ation is called an elite individual (in the generation). To
keep the number of individuals unchanged over genera-
tions, we repeat the operations of selecting two individuals
as a parent pair from M individuals including an elite
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individual using a roulette wheel (Goldberg, 1989), and
generating two individuals as offspring (i.e., next genera-
tion individuals) (M − 1)/2 times. Since M − 1 offspring
are generated by this operation, we add an elite individual
of the parent generation after mutation. In the selection
using a roulette wheel, the probability that the individual j

is selected is given by fj/
∑M

j=1 fj , and thus, the individual
with higher fitness is selected as a parent with higher
probability.

Crossover and Mutation

We introduce simple crossover (Goldberg, 1989) as the rule
for our crossover. Simple crossover is a method in which
a crossover point is randomly selected for binary strings
of the binary representation, and binary bits after the
crossover point of the binary representation of one parent
is swapped for that of the other parent by the crossover
probability pc ∈ [0, 1].

After crossover, mutation inverts all the binary bits of the
binary representation of offspring generated by crossover
with probability pm ∈ [0, 1] (pm is called the mutation
probability).

3.3 Approximation Using GA and SA

This subsection further discusses a method of improving
the approximation accuracy using SA after obtaining dis-
crete distributions by our GA, which we call the GA&SA-
based method of approximation. In the GA&SA-based
method, we store not only the best individual of the last
generation but also those of (some of) other generations
in the GA part, and then, use each of them as the initial
state of the SA. This is considered to be helpful for finding
relatively good local optimal solutions in the SA part.

The basic concept of SA is shown in Schwefel (1995);
Nikolaev and Jacobson (2010). In our SA, the set of
selection points and the Kolmogorov distance dK are
regarded as the state and the energy, respectively. Then,
for a state, the family of the set of selection points that
is obtained by moving only one among the Q points
represented by the state to an adjacent grid point is defined
as the neighborhood. We select a perturbed set of selection
points randomly. Then, we use

T (t) := αtTinit (Tinit > 0) (25)

as the temperature of SA, where α and Tinit denote the
cooling factor (α ∈ (0, 1)) and the start temperature,
respectively. The parameters α and Tinit are adjusted by
trial and error through observing the output of SA. The
end time of SA (i.e., the number of iterations) is denoted
by tend. We use this part of method after the GA part in
GA&SA-based approximation.

4. DEMONSTRATION OF EFFECTIVENESS OF
METAHEURISTICS-BASED APPROXIMATION

This section numerically demonstrates the effectiveness
of our proposed approximation. Let us consider the two-
dimensional stochastic process ξ that satisfies Assump-
tion 1 and is given by the sequence of ξk = [ξ1k ξ2k]T

∼ N(µ, Σ), where N(µ, Σ) is the (two-dimensional) nor-
mal distribution with mean µ and covariance Σ, which

corresponds to the population distribution. In this paper,
we use

µ =

[

0
0

]

, Σ =

[

0.72 0.2
0.2 0.62

]

. (26)

Let us further consider the system (7) with

Aop(ξk) =

[

−0.2 + ξ1k −0.4 −0.7
0.5 −0.7 −0.3 + ξ2k

−1.0 −0.9 + c(ξk) −0.2

]

,

Bop(ξk) =

[

0
0
1

]

, c(ξk) =
1

1 + ξ2
1k + ξ2

2k

. (27)

For this system, we compare the following three approx-
imation methods under Q = 10: random sampling of ξ0,
GA-based approximation, and GA&SA-based approxima-
tion.

First, we construct FD from the population distribution
by random sampling. We generated 20,000 sets of samples
for FD (each set consists of Q = 10 samples of ξ0, and each
sample point is in R2), and compared them with respect
to the Kolmogorov distance dK. Then, we obtained the
discrete distribution FD shown in blue in Fig. 1 as the
best among them, where the population distribution F is
shown in green. Table 1 shows the Kolmogorov distance
dK and the execution time of the program of this simple
method; all the programs in this section were executed
with MATLAB on a PC equipped with 32 GB RAM and
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz.

Next, we state the result of GA-based approximation. In
our computation, we set r = 27, aX = −2, aY = −1,
bX = 2, bY = 1, M = 31, gend = 400, pc = 0.75,
pm = 2.2 × 10−3. Then, the best FD with respect to dK

for this approach was as shown in blue in Fig. 2. The
Kolmogorov distance dK and the execution time are also
shown in Table 1.

Finally, we state the result of GA&SA-based approxima-
tion. We used top three individuals of each of the genera-
tions No. 100, 200, 300 and 400 (hence 12 individuals in to-
tal) obtained through the above GA-based approximation
as the initial state of SA. The parameters in the SA part
were set as tend = 2000, α = 0.99, Tinit = 1. For each of
12 initial states, we executed SA and obtained 12 discrete
distributions. Then, the best with respect to dK for this
approach was as shown in blue in Fig. 3. The Kolmogorov
distance dK and the execution time are in Table 1.

According to the above results, at least in this example,
GA&SA-based approximation gave a better result than
the others, and GA-based approximation did than random
sampling with respect to dK. The purpose of this study
is to reduce the influence of approximation in controller
synthesis, and hence, we next compare the results in stabi-
lization synthesis for the system given above. We searched
for a solution that minimizes λ with respect to (11) and
(12) with each of the three discrete distributions obtained
above. Then, we obtained λapp in Table 2 as the minimal
λ for each method. Since these λapp are obtained under
the approximate distributions, and since we can check the
true minimal λ (denoted by λmin) with the designed F
for the present stability problem (Hosoe and Hagiwara,
2019), we performed such post-synthesis analysis for each
of the three cases. Then, we obtained the result in Ta-
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Fig. 1. Approximation based on random sampling.

Fig. 2. GA-based approximation.

Fig. 3. GA&SA-based approximation.

Table 1. The Kolmogorov distance dK and the
execution time for each method.

random sampling GA GA & SA

dK 0.1640 0.1333 0.1098

execution time 174.1 sec 40.9 sec 119.2 sec

Table 2. Results of approximate synthesis and
post-synthesis (strict) analysis.

random sampling GA GA & SA

λapp 0.6940 0.8783 0.8334

λmin 0.7963 0.7891 0.7866

ǫλ 0.1023 0.0892 0.0468

ble 2, in which the gap ǫλ := |λapp − λmin| is also shown.
According to this result, we can confirm that minimizing
dK in approximation contributed to reducing ǫλ, and the
latter further contributed to reducing (not λapp but) λmin.
This suggests the effectiveness of our minimization of dK

in approximation of probability distributions through the
use of metaheuristics.

5. CONCLUSION

In this paper, we discussed approximation of two-dimen-
sional probability distributions using metaheuristics to-

ward future control applications. A similar idea is con-
sidered to be effective also for higher-dimensional cases
of probability distribution. In addition, there would be
varieties of methods in terms of evaluation functions and
metaheuristics in the present approximation. Further in-
vestigations from these viewpoints will be a future work.
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