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Abstract: In this paper, we study a multi-agent consensus problem under Denial-of-Service (DoS)
attacks with data rate constraints. We consider leaderless consensus under an undirected communication
graph and assume that the graph is connected in the absence of DoS. The dynamics of the agents take
general forms modeled as homogeneous linear time-invariant systems. In our analysis, we derive specific
bounds on the data rate for the multi-agent system to achieve consensus even in the presence of DoS
attacks. The main contribution of the paper is the characterization of the trade-off between the tolerable
DoS attack level and the required data rates for the communication among the agents. To avoid quantizer
saturation under DoS attacks, we employ dynamic quantization with zoom-in and zoom-out capabilities.
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1. INTRODUCTION

In the last two decades, the control of multi-agent systems has
attracted substantial attention due to the progress of technolo-
gies in communication and computation areas, and some of
the key applications can be found in formation control, control
of large-scale systems and distributed sensor networks (Bullo,
2019). In particular, nowadays a closed-loop control system in-
tegrates sensors, computers and communication devices, which
complies with the concept of cyber-physical systems (CPSs).
While the industry notably benefits from the technology bloom
in CPSs, a challenging situation also emerges along with the
benefits, malicious cyber attacks on CPSs such as deceptive at-
tacks and Denial-of-Service (DoS) (Cheng et al., 2017; Teixeira
et al., 2015).

This paper deals with DoS attacks, which induce packet drops
maliciously and hence corrupt the availability of data. The
communication failures induced by DoS can exhibit a temporal
profile quite different from the one induced by genuine packet
losses; particularly packet dropouts induced by DoS need not
follow a given class of probability distributions (Amin et al.,
2009), and therefore the analysis techniques relying on prob-
ability may not be applicable. This poses new challenges in
theoretical analysis and controller design.

In this paper, our focus is on the effects of DoS attacks on
multi-agent systems. Recently, systems under DoS attacks have
been studied from a control-theoretic viewpoint (Cetinkaya
et al., 2019, 2017; De Persis and Tesi, 2015; Feng et al.,
2020; Feng and Tesi, 2017; Feng and Hu, 2019; Li et al.,
2017; Nugraha et al., 2019; Qin et al., 2017; Senejohnny
et al., 2017; Xu et al., 2019). In (De Persis and Tesi, 2015),
a framework is introduced where DoS attacks are characterized

1 This work was supported in the part by the JST CREST Grant No. JP-
MJCR15K3 and by JSPS under Grant-in-Aid for Scientific Research Grant
No. 18H01460.

by their levels of frequency and duration. There, they derived
an explicit characterization of DoS frequency and duration
under which stability can be preserved through state-feedback
control. For multi-agent systems under DoS, there are some
recent results for consensus problems with infinite data-rate
networks Feng and Hu (2019); Xu et al. (2019). For example,
the paper (Feng and Hu, 2019) presents theoretical as well as
comprehensive simulation studies for continuous-time system
consensus under DoS attacks with the utilization of event-
triggered control, where both leaderless and leader-follower
consensus are considered.

Even without attacks, the real-time data exchanged within net-
worked control systems may suffer from communication con-
straints. In particular, we address issues arising from constraints
on data rate that can occur in multi-agent systems. Such a con-
straint can be modeled as introducing quantization with finite
number of discrete outputs. Centralized systems under quanti-
zation have been extensively studied in the last two decades,
for example by the seminal papers (Liberzon, 2003; Nair and
Evans, 2004; Tatikonda and Mitter, 2004). The results in the
papers show that insufficient bit rate in communication channel
influences the stability of a networked control system. The work
(Feng et al., 2020) extended these results to the case with DoS
attacks. In the last decade, the quantized consensus problems of
multi-agent systems have been broadly studied (Cai and Ishii,
2011; Carli et al., 2010; Kashyap et al., 2007; Li et al., 2010;
Ma et al., 2018; Qiu et al., 2015; You and Xie, 2011) and some
of them take data rate constraints into considerations. Also,
the related problem of resilient consensus is studied in (Dibaji
et al., 2017; Wang and Ishii, 2019) where some agents are
malicious and may prevent consensus to take place.Our paper
is particularly inspired by the quantized control of multi-agent
systems in the work (You and Xie, 2011).

More specifically in this paper, we address two issues related to
the joint effects of DoS attacks and data rate constraints. (i) For
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the dynamic quantization, when the global information of agent
states is not available, a critical issue is to keep the states of each
agent within the quantization range so as to avoid any quantizer
saturation. Especially, when data may be missing due to DoS,
we must keep track of the states by zooming out and scaling up
the quantization range even if the quantization becomes coarse.
(ii) After constructing the quantization of the states properly,
the next issue is to find the tolerable bound of DoS attacks
for achieving consensus. Especially, if the agent dynamics is
unstable, sufficient data must be exchanged within the systems
to realize the global objective of consensus. We will explicitly
demonstrate how the resilience against DoS is affected by
the available data rate in communication. Furthermore, it will
be shown that in the absence of DoS attacks, our result is
consistent with the one in (You and Xie, 2011).

This paper is organized as follows. In Section 2, we introduce
the framework consisting of multi-agent systems of general
dynamics, the class of DoS attacks and the control objective
studied here. Section 3 presents the controller architecture with
the zoom-in and zoom-out dynamic quantization mechanism.
Section 4 presents the main result of this paper, showing suffi-
cient conditions for data rate without overflow and DoS bound
under which consensus can be achieved. A numerical example
is presented in Section 5, and finally Section 6 ends the paper
with conclusions and possible future research directions.

Due to space limitation, we omit all the proofs in this paper and
refer the readers to (Feng and Ishii, 2020) for more details.

Notation. We denote by R the set of reals. Given b ∈ R, R≥b
and R>b denote the sets of reals no smaller than b and reals
greater than b, respectively; R≤b and R<b represent the sets of
reals no larger than b and reals smaller than b, respectively;
Z denotes the set of integers. For any c ∈ Z, we denote
Z≥c := {c, c + 1, · · · }. Let bvc be the floor function such
that bvc = max{o ∈ Z|o ≤ v}. Given a vector y and
a matrix Γ, let ‖y‖ and ‖y‖∞ denote the `2 and `∞ norms
of vector y, respectively, and ‖Γ‖ and ‖Γ‖∞ represent the
corresponding induced norms of matrix Γ. ρ(Γ) denotes the
spectral radius of Γ. Given an interval I, |I| denotes its length.
The Kronecker product is denoted by ⊗. Let 0 and 1 denote
column vectors with compatible dimensions, having all 0 and 1
elements, respectively.

2. FRAMEWORK: MULTI-AGENT SYSTEMS AND DOS

2.1 Communication graph

We let graph G = (V, E) denote the communication topology
between agents, where V = {1, 2, · · · , N} denotes the set of
agents and E ⊆ V × V denotes the set of edges. Let Ni denote
the set of the neighbors of agent i, where i = 1, 2, · · · , N .
In this paper, we assume that the graph G is undirected and
connected, i.e. if j ∈ Ni, then i ∈ Nj . LetAG = [aij ] ∈ RN×N
denote the adjacency matrix of the graph G, where aij > 0 if
and only if j ∈ Ni and aii = 0. Define the Laplacian matrix
LG = [lij ] ∈ RN×N , in which lii =

∑N
j=1 aij and lij = −aij

if i 6= j. Let λi (i = 1, 2, · · · , N ) denote the eigenvalues of
LG and in particular we have λ1 = 0 due to the graph being
connected.

2.2 System description

The agents interacting over the network G are expressed as
homogeneous linear time-invariant systems. For each i =
1, 2, · · · , N , agent i is given as a sampled-data system with
sampling period ∆ ∈ R>0 in the form of

xi(k∆) = Axi((k − 1)∆) +Bui((k − 1)∆) (1)
where k ∈ Z≥1, A ∈ Rn×n and B ∈ Rn×w. It is assumed
that (A,B) is stabilizable. xi(k∆) ∈ Rn denotes the state of
agent i with xi(0) ∈ Rn as the initial condition. We assume
that an upper bound is known, i.e. ‖xi(0)‖∞ ≤ Cx0

∈ R>0. Let
ui((k−1)∆) ∈ Rw denote its control input, whose computation
will be given later.

We assume that the communication channel among the agents
is bandwidth limited and subject to DoS, where transmission at-
tempts take place periodically at k∆ with k ∈ Z≥1. Moreover,
we assume that the transmission is acknowledgment based and
free of delay. This implies that the decoders send acknowledg-
ments to the encoders immediately when they receive encoded
signals successfully. If some acknowledgments are not received
by the encoders, it implies that due to the presence of DoS, the
decoders do not receive any data at all, and hence they do not
send acknowledgments.

Agent i = 1, 2, · · · , N can only exchange information with
its neighbor agents j ∈ Ni. Due to the constraints of network
bandwidth, signals are encoded with a limited number of bits
at transmission attempts. In the presence of DoS, some of the
transmission attempts may fail. For the ease of illustration, we
let sr represent the instants of successful transmissions. Note
that s0 ∈ R≥∆ represents the instant when the first successful
transmission occurs. Also, we let s−1 denote the time instant 0.

2.3 Time-constrained DoS

In this paper, we refer to DoS as the event for which all the
encoded signals cannot be received by the decoders and it
affects all the agents. We consider a general DoS model that
describes the attacker’s action by the frequency of DoS attacks
and their duration. Let {hq}q∈Z0

with h0 ≥ ∆ denote the
sequence of DoS off/on transitions, that is, the time instants at
which DoS exhibits a transition from zero (transmissions are
successful) to one (transmissions are not successful). Hence,
Hq := {hq} ∪ [hq, hq + τq[ represents the q-th DoS time-
interval, of a length τq ∈ R≥0, over which the network is in
DoS status. If τq = 0, then Hq takes the form of a single pulse
at hq . Given τ, t ∈ R≥0 with t ≥ τ , let n(τ, t) denote the
number of DoS off/on transitions over [τ, t], and let Ξ(τ, t) :=⋃
q∈Z0

Hq

⋂
[τ, t] be the subset of [τ, t] where the network is

in DoS status.
Assumption 1. (DoS frequency). There exist constants η ∈ R≥0

and τD ∈ R>0 such that

n(τ, t) ≤ η +
t− τ
τD

(2)

for all τ, t ∈ R≥∆ with t ≥ τ . �

Assumption 2. (DoS duration). There exist constants κ ∈ R≥0

and T ∈ R>1 such that

|Ξ(τ, t)| ≤ κ+
t− τ
T

(3)

for all τ, t ∈ R≥∆ with t ≥ τ . �

Remark 1. Assumptions 1 and 2 do only constrain a given DoS
signal in terms of its average frequency and duration. Following
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(Hespanha and Morse, 1999), τD can be defined as the average
dwell-time between consecutive DoS off/on transitions, while
η is the chattering bound. Assumption 2 expresses a similar
requirement with respect to the duration of DoS. It expresses
the property that, on the average, the total duration over which
communication is interrupted does not exceed a certain fraction
of time, as specified by 1/T . Like η, the constant κ plays the
role of a regularization term. It is needed because during a DoS
interval, one has |Ξ(hq, hq + τq)| = τq > τq/T . Thus κ serves
to make (3) consistent. Conditions τD > 0 and T > 1 imply
that DoS cannot occur at an infinitely fast rate or be always
active. �

The next lemmas relate DoS parameters and the number of
unsuccessful and successful transmissions, respectively.
Lemma 1. Consider a periodic transmission with sampling in-
terval ∆ along with DoS attacks in Assumptions 1 and 2. If
1/T + ∆/τD < 1, then m, representing the number of unsuc-
cessful transmissions between sr−1 and sr with r = 0, 1, · · · ,
satisfies
m = (sr − sr−1)/∆− 1

≤M =
⌊
(κ+ η∆) (1− 1/T −∆/τD)

−1
/∆
⌋
∈ Z≥0.

(4)
�

Lemma 2. Consider the DoS attacks characterized by Assump-
tions 1 and 2 and the network sampling period ∆. If 1/T +
∆/τD < 1, then TS(∆, k∆), denoting the number of success-
ful transmissions within the interval [∆, k∆], satisfies

TS(∆, k∆) ≥
(

1− 1

T
− ∆

τD

)
k − κ+ η∆

∆
. (5)

�

Remark 2. If the network is free of DoS attacks (T = τD =∞
and κ = η = 0), then m = Q = 0 and TS(∆, k∆) = k,
i.e. there is no failed transmissions between sr−1 and sr for
every r, and every transmission attempt will be successful,
respectively. Therefore, they are reduced to nominal standard
periodic transmissions. �

2.4 Control objective

The objective of this paper is to design a quantized controller,
possibly dynamic, in such a way that a finite-level quantizer is
not overflowed and the multi-agent systems (1) can tolerate as
many DoS attacks as possible for reaching consensus. Specifi-
cally, we introduce the average of the states

x̄(k∆) = (

N∑
i=1

xi(k∆))/N ∈ Rn (6)

and consensus among the agents is defined by
lim
k→∞

‖xi(k∆)− x̄(k∆)‖∞ = 0, i = 1, 2, · · · , N. (7)

3. DYNAMIC QUANTIZED CONTROL UNDER DOS

For the ease of illustration, in the remainder of the paper we
simply let k represent k∆, e.g. xi(k) represents xi(k∆).

3.1 Uniform quantizer

The limitation of bandwidth implies that transmitted signals are
subject to quantization. Let χ ∈ R be the original scalar signal

before quantization and qR(·) be the quantization function for
scalar input values as

qR(χ) =


0 −σ < χ < σ
2zσ (2z − 1)σ ≤ χ < (2z + 1)σ
2Rσ χ ≥ (2R+ 1)σ
−qR(−χ) χ ≤ −σ

(8)

where R ∈ Z>0 is to be designed and z = 1, 2, ..., R, and
σ ∈ R>0. If the quantizer is unsaturated, then the error induced
by quantization satisfies

|χ− qR(χ)| ≤ σ, if |χ| ≤ (2R+ 1)σ (9)
Observe that the quantizer has 2R+ 1 levels and is determined
by two parameters σ and R, which determine the density and
quantization range of the quantizer, respectively. Moreover,
we define the vector version of the quantization function as
QR(β) = [ qR(β1) qR(β2) · · · qR(βf ) ]T ∈ Rf , where β =
[β1 β2 · · ·βf ]T ∈ Rf with f ∈ Z≥1.

3.2 Control architecture

For each agent i, the control input ui(k) is expressed as a
function of the relative states available locally at time k. Specif-
ically, it is given by

ui(k) = K

N∑
j=1

aij(x̂
i
j(k)− x̂ii(k)), k = 0, 1, · · · (10)

where x̂ij ∈ Rn denotes the estimation of the state of agent j
by agent i. Here we assume that there exists a feedback gain
K ∈ Rw×n such that the spectral radius of

J(1) = diag(A− λ2BK, · · · , A− λNBK) (11)
satisfies ρ(J(1)) < 1. This is a necessary and sufficient
condition for the agents to reach consensus when no DoS is
present and infinite bandwidth is available for communication
(Li et al., 2009).

In (10), the estimate of the state of agent j by agent i equals to
the one estimated by agent ε such that x̂ij(k) = x̂εj(k) = x̂jj(k)
with i, ε ∈ Nj , then we omit the superscripts there and let

ui(k) = K

N∑
j=1

aij(x̂j(k)− x̂i(k)), k = 0, 1, · · · . (12)

Agent i estimates the states of its neighbors based on the in-
formation available from communication. Also, to stay con-
sistent with the neighbors, it will compute the estimate of its
own. These estimated states will be computed at each time
k = 1, 2, · · · as

x̂j(k) =

{
Ax̂j(k − 1) + θ(k − 1)Q̂j(k) if k /∈ Hq

Ax̂j(k − 1) if k ∈ Hq
(13)

where j ∈ {i} ∪ Ni and the initial estimates will be set as
x̂j(0) = 0. Here, Q̂j(k) ∈ Rn contains the information of
xj(k) and is defined as

Q̂j(k) = QR

(
xj(k)−Ax̂j(k − 1)

θ(k − 1)

)
, k = 1, 2, · · · . (14)

An important parameter in the quantization in (14) is the scaling
parameter θ(k − 1). By adjusting its size dynamically, the
state will be kept within the bounded quantization range and
quantized without saturation. The scaling parameter θ(k) ∈
R>0 can be updated as

θ(k) =

{
γ1θ(k − 1) if k /∈ Hq

γ2θ(k − 1) if k ∈ Hq
, k = 1, 2, · · · (15)
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with θ(0) = θ0 ∈ R>0, where 0 < γ1 < 1 and γ2 > 0. The
design of γ1, γ2 and θ0 will be specified later. Observe that the
scaling parameter is updated locally at each agent by checking
the presence of DoS attacks over time.

Due to the constraints of channel bandwidth, the information
about the state xj(k) is quantized into Q̂j(k) as in (14). If the
transmission attempts succeed, the decoders estimate xj(k) by
the first equation in (13) and the scaling parameter θ in the
encoders and decoders is updated as in the first equation in (15).
If the transmission attempt fails, then the information of xj(k)

cannot be acquired by the decoders since Q̂j(k) is corrupted by
DoS. Then, the decoders estimate xj(k) by the second equation
in (13) and the scaling parameter θ in the encoders and decoders
updates as in the second equation in (15).

Note that in the control input computation (12), we use x̂i(k)
to compute ui(k) instead of xi(k). Due to space limitation,
we omit the details of the rationales and refer the readers to
the discussion regarding (52) in You and Xie (2011) and the
references therein.

Let x̂(k) = [x̂T1 (k) x̂T2 (k) · · · x̂TN (k)]T ∈ RnN and Q(k) =

[Q̂T1 (k) Q̂T2 (k) · · · Q̂TN (k)]T ∈ RnN . One can obtain the com-
pact form of (13) as

x̂(k) =

{
(IN ⊗A)x̂(k − 1) + θ(k − 1)Q(k) if k /∈ Hq

(IN ⊗A)x̂(k − 1) if k ∈ Hq

(16)

for k = 1, 2, · · · . Let ei(k) = xi(k) − x̂i(k) ∈ Rn denote the
estimation error and let e(k) = [eT1 (k) eT2 (k) · · · eTN (k)]T ∈
RnN and x(k) = [xT1 (k) xT2 (k) · · ·xTN (k)]T ∈ RnN . Then one
obtains the compact form of the dynamics of the agents as

x(k) = Gx(k − 1) + Le(k − 1) (17)

where

G = IN ⊗A− LG ⊗BK, L = LG ⊗BK. (18)

Recall the x̄(k) in (6), then the discrepancy between the state
of agent i and x̄ is denoted by δi(k) = xi(k)− x̄(k) ∈ Rn. By
defining δ(k) = [δT1 (k) δT2 (k) · · · δTN (k)]T ∈ RnN , one has
x(k) = δ(k) + IN ⊗ x̄(k). By applying it into (17), one obtains

δ(k) = Gδ(k − 1) + Le(k − 1). (19)

It is now clear that if ‖δ(k)‖∞ → 0 as k → ∞, the consensus
of the multi-agent systems (1) is achieved as in (7). Under DoS
attacks, e(k) may diverge and then the consensus of the multi-
agent systems may not be achieved.

4. MAIN RESULT

This section first presents the dynamics of the multi-agent
systems under quantization in the absence and presence of DoS
attacks. Then we will present the main result.

4.1 Dynamics of the multi-agent systems

In this subsection, we formulate the dynamics of the multi-
agent systems in the absence and presence of DoS. First, we
present the dynamics of e(k) with e(k − 1) and δ(k − 1).

If the transmission succeeds such that k /∈ Hq for k = 1, 2, · · · ,
then according to (16), one has

e(k) =x(k)− x̂(k)

=x(k)− (IN ⊗A)x̂(k − 1)− θ(k − 1)Q(k)

=x(k)− (IN ⊗A)x̂(k − 1)

− θ(k − 1)QR

(
x(k)− (IN ⊗A)x̂(k − 1)

θ(k − 1)

)
. (20)

Note that x(k)− (IN ⊗A)x̂(k−1) = He(k−1)−Lδ(k−1),
where

H = IN ⊗A+ LG ⊗BK. (21)
Then (20) can be rewritten as
e(k) =He(k − 1)− Lδ(k − 1)

− θ(k − 1)QR

(
He(k − 1)− Lδ(k − 1)

θ(k − 1)

)
. (22)

If the transmission fails such that k ∈ Hq for k = 1, 2, · · · , then
in view of (16), one has

e(k) = x(k)− (IN ⊗A)x̂(k − 1)

= He(k − 1)− Lδ(k − 1). (23)

In the analysis above, we have presented the system dynam-
ics with e and δ. To facilitate the analysis, we let α(k) =:
δ(k)/θ(k) and ξ(k) =: e(k)/θ(k), where θ(k) is given in (15).
Then we formulate the system dynamics in terms of α and ξ.

If the transmission succeeds such that k /∈ Hq , in view of the
first of (15), (19) and (22), one has

α(k) =
G

γ1
α(k − 1) +

L

γ1
ξ(k − 1) (24)

ξ(k) =
Hξ(k − 1)− Lα(k − 1)

γ1

− QR (Hξ(k − 1)− Lα(k − 1))

γ1
(25)

It is easy to infer that if ‖Hξ(k− 1)−Lα(k− 1)‖∞ ≤ (2R+
1)σ, then by (9) one has ‖ξ(k)‖∞ ≤ σ/γ1.

If the transmission fails such that k ∈ Hq , then according to the
second of (15), (19) and (23), one has

α(k) =
G

γ2
α(k − 1) +

L

γ2
ξ(k − 1) (26)

ξ(k) =
H

γ2
ξ(k − 1)− L

γ2
α(k − 1) (27)

Compared with (25), ξ(k) induced by (27) may not satisfy
‖ξ(k)‖∞ ≤ σ/γ1. In the event that ‖ξ(k)‖∞ > σ/γ1, there
is a possibility that ‖Hξ(k) − Lα(k)‖∞ > (2R + 1)σ, which
demonstrates that quantizer overflow occurs. In the following,
with the control scheme introduced in (12) to (15), we will show
that quantizer overflow will not occur by properly designing the
scaling parameter θ(k) in (15), and then discuss the trade-offs
between resilience and data rate.

4.2 Overflow-free quantizer and consensus

In this subsection, we will present the main result of this
paper, showing the number of quantizer levels such that it
is not overflowed, and a sufficient condition for consensus.
Before presenting the main result, we first introduce some
preliminaries that will be used in the theorem.

In view of the matrices G, L and H in (18) and (21), respec-
tively, we define the matrices
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Ā =

[
G L
−L H

]
, Ā(m) = Ām =

[
Ā11(m) Ā12(m)
Ā21(m) Ā22(m)

]
(28)

where Ā11(m), Ā12(m), Ā21(m) and Ā22(m) are compatible
submatrices with dimensions nN in Ā(m) and the integer m
satisfies 0 ≤ m ≤M as in Lemma 1. Then, we defineG(m+1)
and Ḡ(m+ 1) as

G(m+ 1) = (GĀ11(m) + LĀ21(m))/γm2 (29)

Ḡ(m+ 1) = (Φ⊗ In)TG(m+ 1)(Φ⊗ In) (30)

in which the unitary matrix Φ takes Φ = [1/
√
N φ2 · · · φN ] ∈

RN×N where φ ∈ RN with i = 2, 3, · · · , N satisfies φTi LG =
λiφ

T
i . Let the matrix J(m+ 1) ∈ Rn(N−1)×n(N−1) denote the

remaining parts of Ḡ(m + 1) in (30) after deleting the first n
rows and columns. Then we define the set J as

J := {J(1), · · · , J(m+ 1), · · · , J(M + 1)}. (31)
Note that J(m + 1) is reduced to J(1) in (11) when m = 0,
which is independent of γ2. If 1 ≤ m ≤ M , then J(m + 1)
is dependent on γ2. With the Ā12(m) and Ā22(m) in (28),
and the G and L in (18) , we let L(m + 1) = (GĀ12(m) +
LĀ22(m))/γm2 and compute C0 = maxm=0,1,··· ,M ‖L(m +
1)‖. With such C2, we further compute

C1 = max

{
2C2

√
Nn,

C0C2

√
Nnσ

(1− d)γ1

}
(32)

where the parameters satisfy C2 > 0, and ρ(J(1)) < d <
1 depends on the choices of γ1 and γ2 and they satisfy
‖ (J(m+ 1)/γ1)

k ‖ ≤ C2d
k for m = 1, 2, · · · ,M .

To facilitate the analysis of the main result, we first introduce
the lemma below.
Lemma 3. Take γ1 and γ2 such that

max
m=1,2,··· ,M

ρ(J(m+ 1)) ≤ ρ(J(1)) < γ1 < 1 (33)

and let θ0 ≥ Cx0
γ1σ. If ‖ξ(sp)‖∞ ≤ σ/γ1 for p = 0, 1, · · · , r,

then ‖[αT (sr) ξT (sr)]
T ‖ is upper-bounded such that

‖[αT (sr) ξT (sr)]
T ‖ ≤ σ

√
C2

1 +Nn/γ1 (34)

with C1 in (32).

Now we are ready to present the main result.
Theorem 1. Consider the multi-agent system (1) with control
action (12) to (15), where they exchange information via the
undirected graph G. The communication attempts are periodic
with sampling interval ∆. Suppose that the DoS attacks char-
acterized in Assumptions 1 and 2 satisfy 1/T + ∆/τD < 1.
Let γ1 and γ2 be chosen such that maxm=1,2,··· ,M ρ(J(m +
1)) ≤ ρ(J(1)) < γ1 < 1, where J(1) and J(m + 1) are in
(11) and (31), respectively, and let θ0 ≥ Cx0

γ1/σ. Then, the
quantizer (8) is not overflowed, if R satisfies

2R+ 1 ≥ ‖[−L H]‖∞ζ
√
C2

1 +Nn/γ1 (35)

with C1 ∈ R>0 in (32), ζ = max{1, ‖(Ā/γ2)M‖}, Ā in
(28) and M in Lemma 1. Moreover, when (35) holds and DoS
attacks satisfy

1

T
+

∆

τD
<

− ln γ1

ln γ2 − ln γ1
(36)

then consensus of xi(k∆) is achieved.
Remark 3. In view of the right-hand side of (36), it is good to
have small γ1 and γ2 for improving the robustness, though a
small γ1 will result in large data rate. It is clear that γ1 can
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Fig. 1. Time responses of δ(k) (top) and θ(k) (bottom).

affect 2R + 1 directly. More importantly, γ1 can also affect C1

in the sense that if one lets γ1 → ρ(J(1)), then C1 → ∞.
It is trivial that if there are no DoS attacks in the network,
then γ = γ1 and the problem in this paper is reduced to
the one in (You and Xie, 2011). The principle of selecting γ2

is to make ρ(J(m + 1)) ≤ ρ(J(1)) hold, where m 6= 0.
Then, γ2 essentially depends on the systems to be controlled,
the communication topology and M that depends on DoS (in
Lemma 1). �

5. NUMERICAL EXAMPLE

In this section, we consider the system setting as that in the
numerical example in (You and Xie, 2011). Take A = 1.1,
B = 1 and N = 4. The Laplacian matrix of the undirected
and connected communication graph is

LG =

 1 −1 0 0
−1 3 −1 −1

0 −1 2 −1
0 −1 −1 2

 . (37)

We select the state-feedback gain to be K = 0.44.

Let the network transmission interval be ∆ = 0.1s. We consider
a sustained DoS attack with variable period and duty cycle, gen-
erated randomly. Over a simulation horizon of 5s, the DoS sig-
nal yields |Ξ(0, 5)| = 0.8s and n(0, 5) = 6. This corresponds
to values (averaged over 5s) of τD ≈ 0.96 and T ≈ 1.29, and
the DoS attacks in this example yield ∆/τD + 1/T ≈ 0.28.

With the selected K, one has ρ(J(1)) = 0.66. According
to Theorem 1, we choose γ1 = 0.7 and γ2 = 4.0333. By
such selected parameters, the number of quantization levels
yields 2R + 1 ≥ 6809, which can be encoded by 13 bits,
and the sufficient DoS-bound condition for consensus is 1/T +
∆/τD < 0.2037. This gap regarding the bound of ∆/τD +
1/T shows that our result is a sufficient condition, and there is
conservativeness in the analysis. The time responses of δ(k)
and scaling parameter θ(k) are given in Figure 1. One can
observe that consensus is successfully achieved.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3599



6. CONCLUSIONS

In this paper, we have presented results for the consensus prob-
lem of linear multi-agent systems with general dynamics under
network data rate limitation and malicious DoS attacks. The
design of quantized controller and the characterization of DoS
attacks for consensus have been given. In particular, we have
provided a feasible way of designing dynamic quantized control
with zoom-in and zoom-out capabilities for the multi-agent
systems with general dynamics, and such dynamic quantization
makes finite data rate control possible without quantizer over-
flow under malicious DoS attacks. We have then characterized
the bound of DoS attacks under which consensus of the multi-
agent systems can be guaranteed, and have further discussed the
trade-offs between bit rates and robustness against DoS.

The results in this paper can be extended in various directions.
One possible direction is to implement event-triggered control
to save communication resources in the number of transmis-
sions (Ma et al., 2018). It is also interesting to study the scenario
when the multi-agent systems are subject to local DoS attacks.
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