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Abstract: This paper presents a harsh-environment visual odometry method that is robust to the robot 

orientation as well as the camera movement in an outdoor environment. The accuracy of visual odometry 

in robots can be enhanced by using additional sensor measurements such as an encoder, gyroscope, 

and/or magnetometer.  This strategy can even reduce the computational time. However, in an outdoor 

environment, the moving robot can experience vibration, which causes unsynchronized data fusion 

between the camera and additional sensors. This unsynchronized data fusion causes errors in the robot 

orientation, which can lead to unwanted large drift errors in localization. To overcome this problem, 

firstly two distinctively different characteristics of the gyroscope and the magnetometer are combined to 

estimate the robot orientation. The initial robot orientation is estimated by integration of the gyroscope 

input, and this initial robot orientation is corrected using the magnetometer data in bundle adjustment. 

Secondly, the poses of the robot and the camera are estimated separately, and these separately estimated 

poses of the robot and the camera are used in feature matching and bundle adjustment to reduce drift 

errors in localization in the outdoor environment. The performance of the proposed method is 

demonstrated using dataset-based experiments. 
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1. INTRODUCTION 

Recently, mobile robot technologies such as autonomous 

vehicle, indoor robot and field robot have been actively 

researched. Simultaneous localization and mapping (SLAM) 

is an important prerequisite for autonomous navigation of 

these robots. In SLAM, vision sensors are frequently used 

among various sensors because they provide abundant 

information (Lee et al., 2015, 2016). Visual SLAM is usually 

composed of two parts, visual odometry and loop closing.  

In visual SLAM, researchers mainly estimated the location of 

the robot by estimating the camera movement, translation and 

orientation. The camera movement is mainly estimated by 

using feature points as a landmark. The parallel tracking and 

mapping (PTAM) which is proposed by Klein et al. (2007) 

simultaneously tracks the camera pose and maps an 

environment by using two threads. Lee et al. (2018) proposed 

line feature-based monocular SLAM with three threads which 

are tracking, bundle adjustment and loop closing. By using 

supplementary sensors such as inertial sensor and encoder, 

this method reduces the computational complexities of 

SLAM, which applies to a low-cost embedded system. The 

current location of the robot is initially estimated by using the 

inertial sensor and the encoder to the previously estimated 

location of the robot. So, errors in the robot orientation can 

cause large drift errors in localization. 

The robot orientation can be estimated by various sensors 

including the gyroscope and the magnetometer. However, the 

gyroscope and the magnetometer have distinctively different 

characteristics. The gyroscope-based orientation estimation 

method, which is an integration of angular velocity in the 

time domain, suffers from integration errors with time. The 

magnetometer-based orientation estimation method, which 

calculates the robot orientation with respect to the north, 

suffers from environment-dependent errors. These two 

distinctively different characteristics can be combined to 

reduce errors in the robot orientation. (Kim et al., 2019) 

From the perspective of visual odometry, conditions such as a 

low textured area (Park et al., 2017), slippery floor, a low-

luminance condition (Yi et al., 2018) and an outdoor 

environment, can be considered as a harsh environment. 

Among these conditions, the outdoor environment causes 

unsynchronized data fusion between vision and sensors. In an 

outdoor environment, the robot will experience vibration 

while moving, which causes the camera orientation to change 

at a high rate. To use sensor measurements, the robot 

orientation needs to point at the next frame. As the camera 

orientation indicates the camera direction at the moment, the 

robot orientation is not equal to the camera orientation in the 

outdoor environment. So when the robot pose is equal to the 

camera pose, using sensor measurements can cause large drift 

errors in localization. Hence the pose of the robot and the 
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camera at the same frame needs to be separately estimated in 

orientation to use sensor measurements. 

The main contribution of this paper is harsh-environment 

visual odometry that is robust to the robot orientation as well 

as the camera movement in an outdoor environment. In visual 

odometry, the image process takes the biggest portion of 

computational time, and the easiest way to reduce the 

computational time is decreasing the number of input images. 

To prevent the degradation of visual odometry performance 

due to reduced input images, the supplementary sensors are 

used. These supplementary sensors are a robot wheel encoder, 

gyroscope and magnetometer. The robot wheel encoders and 

the gyroscope are used to estimate the initial pose of the 

robot, and the magnetometer is used to reduce the orientation 

error of the robot. The pose of the robot is estimated in the 

2D plane with 3 degrees of freedom (DoF) (x, y, pan), while 

the camera pose is estimated with 5 DoF (x, y, pan, roll, tilt). 

These two separately estimated poses of robot and camera are 

used in feature matching and bundle adjustment to reduce the 

drift error in the outdoor environment. Consequently, the 

performance of the visual odometry can be improved.  

The rest of the paper is organized as follows. In Section 2, we 

present the visual odometry algorithm. In Section 3, we 

present our experimental results. Finally, Section 4 presents 

our conclusion. 

2. VISUAL ODOMETRY 

2.1 Overall Structure 

In this work, we use a camera as a primary sensor, and a 

gyroscope, an encoder and a magnetometer as supplementary 

sensors. The data of the gyroscope and the encoder are 

integrated to estimate the initial poses of the robot which are 

stated as raw odometry. The magnetometer is used to 

measure the robot orientation at each instance. Images from 

the camera are used to estimate the robot pose and landmark 

position. The overall structure of visual odometry is shown in 

Fig. 1. Inspired by the algorithm of Lee et al. (2018), visual 

odometry comprises two threads which are tracking and 

optimization. The tracking thread extracts feature and uses 

random sample consensus (RANSAC) to remove the outlier. 

These feature matchings are used to estimate landmark  

 

 

Fig. 1. Overall structure of the proposed visual odometry. 

position by triangulation and to calculate essential matrix 

which is used to estimate the tilt and roll of the camera. The 

optimization thread optimizes the poses of an active window 

of selected frames and the position of corresponding 

landmarks by using local bundle adjustment. 

2.2 Camera Pose Estimation in Tracking Thread 

To separate the poses of robot and camera, the camera poses 

need to be estimated as the initial robot poses are estimated 

by supplementary sensors. The pose of the robot is estimated 

in the 2D plane with 3 degrees of freedom (DoF) (x, y, pan), 

while the camera pose is estimated with 5 DoF (x, y, pan, roll, 

tilt). As the poses of the robot and the camera share x, y and 

pan, roll and tilt of camera poses should be estimated 

additionally.  

The essential matrix between frames is used to estimate these 

additional parameters, roll and tilt. Firstly, the rotation matrix 

is calculated from an essential matrix as follows: 

   det  or detT T T T T TR UWV UWV UW V UW V ,                  (1)
 

where U and V are left-singular vectors and right-singular 

vectors of the essential matrix, respectively. W is defined as 

follows:  
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By using the Euler angle, we can find the tilt and roll of the 

frame with respect to the other frame. 
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where 
1 , 

2  and 
3  are pan, tilt and roll, respectively, 

ic  

and 
is  are cosine and sine of ith angle. For every matched 

frame, tilt and roll of the frame are estimated and RANSAC 

is used to finally estimate the tilt and roll of the frame with 

respect to the world frame. 

2.3 Tracking Thread 

Tracking thread deals with the pose of the current frame and 

position of the corresponding landmarks before registering 

them on the map. ORB feature (Rublee et al., 2011) which is 

extracted from a current frame is used in feature matching, 

and 8 points RANSAC is used to remove outliers. With 

feature matching results, we generate an essential matrix 

between the current frame and the matched frame. This 

essential matrix is used to calculate the tilt and roll of the 

current frame through camera pose estimation. 

After estimating tilt and roll of the current frame, the feature 

matching result is used to estimate the landmark position 

with triangulation. Before the triangulation process, 

landmarks are classified into two cases, either the new 
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landmark or the registered landmark on the map. If 

landmarks are already registered in the map, the observation 

of the current frame will be added to the landmark of the map. 

If the landmark is new, the triangulation of the observations 

will be used to calculate the initial position of the landmark, 

then register it to the map. 

2.4 Robot Orientation Estimation using Gyroscope and 

Magnetometer in Optimization Thread 

Gyroscope-based orientation estimation and magnetometer-

based orientation estimation have distinctively different 

characteristics. The gyroscope-based orientation estimation is 

an integration of angular velocity in the time domain, so it 

has an integration error with time. The magnetometer-based 

orientation estimation calculates the robot orientation with 

respect to the north, so it has environment-dependent errors. 

The gyroscope-based orientation estimation is more accurate 

than magnetometer-based orientation estimation in a short 

period. However, the magnetometer-based orientation 

estimation has better performance than gyroscope-based 

orientation estimation in a long period. 

The proposed method uses graph optimization to combine 

these two distinctively different characteristics to reduce the 

robot orientation estimation. Gyroscope is used to estimate 

initial robot orientation because the accuracy of gyroscope-

based orientation estimation is high in a short period. In the 

graph optimization process, raw magnetometer data is used to 

correct the initial orientation estimation errors which are 

accumulated with time in a long period. The following 

energy function is used in the optimization thread: 
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where 
i  is the ith frame robot orientation, g,iz  is the ith 

gyroscope-based initial robot orientation estimation result, 

m,iz  is the ith raw magnetometer data. g , mR R is the 

information values of the gyroscope and the magnetometer, 

respectively. In bundle adjustment, robot orientation will be 

expressed inside 2D robot poses. The Levenberg-Marquardt 

algorithm is used to minimize the energy function (4). A g2o 

framework (Kummerle et al., 2011) is used for the 

Levenberg-Marquardt algorithm. 

2.5 Optimization Thread 

Optimization thread uses local bundle adjustment to optimize 

the poses of selected frames and the positions of 

corresponding landmarks. Consecutive frames before the 

current frame are selected for optimization, and the number 

of consecutive frames is determined depending on the 

measurements of these frames. The measurement of the 

magnetometer is used to estimate the orientation of each 

frame as it shows the orientation of the robot with respect to 

the earth’s magnetic field. The following energy function is 

used in optimization: 
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where 
ix  is the ith frame pose, jp  is the jth landmark 

position, ,o iz  is the ith raw odometry data, , ,uv i jz  is the 

observation of the ith frame of the jth landmark from the 

cameras, K  is intrinsic parameters of the camera, 
iR  is the 

rotation matrix of the ith frame with fixed tilt and roll, 
it  is 

the translation matrix of the ith frame, mag, ,s iz  is the 

measurement of magnetometer at ith frame, 
i  is the ith frame 

orientation, 
o and 

iw are the covariance matrix of raw 

odometry and features respectively, and  is a relative 

transformation between two sequential frame poses 
ix  and 

1ix , defined as follows: 
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The Levenberg-Marquardt algorithm is used to minimize the 

energy function (4). A g2o framework (Kummerle et al., 

2011) is used for the Levenberg-Marquardt algorithm.  

3. EXPERIMENTS 

3.1 Experimental Setup 

For evaluation, datasets-based experiments are executed on a 

desktop personal computer. For the robot platform, we use 

the Pioneer 3-DX (Espinosa et al., 2010) shown in Fig. 2. 

The robot has a built-in encoder. MPU-9265 is used for the 

gyroscope and the magnetometer and placed on the top of the 

robot. The camera is placed in front of the robot. Figure 3 is 

the consecutive images of the camera while the robot moves 

forward. As shown in the images, tilting and rolling of the 

camera change through the images. 

The experimental environment is illustrated in Fig. 4. As the 

robot moves on the grass, the camera vibrates frequently. The 

camera took the images at 1 Hz, and the robot moved at 0.4 

m/s. The robot moved in 76.4 m, 76.1 m, 344.2 m, 323.0 m, 

and 357.8 m trajectories and captured 312, 300, 1284, 1185, 

and 1210 images respectively, for five outdoor datasets. At 

the end of the datasets, we control the robot to place back to 

the beginning position. The distance between the beginning 

and end position of the trajectory is used to evaluate visual 

odometry performance. This distance is referred as the 

closed-loop error for the rest of the paper.  
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Fig. 2. Pioneer 3-DX used for experiments. 

 

 

Fig. 3. Consecutive images of camera while robot moving 

forward. 

3.2 Experiment Result 

The closed-loop error is measured for all experimental 

datasets. In Fig. 5, the robot trajectory of the raw odometry 

data and the proposed method for dataset 1 and 5 are shown. 

The robot moved in a square pattern for dataset 1 and moved 

in a zigzag pattern for dataset 5. The closed-loop errors for 

the datasets-based experiment are shown in Table 1. The 

closed-loop error of the raw odometry is larger than that of 

the proposed method. The average closed-loop errors for the 

raw odometry and the proposed method are 7.89 m and 0.93 

m respectively. These results show that the closed-loop errors 

of datasets with long moving distance are greater than that of 

datasets with short moving distance. Therefore, this shows 

that the visual odometry builds localization error as the robot 

moves. 

 

 

Fig. 4. Outdoor environment for experimental datasets. 

 

Fig. 5. Trajectory of raw odometry and the proposed method 

for dataset 1 and 5. (a, c) the trajectories of the raw odometry 

for dataset 1 and 5, respectively. (b, d) the trajectories of the 

proposed method for dataset 1 and 5, respectively.  

Table 1. Closed-loop errors of raw odometry and the 

proposed method in 5 datasets. 

Dataset 
Total moving 

distance (m) 

Closed-loop 

errors of raw 

odometry (m) 

Closed-loop 

errors of the 

proposed 

method (m) 

1 76.4 4.84 0.51 

2 76.1 1.28 0.59 

3 344.2 14.3 1.16 

4 323.0 5.93 1.19 

5 357.8 13.1 1.20 

Avg. 235.5 7.89 0.93 

Std.  5.59 0.35 

 

4. CONCLUSIONS 

In this paper, we proposed harsh-environment visual 

odometry which is robust to camera movement in an outdoor 
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environment by using different poses of the robot and the 

camera. The robot wheel encoders and the gyroscope were 

used to generate raw odometry, and the magnetometer was 

used to reduce the orientation error of the robot. The pose of 

the robot was estimated in the 2D plane with 3 DoF (x, y, 

pan), while the camera pose was estimated with 5 DoF (x, y, 

pan, roll, tilt). These separately estimated poses of robot and 

camera were used in feature matching and bundle adjustment 

to reduce the drift error in localization. Dataset based 

experiments were performed, and the results showed that the 

closed-loop error of the proposed method is 88% lower than 

that of the raw odometry. 
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