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Abstract: This paper presents a class of event-triggering rules for dynamical control systems
with guaranteed positive minimum inter-event time (IET). We first propose an event-based
function design with guaranteed control performance using a clock-like variable for general
nonlinear systems, and later specialize them to general linear systems. Compared to the existing
static and dynamic triggering mechanisms, the proposed triggering rules feature a robust global
event-separation property, and can be easily implemented on practical digital platforms to meet
various hardware limitations. Finally, several numerical simulations are given to illustrate the

theoretical results.
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1. INTRODUCTION

The emerging application of wireless communication tech-
niques in conventional feedback control systems creates a
new type of control system that is often called networked
control system (NCS) Zhang et al. (2015). NCS offers a
variety of benefits including flexibility, maintainability and
cost reduction of automation processes. Nevertheless, it
also introduces considerable design challenges like extra
energy consumption, and additional constraints in the
closed-loop system, such as requiring a minimum com-
munication bandwidth and a minimum control update
frequency. In recent years, it has been shown that the
event-triggered control paradigm is a promising solution
compared to the commonly-used time-triggered schemes
to update control input. Instead of continuous sampling
and communication, an event-triggered control scheme can
determine the time when the state information needs to
be sampled and associated data need to be sent to up-
date control law based on certain triggering rules; see As-
trom and Bernhardsson (2002); Tabuada (2007). In event-
triggered control, a key issue is the exclusion of possible
Zeno triggering behavior. In this paper, we will present
a practical event-triggering mechanism that guarantees a
positive minimum inter-event time (IET), thus excluding
the Zeno triggering for an event-triggered control system.

Related papers Event-triggered control has received con-
siderable attention in recent years, and here we review
some key developments in this field. The seminal paper
Tabuada (2007) initialized a general event-based schedul-
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ing control for general nonlinear systems, and a typical
analysis and design framework for event-triggered control
systems was formally proposed. However, the minimum
IET in the static triggering rule of Tabuada (2007) and
many subsequent papers often requires measurement of
entire system state variables, and the upper bound of the
constructed triggering signal is fixed. That is, although
the Zeno behavior can be excluded by guaranteeing the
existence of a positive minimum IET, the adjustable range
of inter-event times is limited and dependent of the system
states. An event-triggered control scheme was proposed
and analyzed for perturbed linear systems in Heemels et al.
(2008), where the sampling is performed only when the
tracking/stabilization error exceeds some bound. Another
paper Astrom (2008) presented the architecture of a gen-
eral structure for event-triggered control and discussed the
relations to nonlinear systems. Various new notions related
to the existence of the positive minimum IET, called
event-separation property, was introduced in Borgers and
Heemels (2014). The paper Borgers and Heemels (2014)
also shows that some popular event triggering mechanisms
do not ensure the event-separation property no matter how
small the disturbance is. This is an important aspect in
the design of triggering function for event-based control
systems under perturbations. For more developments of
event-based control and triggering function design, the
reader is referred to the surveys Heemels et al. (2012);
Zhang et al. (2016).

Unfortunately, for all of the above-mentioned work, it is
worth mentioning that the upper bounds of those con-
structed triggering signals are hard to adjust. Specifically,
although the Zeno behavior can be excluded by guar-
anteeing a strictly positive minimum IET, the resulting
algorithms cannot flexibly adapt physical limitations of
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communications and devices if the upper bound of the
minimum IET is constrained and IETs are difficult to be
adjusted. In other words, those event triggering mecha-
nisms, which do not hold the above properties, cannot be
implemented very well on a digital platform.

Recently, to improve the results in Tabuada (2007), a
dynamic triggering mechanism was formally proposed in
Girard (2014). In this framework, an internal dynamic
variable is introduced into the static triggering rule, which
also helps to enlarge the delay between successive trig-
gering time instants. However, similarly to what happens
with static rules, the resulting minimun TET is still not
easy to adapt hardware limitations. Also, the upper bound
of triggering signal, which depends on real-time system
states, is fixed. For other recent remarkable work on a
dynamic triggering mechanism, we notice that in Tanwani
et al. (2016) the authors considered the output feedback
stabilization problem for general linear systems with event-
triggered sampling and dynamic quantization and that in
Brunner et al. (2018) a new type of event condition was
proposed to be dependent on the states difference between
the actual system and the nominal undisturbed system,
which is triggered when the nominal states are equal to
the states of the real system. For other interesting results
on dynamic event-triggered control, we further refer the
reader to the overviews Nowzari et al. (2019); Ding et al.
(2017).

Contributions Based on the above discussion, we observe
that under the static or dynamic triggering mechanisms,
the variable range and the evolution rate of the con-
structed triggering signal cannot be freely designed. In ad-
dition, an investigation of the robustness issue for dynamic
event triggering mechanism is lacking. These current short-
comings motivate the construction of an event triggering
mechanism with the designable IETs and a robust global
event-separation property. We remark that only in Berneb-
urg and Nowzari (2019) was the designable IETs control
discussed, in the context of multi-agent consensus control
with single-integrator dynamics. In this paper, we aim to
propose an event-triggered control scheme to realize an
adjustable IETs with a strictly positive lower bound and
guaranteed system convergence. The main contributions
of this paper are summarized as below.

(1) We show new design and analysis approaches for
determining an dynamic event triggering mechanism,
which are applied to general nonlinear systems and
also specialized to general linear systems.

(2) The freely designable IETs are realized. Compared to
the static and dynamic event triggering mechanisms,
we can adjust the variable range of an upper bound of
the constructed triggering signal regardless of physi-
cal limitations of real-time system states.

(3) The proposed dynamic event-triggered strategy en-
sures the robust global event-separation property un-
der state perturbations.

The rest of this paper is organized as follows. In Section
2, we review two event-triggered schemes in the literature
and recall some preliminary background on event-triggered
control, and present the problem formulation. The design
and analysis framework of the IETs-designable event trig-
gering mechanism for nonlinear systems is presented in

Section 3. In Section 4, the framework presented in Section
3 is specialized to general linear control systems, while
the robustness of the proposed algorithm is analyzed. In
Section 5, two simulation examples are provided to illus-
trate the effectiveness of the theoretical results. Finally,
conclusions and remarks concerning future work are given
in Section 6.

Notations. Throughout this paper, R and R™ denote the
set of real numbers and the n-dimensional Euclidean space,
respectively. ]Ra' is the set of non-negative real numbers.
The notation | - | refers to the Euclidean norm for vectors
and the induced 2-norm for matrices. The superscript T
denotes vector or matrix transposition. A function «a(r) :
RS — R{ is said to be of class Ko if it is continuous,
strictly increasing, o(0) = 0, and a(r) — 400 as r — +o0.

2. EVENT-TRIGGERING MECHANISMS

We consider the control system of the form

&= f(z,u),x € R", u e R™ (1)

with a state feedback law u = k(z) that stabilizes the
system, in which functions f(-,-) and k(-) are Lipschitz
continuous on compacts. Then the resulting closed-loop
control system is

i = f(x, k(x)). (2)
Under the state feedback law u = k(x), the state infor-
mation of the plant needs to be available and accessed
continuously so as to allow update of the input continu-
ously. In event-triggered control, the state information is
accessed when necessary and the control input is updated
when certain events occur. This results in a discrete-time
updated control law u = —k(z(t;)),t € [t;, ti+1), where ¢;
denotes the i-th triggering time instant. We note that if
tir1 — t; — 0 for some finite time ¢;, the sampling process
becomes impractical (a phenomenon termed Zeno trigger-
ing). Therefore, how to guarantee a positive minimum IET
is one of the key issues in the design of event-triggered
control.

As in Tabuada (2007), we define the measurement error
as e(t) = z(t;) — x(t),t € [ty tir1). We assume that the
closed-loop control system

= f(z,k(z+e)) (3)

is input-to-state stable (ISS) with respect to e(t). There
thus exists an ISS-Lyapunov function V' for class K
functions &, a, a, and -y satisfying the following inequalities

a<V(r) <a,
V(z) < —alja]) + y(le])-

~

(4)
2.1 Static FEvent Triggering Mechanism

The seminal paper Tabuada (2007) proposed an event
triggering strategy for the system (3), with the following
static triggering rule
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tiyr = inf{t > ti[y(le[) = oa(|z])}. ()
In event-triggered control systems, IETs should be de-
signed to satisfy

ti—i—l -t 2T > O7Via (6)
where 7 is a positive constant or the minimum IET. It is
shown in Tabuada (2007) that for all initial states x(0) € S
where S C R" is a compact set containing the origin,
there exists 7 > 0 such that the sequence t; determined by
(5) satisfies (6) if f(-), k(-), @~ *(-) and ~(-) are Lipschitz
continuous on compacts and 0 < o < 1.

2.2 Dynamic Event Triggering Mechanism

The dynamic triggering mechanism, proposed in Girard
(2014), is an extension of the static triggering scheme
obtained through enlarging the variable range of the
constructed triggering signal v(|e|)/a(]z]). To explain this
point, let us recall the triggering rule (5) and add a positive
item in the right hand side of the inequality

e o .

allal) =7 Gallal)
where # > 0 is an adjustable parameter, and n > 0 is
a virtual state to be designed. Note that the additive
item m increases the upper bound of the comparison
threshold of the triggering signal. The dynamic triggering
rule can be thus given as below

tipr = inf{t > tin + 0(ca(lz]) —y(lel)) <0} (7)
When the virtual state is designed as ) = —((n)+oa(|z|)—
v(le]), n(0) = no € RY, it has been proved in Girard (2014)
that the inequality n > 0 is satisfied and that both the
states x(t) and the virtual variable n will converge to the
origin asymptotically.

As can be observed from the above reviews, the adjustable
range of IETs for static and dynamic triggering mecha-
nisms is limited. To improve the implementability of a the-
oretical solution on a physical platform, this paper follows
the design of a flexible dynamic event-triggered scheme
that allows the variable range of IETSs to be prescribed
freely, and ensures a positive minimum IET independent
of intrinsic system states.

3. DYNAMIC IETS-DESIGNABLE EVENT
TRIGGERING CONTROL FOR NONLINEAR
SYSTEMS

Through observing the two types of triggering mechanisms
(5) and (7) reviewed in the last section, we find that the
derivation of the minimum IET is dependent of the states
x and measurement errors e, and the upper bounds of
the constructed triggering signals can only be adjusted
in a limited range for certain specific plants. In this
section, we aim to propose a novel triggering mechanism
with designable IETs for general nonlinear systems. In
contrast to the static or dynamic triggering mechanism,
the intuitive idea here is to create a triggering signal
Z(t), for which the variable range of the upper bound
can be freely designed. We thus adopt the following event
triggering rule

to =0,

where Z(t;) will be reset to Z at a triggering instant
and Z > 0 is the first design parameter. Here, the
variable Z(t) takes a similar role to a countdown variable
with an assigned upper bound Z. The dynamics Z(t) =
w(w(x,e),e) < 0 are thus considered in the sequel of
this paper for designing event triggering conditions, where
€ > 0 is the second design parameter.

The first main result of this paper can be given as follows.

Theorem 1. Consider the nonlinear ISS closed-loop con-
trol system (3) with functions f(-,-) and k(-) that are
Lipschitz continuous on compacts. The event triggering
mechanism is given as (8). The dynamics of the additional
variable Z(t) is chosen as Z(t) = w(w(x,e),e) < 0, in
which w(-,-) and w(-,-) are functions of associated vari-
ables. Then, for all initial conditions z(0), the closed-loop
control system is guaranteed to converge to the origin
asymptotically. Meanwhile, there exists designable IETSs
lower bounded by 71

= \/g {atan[\/z(l +2)] - atan[\/g]} >0,

| M
i (9)
)\min(M)
with design parameters €, Z to be detailed in the sequel,
for the triggering sequence (;);—toco-

b=1I?

Proof. We first analyze the stability. Choose the candi-
date Lyapunov function as W = V + %ZeTMe, where
V is the ISS-Lyapunov function and M is a symmetric
positive definite matrix. The countdown variable satisfies
Z > 0 because of the triggering mechanism (8). Note that

the derivative of W along the solution of (3) is W =V +
iweT Me+ Ze' Mé. Because of & = —¢ and inequality (4),
it follows

. 1
W < —a(|z]) + v(le]) + iweTMe — Ze' Mg

— —a(lz]) +7(e]) + %weTMe 7T M (2, k( + ),

Since w < 0, we have

. 1
W< —a(a]) +y(le]) + SwAmin(M)le]”

+Z|M|lellf (, k(x + €))].
The Lipschitz continuity on compact sets of f(x,u) and
k(x) implies that f(x, k(z+e)) is also Lipschitz continuous,
we can thus obtain | f(z, k(z + ¢))| < L|z| 4+ L|e| with the
Lipschitz constant L > 0. These facts lead to

: 1
W < —a(z]) +y(le]) + SwAmin(M)le]”
+Z|Mle|(L|z[ + Llel)
1
=—a(lzl) +(le]) + SwAmin(M)]e]”

+ZL|M|le||x| + ZL|M||e|*.
In order to guarantee the asymptotic stability of the
control system (3), we enforce the following inequality
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L_20(e) 1 e 1

Amin (M) lel* Amin (M) |ef?
2LZ|M| |z| 2LZ|M|
Amin(]w') |6‘ )‘min(M) .

If class Ko functions o(lz]) = 1|z|> and 7(le]) =
L|M]||x||e| are chosen, the variable w further satisfies

1 2 2L|M
P, g 2UM ]
Amin (M) e]? Amin(M) e

By using the Young inequality yi1y2 < %y% + %y% , with
b > 0 and y1,y2 € R, we can obtain

w<w=

2LMI|-J£l>-—M1+-Zf

1 LM |
Amin (M) |6‘

) 5,00

such that

1 1 LAMP2YN |z?
Amin(M) b /\Iznm(M) |€|2 .
By letting the above variable b in the second item of the

right hand side satisfy b = L? /\ﬂ‘f;\f(lj\/l )?

wZ—b(1+Z)2+<

we can write

w—e>-b(l+2)?—¢

with the design parameter ¢ > 0. If we further design w as

w— {mm(O,w)—e, e #0,

—é, e=0, (10)

and consider two cases of e: (1) e # 0, if w < 0, then
w=w—-candifw > 0,w = —& > —b(1+2)?—¢, s0 is case
(2) when e = 0. Note that because w < w can be always
guaranteed by the design (10) of w, we conclude that the
Lyapunov function W decreases such that x(t) converges
to the origin asymptotically. Moreover, the dynamics of
the countdown variable Z gives the estimate Z > —b(1 +
Z)? — . Let ¢ be the solution of differential equation
¢ = —b(1 + ¢)® — &, then the IETs are lower bounded
by the time 71 that it takes for ¢ to evolve from Z to 0.
We therefore conclude the formula of 74 in (9). O

4. DYNAMIC IETS-DESIGNABLE EVENT
TRIGGERING CONTROL OF GENERAL LINEAR
SYSTEMS

In this section, we will specialize previous results to event-
triggered control of general linear systems with designable
IETs.

4.1 Basic Algorithm

Consider a general linear control system of the form

i(t) = Az(t) + Bu(t), (11)

where A and B are system matrices with proper dimen-
sions, and we assume the system is controllable and observ-
able. A feedback control law is designed as u(t) = Kuz(t)
through pole assignment for stabilizing the system (11).
The closed-loop control system is then obtained as below

6491

&(t) = (A+ BK)x(t).
This thus implies that there exists a Lyapunov function

V = 2" Pz such that the symmetric positive definite
matrix P satisfies

(A+BK)'P+ P(A+ BK) = —Q,
where (@ is an arbitrary symmetric positive definite matrix.
When the state-feedback control law u(t) = Kx(t), which
is updated in a continuous time manner, is executed
on digital platforms and/or in a wireless communication
environment, then it needs to be modified to use discrete-
time updates. In this section, we formally propose an
IETs-designable event triggering method to schedule the
computation and communication resources and determine
the triggering time that updates the feedback of the system
states x(t) into the closed-loop control system; i.e., the
control is modified as u(t) = Kxz(t;),t € [t;, ti+1), where
t; is the i-th triggering instant. Following the idea of the
event-triggered control framework presented in Section 3,
we define the measurement error e(t) = z(t;) — z(t),t €
[t:, ti11); the following closed-loop system is thus obtained

i(t) = Az(t) + BKx(t) + BKe(t). (12)
Similar to the event triggering mechanism (8), we apply
the same triggering rule for general linear systems, and
define the additional event function dynamics as Z(t) =
w(w,e) < 0.
We can now give the second main contribution of paper.

Theorem 2. Consider the general linear control system
(12) with the event triggering mechanism (8) for all initial
conditions z(0). Then, z(t) asymptotically converge to
the origin. Meanwhile, there exists designable IETs lower
bounded by 7

Ty = \/g {atan[\/é(l +2Z)] - atan[\/f]} >0,

|PBK|?
)\min (P) )\min (Q)

with design parameters ¢, Z as the same in the statement
of Theorem 1, for the triggering sequence (t;);—s4oo0-

b= (13)

The proof, which follows similar ideas of the proof in
Theorem 1, is omitted here due to space limit.

4.2 Robustness Analysis

We continue to consider the following perturbed linear
system

&(t) = Ax(t) + Bu(t) + Hd(t), (14)
where H is a constant matrix with proper dimensions and
d(t) denote system disturbances.

Proposition 1. Consider the general linear control sys-
tem (14) with the event triggering mechanism (8) and any
bounded disturbances |d| < d for all initial conditions z(0).
Then there exists the same positive lower bound 73 = 7
for the designable IETSs, implying that the minimum ITET
is robust to perturbations. Furthermore, suppose that the
perturbations d(t) are convergent to 0. Then the system
states also asymptotically converge to the origin.
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Proof. We first analyze the robustness properties of the
algorithm. Recall the Lyapunov function candidate and its
derivation

. 1 1
W < = A (@al? + [PBEalle] + Sehmin(P)lef
+Z|PA||z||e| + Z|PBK||z||e| + Z|PBK]||e|?
+|PH||x|d + Z|PH||e|d.
Therefore, it is clear that the formula below is still satisfied
Auin (@) 22 |PBEK] |z|
Amin (P) le]? Amin (P) [e]
Following the same lines as in the proof of Theorem
2, it can be verified that the derivation process of the
minimum IET is independent of the disturbances. We
therefore conclude that the strictly positive minimum IET
is still guaranteed in the presence of system perturbations
d(t). The convergent d(t) implying convergent z(t) is
a consequence of the exponential stability of the linear
system. 0O

w<w= (1+2)

5. NUMERICAL SIMULATIONS

In this section, we present simulations to show the effec-
tiveness of the proposed theoretical results.

In order to compare the present results with the static
and dynamic triggering mechanisms for linear systems in
Tabuada (2007) and Girard (2014), we use the same linear
plant model with the same controller and choose the same
gains. Specifically, by choosing A = [0 1;-2 3], B =

[0;1], K=[1 —4],onecanget P=[1 1/4;1/4 1]and
. 2

Q = [1/2 1/41/4 3/2]. Since 5P = 5461,

based on formula (13) we choose b = 55. Meanwhile,

by adopting the same simulation setup in Berneburg and

Nowzari (2019), Z =1 and € = 1 are chosen as the design
parameters. We set the initial states as x1 = 10,22 = 0.

From Fig.1 and Fig.4, it can be found that the states x
and measurement errors e converge to the origin asymp-
totically which validates the stability of the general linear
control system with the IETs-designable event triggering
mechanism. Based on the formula (13), we can calculate
a lower bound of IETSs as 9 ms, which is smaller than the
simulation result of 36 ms, implying that the calculated
lower bound of IETs may be conservative. The variable w
always keeps smaller than —¢ in Fig.3, which implies that
the clock-like variable Z always decreases while the speed
rate is changed throughout the whole countdown process.
The evolution of the term “%ZeTPe” is shown in Fig.4,
which is not monotonous.

Next, we compute the eigenvalues of state matrix A +
BK in Postoyan et al. (2019) as Ay = —0.5 + 0.8667
and Ao = —0.5 — 0.86675, which are complex conjugates.
Furthermore, it is noticed that 7/0.866 = 3.6277 is very
close to the period observed in Fig.5. All of these facts
are consistent with the Theorem 3 in Postoyan et al.
(2019), in which the planar linear system and static event
condition ||Z(t) — z(t)]| > o|lz(¢)|| in Tabuada (2007)
were considered. Moreover, a set of different initial states
[10; 0], [—10; 0], [0; 10], [0; —10], [5; 5] is implemented in the
same setting, and the results further validate the statement
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Fig. 1. Numerical simulation results of the dynamic IETs-
designable event-triggered linear control system with
Z =1 and € = 1: (a) The trajectories and event trig-
gering times, respectively; (b) The triggering events
and the evolution of Z from 3.2 to 5s.

0.04

M

-0.04
-0.06

008k for X,

for)(1

1/

7

Time(s) .

Fig. 2. The evolution of the measurement errors ey, es for
the event-triggered linear control system.

in Theorem 3. In addition, it is shown that the period of
IETs is irrelevant to the initial states of the controlled
system and the initial states might result in different
phases. In the meantime, these findings also provide some
hints for the connection between static and dynamic
triggering mechanisms.

6. CONCLUDING REMARKS

In this work, in order to improve certain crucial character-
istics of IETSs, we develop a new design and analysis frame-
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Fig. 3. The evolution of w for the event-triggered linear
control system.
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Fig. 4. The evolution of the item %Z e Pe in the Lyapunov
function.

T
+ x7100] 0 X100 + 010 1 X700 K x=[55]
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Fig. 5. The evolution of the IETs.

work for the event-triggered control system. An IETs-
designable triggering mechanism has been established for
nonlinear systems and general linear systems, respectively.
Afterwards, the robustness issue of the proposed results is
further considered. It is shown that the IETs-designable
triggering mechanism guarantees Zeno-free triggering and
the robust global event-separation property.

Currently, we are working on applying the proposed trig-
gering mechanism to distributed control systems with gen-
eral linear dynamics. It is also interesting to investigate
other kinds of disturbances, such as time delay, DoS at-
tack, or timing error, etc. In the future, we also plan to
apply the IETs-designable event triggering mechanism to

broader areas, such as industrial automation systems and
cyber-physical systems.
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