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Abstract: In this article, non-fragile exponential consensus problem is investigated for
nonlinear multi-agent systems (MASs) through the use of sampled-data controllers. The
sampled-data system is translated to a continuous system with time-varying delay through
input delay approach via control input. With the introduction of a sampled-data approach, the
information is sent only to the network at each sampling instant and is inevitably subject to a
transmission delay. By using the tools from algebraic graph theory and Lyapunov–Krasovskii
functional (LKF) technique, it is proved that the concerned non-fragile consensus problem is
solvable if the resultant consensus error system can be exponentially stabilized. Numerical
example is given to illustrate the merits of the results obtained.
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1. INTRODUCTION

In the past decade, consensus control for multi-agent sys-
tems (MASs) has received extensive research attention
due to its potential applications in various science and
engineering areas, such as formation control, multi-robot
teams, unmanned aircraft cooperative control, sensor net-
works and coordinated defence systems to name a few. In
general, the main objective in consensus is to achieve an
agreement among the agents on a parameter of interest.
The parameter of interest is application-specific. For ex-
ample, in vehicular MASs, the parameter of interest can be
the motion of the agents (positions and velocities). In esti-
mation applications, it can be the temperature measured
by different sensors placed at different locations Yu et al.
(2018); Amini et al. (2016); Dong et al. (2018). Studies of
consensus problems for MASs have been explored by vari-
ous scholars from different perspectives Wen et al. (2013);
Wu et al. (2019); Guo et al. (2015); Liu et al. (2016). For
instance, the problem of consensus in directed networks
of nonlinear MASs with sampled-data control was studied
in Wen et al. (2013). The non-fragile consensus control
of discrete time-varying nonlinear MASs with uniform
quantization and randomly occurring deception attacks
have been investigated in Wu et al. (2019). The distributed
non-fragile H∞ consensus problem have been investigated
for MASs with external disturbances and unknown initial
disturbances under switching weighted balanced directed

? This work was supported by Japan Society for the Promotion
of Science (JSPS) KAKENHI Grant for the International Research
Fellow (JP18F18376).

topologies in Guo et al. (2015). The problem of consensus
for linear discrete-time networked MASs with directed
topologies and communication delays was investigated in
Liu et al. (2016).

Most existing implementations for consensus in nonlinear
MASs, are based on continuous-time (real-time) informa-
tion exchanges among the neighbouring agents, thus not
suitable under networked environment. In many practi-
cal applications, however, the exchange of information
between agents can only occur in unique model cases
due to the use of digital sensors and limited bandwidth
communication channels. To handle this problem, using
sampled-data control rather than continuous-time control
would be a viable approach. Sampled-data systems contain
continuous-time plants under discrete-time control up-
dates. Sampled-data control approach has a long-standing
record in various research fields among the control commu-
nity Jiang et al. (2020); Fu et al. (2018); Du and Yu (2019);
Wu et al. (2015). In Jiang et al. (2020), the sampled-data
non-fragile H∞ consensus tracking problem for nonlinear
MASs with switching topologies and exogenous distur-
bances was investigated. In Fu et al. (2018), the exponen-
tial consensus problem for MASs with Lipschitz nonlin-
ear dynamics using sampled-data information have been
investigated. In Du and Yu (2019), the leader-following
and leaderless consensus problem of high-order MASs
have been discussed via sampled-data control approach.
Consensus problem of MASs have been investigated by
using aperiodic sampled-data control Wu et al. (2015).
However, non-fragile exponential consensus problem for
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nonlinear MASs by using sampled-data control has not
been considered adequately, which motivates this study.

Inspired by the above observations, we have explored the
problem of non-fragile exponential consensus control for
nonlinear MASs via sampled-data approach. Using alge-
braic graph theory and the Lyapunov functional technique,
sufficient conditions for the solvability of consensus is
obtained based on linear matrix inequalities (LMIs). The
contributions of this paper mainly include the following:

(1) The corresponding non-fragile consensus protocols
are designed for nonlinear MASs using sampled-data
control. Regarding the sampled-data scheme, we as-
sume that the sampling intervals are time-varying.

(2) In this work, an efficient criteria for non-fragile ex-
ponential consensus are established while most of
the existing related results are concerned only with
asymptotic consensus.

(3) In Fu et al. (2018), exponential sampled-data consen-
sus of linear MASs is investigated. Compared with
Fu et al. (2018), non-fragile exponential consensus
for nonlinear MAS is considered using sampled-data
mechanism and the non-fragile consensus protocol is
designed with the norm-bounded parametric uncer-
tainty. Thus, the MASs under consideration is more
general than Fu et al. (2018).

The rest of this paper is organized as follows. Some
useful definitions in graph theory, problem formulation
and some basic notations are given in Section 2. The non-
fragile exponential consensus problem of nonlinear MASs
is investigated in Section 3. Simulation results are given in
Section 4. Section 5 concludes the paper.

Notations: Throughout this paper, Rn and Rn×n denote,
respectively, the n-dimensional Euclidean space and the
set of all n×n real matrices. AT and A−1 denote the matrix
transpose and inverse of A respectively. We say X > 0
implies that matrix X is real symmetric positive definite
with appropriate dimensions. I denotes the identity matrix
with appropriate dimensions. The Kronecker product of
matrices M ∈ Rm×n and N ∈ Rp×q is a matrix in Rmp×nq
and denoted as M ⊗ N . Notation ∗ used in symmetric
matrices represents the transpose of the corresponding
block from the upper triangle. Notation (.)† is the pseudo-
inverse of the argument.

2. MODEL DESCRIPTION AND PRELIMINARIES

2.1 Graph Theory

Graphs are commonly used to model the interaction
among the agents in MASs. In this paper, the communica-
tion topology among the agents is modeled by a weighted
directed graph G(V,E,A) with a set of N agents V =
{1, . . . , N}, in which the ith vertex indicates the ith agent
while the edge set is E ⊆ V × V . If the information of
the jth agent is available for the ith one, then the pair
(j, i) is an element of E and is depicted by j → i in graph
representation. The set of neighbors of agent i is denoted
by Ni = {j ∈ V : (i, j) ∈ E} and A = [aij ] ∈ Rn×n is
the weighted adjacency matrix for G, where aii = 0 and
aij = 1 if (i, j) ∈ V and aij = 0 otherwise. The Laplacian
of G is defined as L = D −A, where:

D = diag{deg1, . . . ,degN}, degi =

N∑
j=1

aij .

Then, for any i 6= j; i, j = 1, 2, . . . , N , the Laplacian
matrix L = [lij ]N×N of G is defined as

lij = −aij , lii =

N∑
j=1,j 6=i

aij . (1)

2.2 Model Description

Consider the ith agent in the MASs, whose dynamics take
the form of

żi(t) =Azi(t) + Bui(t) + Cf(t, zi(t)), i = 1, 2, . . . , N. (2)

where zi(t) ∈ Rn and ui(t) ∈ Rp are the state and control
input of the ith agent, respectively. The constant real
known matrices A,B and C are considered to preserve
compatible dimensions. The vector-valued continuous ac-
tivation function f(t, zi(t)) = [f(t, zi1(t)), f(t, zi2(t)), . . . ,
f(t, zin(t))]T denotes the nonlinear dynamics of ith agent.

Assumption 1. There exists a known real constant matrix
G with appropriate dimensions such that the nonlinear
vector function f(t, zi(t)) in MAS (2) satisfies the following
condition:

||f(t, zi(t))|| ≤ ||Gzi(t)||, (3)

for any zi(t) ∈ Rn.

Then, we introduce a sampled-data consensus protocol
with respect to uncertain perturbation to achieve non-
fragile consensus as

ui(t) = δ(K + ∆K)

N∑
j=1,j 6=i

aij(zj(tk)− zi(tk)), (4)

tk ≤ t < tk+1,

where δ > 0 denotes the coupling strength and K ∈ Rp×n
is the controller gain to be designed. For appropriately di-
mensional matrices M, W and a time-varying matrix ∆(t)
satisfying ∆T (t)∆(t) ≤ I, the norm-bounded parametric
uncertainty ∆K is characterized as

∆K = M∆(t)W. (5)

Sampled data information is utilized at sampling instants
tk by using a zero-order hold (ZOH) circuit. The control
inputs are generated on the basis of this ZOH with a
sequence of times 0 = t0 < t1 < . . . < tk < . . . <
limk→∞ tk = +∞. The sampling intervals are periodic
with an upper bound ϑ, such that ϑk , tk+1−tk ≤ ϑ,∀k ≥
0.

Define

z(t) =
[
z1(t)T z2(t)T . . . zN (t)T

]T
,

F (t, z(t)) =
[
f(t, z1(t))T f(t, z2(t))T . . . f(t, zN (t))T

]T
.

Substituting (4) into (2) gives

ż(t) =(IN ⊗ A)z(t)− (L⊗ B(K + ∆K))z(tk)

+ (IN ⊗ C)F (t, z(t)), (6)

where tk ≤ t < tk+1. We rewrite, z(tk) = z(t−m(t)) with
m(t) = t − tk, 0 ≤ m(t) ≤ ϑ, ṁ(t) = 1 for t 6= tk. Then,
(6) can be rewritten as

ż(t) =(IN ⊗ A)z(t)− (L⊗ B(K + ∆K))z(t−m(t))
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+ (IN ⊗ C)F (t, z(t)). (7)

Definition 1. MAS (2) with protocol (4) is said to achieve
non-fragile consensus if for any time-varying matrix ∆(t)
satisfying ∆T (t)∆(t) ≤ I, and for any initial condition
zi(0), such that the following condition holds:

lim
t→∞

||zi(t)− zj(t)|| = 0, i, j = 1, 2, . . . , N. (8)

A widely used approach to guarantee consensus for (7)
is to covert the consensus problem into an equivalent
stability problem by using a state transformation. In
other words, the state transformation is defined in such
a way that the stability problem for the transformed
system leads to consensus in the original system, i.e.,
system (7). Let L̂ denote the (N−1)×N dimensional
matrix obtained by removing one arbitrary row from
Laplacian matrix L. To solve consensus, we propose the
following state transformation

y(t) = (L̂⊗ In)z(t). (9)

Lemma 1. If y(t) = 0, it holds that z1(t) = · · · = zN (t). In
other words, consensus in sense of Definition 1 is satisfied
if y(t)→ 0.

Proof: If y(t) = 0 then (L̂⊗In)z(t) = 0, which implies that

z(t) belongs to the null space of L̂⊗In, i.e., z(t) ∈ null(L̂⊗
In). The row sum of Laplacian matrix L is zero. Hence,

the row some of L̂ is also zero. The null space of L̂⊗ In is,
therefore, given by 1N ⊗zcns(t), i.e., z(t) ∈ null(L̂⊗ In) =
1N ⊗ zcns(t), where zcns(t) is the consensus vector to
which zi(t), (1 ≤ i≤N), converges. Therefore, it holds that
z1(t) = · · · = zN (t) = zcns(t). Accordingly, consensus in
the sense of Definition 1 is achieved.

In summary, Lemma 1 implies that the consensus problem
for (7) is equivalent to the stability problem of the trans-
formed system expressed by y(t). Without loss of gener-

ality, to obtain L̂ we remove row N from the Laplacian
matrix.

Next, we transform system (7) based on transformation (9)
which gives way to the following system

ẏ(t) =(IN−1 ⊗ A)y(t) + By(t−m(t))

+ CF (t, y(t)), (10)

where

B = (L̂⊗ In)(IN ⊗ B(K + ∆K))((LL̂†)⊗ In),

C = (L̂⊗ In)(IN ⊗ C).

Note that (IN ⊗ B(K + ∆K))((LL̂†) ⊗ In) = ((LL̂†) ⊗
In)(IN−1 ⊗ B(K + ∆K)) is also used to derive (10).

2.3 Preliminaries

Definition 2. (Mahmoud and Ismail (2010)) Consider sys-
tem (10), if there exist some positive constants κ ≥ 1 and
σ > 0 such that

||y(t)|| ≤ κψe−σt, ∀ t ≥ 0, ψ = sup
−ϑ≤θ≤0

||y(θ)||,

then, system (10) is said to achieve exponential consensus
with exponential convergence rate σ.

Lemma 2. (Gu et al. (2003)) For any matrix Z ∈
Rn×n, Z = ZT > 0, scalar ϑ > 0, and vector function
y : [0, ϑ] → Rn such that the integration concerned are
well defined, then[∫ ϑ

0

y(s)ds

]T
Z

[∫ ϑ

0

y(s)ds

]
≤ ϑ

∫ ϑ

0

yT (s)Zy(s)ds.

Lemma 3. (Wang et al. (1992)) Let U, V and Λ(t) be
real matrices of appropriate dimensions, and Λ(t) satisfy
ΛT (t)Λ(t) ≤ I, then the following inequality holds for any
constant ε > 0:

UΛ(t)V + V TΛT (t)UT ≤ εUUT + ε−1V TV.

Lemma 4. (Boyd et al. (1994)). Let A, B, C be given
matrices such that C > 0, then[

A BT

B −C

]
< 0 ⇔ A+BTC−1B < 0.

3. NON-FRAGILE SAMPLED-DATA CONTROL

In this section, the sufficient conditions for the consensus-
ability of the considered MASs will be proposed by using
the LKF and LMI techniques.

Theorem 1. For desired values of converge rate α > 0,
sampling upper-bound ϑ > 0, coupling strength δ > 0, χ >
0, ε > 0 the matrices M, W , and the controller gain matrix
K, MAS (2) achieves non-fragile exponential consensus by
protocol (4) with a convergence rate σ = α/2 if there exist
positive-definite matrices P > 0, T > 0, Z > 0, such that
the LMI (11) is satisfied:

Ξ =

 Ξ̂ AT M1 εNT

∗ −(IN−1 ⊗ ϑZ) M2 0
∗ ∗ −εI 0
∗ ∗ ∗ −εI

 < 0, (11)

where

Ξ̂ = [Ξi,j ], i, j = 1, 2, . . . , 4,

Ξ1,1 = IN−1 ⊗ (PA + ATP + αP + T −
(e−αϑ

ϑ

)
Z

+ GGT ),

Ξ1,2 = −δ(IN−1 ⊗ P )B1 + (IN−1 ⊗
(e−αϑ

ϑ

)
Z), Ξ1,3 = 0,

Ξ1,4 = (IN−1 ⊗ P )C, Ξ2,2 = −2IN−1 ⊗
(e−αϑ

ϑ

)
Z,

Ξ2,3 = (IN−1 ⊗
(e−αϑ

ϑ

)
Z), Ξ2,4 = 0,

Ξ3,3 = −(IN−1 ⊗
(
e−αϑT +

(e−αϑ
ϑ

)
Z
)
, Ξ3,4 = 0,

Ξ4,4 = −I,
A = [ ϑ(IN−1 ⊗ ZA) −δϑ(IN−1 ⊗ Z)B1 0 ϑ(IN−1 ⊗ Z)C ] ,

M1 =
[
−δ((IN−1 ⊗ P )B2)T 0 0 0

]T
,

M2 = −δϑ((IN−1 ⊗ Z)B2),

N =
[

0 (L̂⊗ In)(IN ⊗W )((LL̂†)⊗ In) 0 0
]
,

B1 = (L̂⊗ In)(IN ⊗ BK)((LL̂†)⊗ In),

B2 = (L̂⊗ In)(IN ⊗ BM)((LL̂†)⊗ In).
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Proof: Consider the following LKF candidate:

V (yt, t) =yT (t)(IN−1 ⊗ P )y(t)

+

∫ t

t−ϑ
yT (s)eα(s−t)(IN−1 ⊗ T )y(s)ds,

+

∫ 0

−ϑ

∫ t

t+ρ

ẏT (s)eα(s−t)(IN−1 ⊗ Z)ẏ(s)dsdρ.

(12)

It follows from (12) that that V (yt, t) ≥ λmin||y(t)||2.

Then, the derivative V̇ (yt, t), along the trajectories of the
system (7) is

V̇ (yt, t) + αV (yt, t) ≤2yT (t)(IN−1 ⊗ P )ẏ(t)

+ αyT (t)(IN−1 ⊗ P )y(t)

+ yT (t)(IN−1 ⊗ T )y(t)

− e−αϑyT (t− ϑ)(IN−1 ⊗ T )y(t− ϑ)

+ ϑẏT (t)(IN−1 ⊗ Z)ẏ(t)

− e−αϑ
∫ t

t−ϑ
ẏT (s)(IN−1 ⊗ Z)ẏ(s)ds.

(13)

Using Lemma 2, we have

−
∫ t

t−ϑ
ẏT (s)(IN−1 ⊗ Z)ẏ(s)ds

≤ −
∫ t−m(t)

t−ϑ
ẏT (s)(IN−1 ⊗ Z)ẏ(s)ds

−
∫ t

t−m(t)

ẏT (s)(IN−1 ⊗ Z)ẏ(s)ds

≤ − 1

ϑ
[y(t−m(t))− y(t− ϑ)]T (IN−1 ⊗ Z)

× [y(t−m(t))− y(t− ϑ)]− 1

ϑ
[y(t)− y(t−m(t))]T

× (IN−1 ⊗ Z)[y(t)− y(t−m(t))]. (14)

From Assumption 1, we have

yT (t)(IN−1 ⊗G)(IN−1 ⊗G)T y(t)

− FT (t, y(t))F (t, y(t)) > 0. (15)

Adding from (13) to (15), we have

V̇ (yt, t) + αV (yt, t) (16)

≤ 2yT (t)(IN−1 ⊗ P )
[
(IN−1 ⊗ A)y(t)

+ By(t−m(t)) + CF (t, y(t))
]

+ yT (t)(IN−1 ⊗ (αP + T ))y(t)

− e−αϑyT (t− ϑ)(IN−1 ⊗ T )y(t− ϑ)

+ ϑ
[
(IN−1 ⊗ A)y(t) + By(t−m(t))

+ CF (t, y(t))
]T

(IN−1 ⊗ Z)
[
(IN−1 ⊗ A)y(t)

+ By(t−m(t)) + CF (t, y(t))
]

− e−αϑ

ϑ
[y(t−m(t))− y(t− ϑ)]T

× (IN−1 ⊗ Z)[y(t−m(t))− y(t− ϑ)]

− e−αϑ

ϑ
[y(t)− y(t−m(t))]T

× (IN−1 ⊗ Z)[y(t)− y(t−m(t))]

+ yT (t)(IN−1 ⊗G)(IN−1 ⊗G)T y(t)

− FT (t, y(t))F (t, y(t)). (17)

Then, by using the relation (5), we can obtain

V̇ (yt, t) + αV (yt, t) ≤ ΨT (t)ΞΨ(t), (18)

where

Ξ = Ξ̂ +AT (IN−1 ⊗ ϑ−1Z)A+ M∆(t)N + (M∆(t)N)T ,

ΨT (t) =
[
yT (t) yT (t−m(t)) yT (t− ϑ) FT (t, y(t))

]
.

By applying Lemma 3, for ε > 0, Ξ in (18) becomes,

Ξ̃ = Ξ̂ +AT (IN−1 ⊗ ϑ−1Z)A+ ε−1MMT + εNTN. (19)

By applying the Lemma 4 to Ξ̃ one can easily obtain Ξ
in (11). It follows from (11) that V̇ (yt, t) + αV (yt, t) ≤
0, t ≥ 0, which implies V (yt, t) ≤ V (y0, 0)e−αt. This leads

to ||y(t)|| ≤
√

V (y0,0)
λmin(P )e

−(α/2)t, which completes the proof.

Remark 1. It is noted that, (11) is not an LMI when K is
unknown (and to be computed) due to multiplication of
decision variables involved in (11). Therefore, we need to
obtain an LMI based constraint that promises the system
(10) to be exponentially stable. In order to do that, the
following theorem is established.

Theorem 2. For desired values of converge rate α > 0,
sampling upper-bound ϑ > 0, coupling strength δ > 0, χ >
0, ε > 0 the matrices M, W , MAS (2) achieves non-fragile
exponential consensus by protocol (4) with a convergence
rate σ = α/2 if there exist matrices P > 0, T > 0, Y , such
that the LMI (20) is satisfied:

Ω =

Ω1 Ω2 Ω3

∗ Ω4 Ω5

∗ ∗ Ω6

 < 0, (20)

where

Ω1 = [Ωi,j ], i, j = 1, 2, . . . , 4,

Ω2 =
[
ϑχ(IN−1 ⊗ AP) −δϑχB1 0 ϑχC

]T
,

Ω3 =
[
M1 εN

T
G

]
, Ω4 = (IN−1 ⊗−ϑχP),

Ω5 =
[
M2 0 0

]
, Ω6 = diag{−εI,−εI,−I},

Ω1,1 = IN−1 ⊗ (AP + PAT + αP + T− χ
(e−αϑ

ϑ

)
P),

Ω1,2 = −δB1 + (IN−1 ⊗ χ
(e−αϑ

ϑ

)
P), Ξ1,3 = 0,

Ω1,4 = C, Ω2,2 = −2IN−1 ⊗ χ
(e−αϑ

ϑ

)
P,

Ω2,3 = IN−1 ⊗ χ
(e−αϑ

ϑ

)
P, Ω2,4 = 0,

Ω3,3 = −IN−1 ⊗
(
e−αϑT + χ

(e−αϑ
ϑ

)
P
)
,

Ω3,4 = 0, Ω4,4 = −I,

G =
[

(IN−1 ⊗ PG)T 0 0 0
]T
,

M1 =
[
−δ(B2)T 0 0 0

]T
, M2 = −δϑχ(B2),

N =
[

0 (L̂⊗ In)(IN ⊗W )((LL̂†)⊗ In)(IN−1 ⊗ P) 0 0
]
,

B1 = (L̂⊗ In)(IN ⊗ BY )((LL̂†)⊗ In),

B2 = (L̂⊗ In)(IN ⊗ BM)((LL̂†)⊗ In).
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and the sampled-data gain matrix can be estimated by
K = Y P−1

Proof: Let P = P−1, T = PTP, Y = KP, Z = χP, χ >
0, S = PSP, Γ = IN−1 ⊗ diag{P,P,P, In,P, In, In}. From
Ξ in (11), calculating Ω = ΓΞΓ we can obtain Ω in (20),
which completes the proof.

4. NUMERICAL EXAMPLE

In order to validate the effectiveness of the proposed con-
trol scheme, we consider the following numerical example.

Example 1. Consider a nonlinear MAS (2) consists of 6
agents. The parameters of (2) are as follows:

A =

[−1 −0.2 0.1
0 −1 0.2

0.1 0 −1

]
, B =

[
0.5 0.2 −0.2
−0.2 −0.5 0.1
0.1 0.1 −0.5

]
,

C =

[
0.2 −0.2 −0.2
−0.2 0.3 −0.4
−0.2 −0.4 0.4

]
, G =

[
0.3 0 0
0 0.3 0
0 0 0.3

]
.

And the Laplacian matrix is shown as follows:

L =


4 0 −1 −1 −1 −1
0 2 0 −1 0 −1
−1 0 2 0 −1 0
−1 −1 0 2 0 0
−1 0 −1 0 2 0
−1 −1 0 0 0 2

 .

The initial states of MAS (2) are chosen as

z1(0) = [ 1 2 3 ]
T
, z2(0) = [ 4 4 0 ]

T
,

z3(0) = [ 1 5 2 ]
T
, z4(0) = [ 8 −2 −3 ]

T
,

z5(0) = [−1 6 −5 ]
T
, z6(0) = [−4 −4 1 ]

T
.

On the other hand, the nonlinear dynamics function and
the time-varying matrix in non-fragile consensus protocol
(4) are chosen as

f(t, z(t)) = [0.5 sin(t) cos(t) 0.5 sin(2t)]T ,

∆(t) = diag{0.5 sin(t), 0.5 cos(t), 0.5 sin(2t)}.

In this example, the following two cases are considered.

4.1 Case I: Without uncertain perturbation

Let ∆K = 0. By solving Theorem 2 with δ = 0.5, χ = 0.5,
σ = 0.1, ε = 1, and the upper bound of sampling interval
ϑ = 0.9, we obtain the consensus protocol K as,

K =

[
0.6174 −0.1301 0.0249
−0.1498 −0.6114 −0.3035
0.0343 −0.3137 −0.6562

]
.

State trajectories of the consensus are shown in Figure
1, the control inputs are shown in Figure 2 and Figure
3 shows the sampling instants for each agent during the
process for Case I.

4.2 Case II: With uncertain perturbation

When ∆K 6= 0, the MAS (2) satisfies the relation (5) with
M and W as follows:

M =

[
0.2 0 0
0 0.2 0
0 0 0.2

]
, W =

[
0.1 0 0
0 0.1 0
0 0 0.1

]
. (21)

Fig. 1. Evolution of state consensus using Theorem 2 for
Case I

Fig. 2. Control inputs ui(t) for Case I
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Fig. 3. Sampling instants for the six agents for Case I

Then, by solving Theorem 2 with δ = 0.5, χ = 0.5,
σ = 0.1, ε = 0.1, and the upper bound of sampling interval
ϑ = 0.5, we obtain the consensus protocol K as,

K =

[
0.3809 −0.0939 0.0099
−0.1051 −0.5408 −0.2511
0.0079 −0.2682 −0.5511

]
.

State trajectories of the consensus are shown in Figure
4, the control inputs are shown in Figure 5 and Figure
6 shows the sampling instants for each agent during the
process for Case II.

5. CONCLUSION

In this study, the non-fragile exponential consensus prob-
lem of nonlinear MASs has been investigated via sampled-
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Fig. 4. Evolution of state consensus using Theorem 2 for
Case II

Fig. 5. Control inputs ui(t) for Case II
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Fig. 6. Sampling instants for the six agents for Case II

data mechanism. Each agent’s control input is based on
the corresponding information of neighboring agents in the
discrete sample events. The exponential consensusability
of the sampled-data control system has been analyzed with
a constant input delay by using LKF and LMI technique.
Further non-fragile sampled-data controller design mea-
sures have also been proposed. Simulation results are pro-
vided to validate the effectiveness of the proposed method.
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