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Abstract: This paper presents an output feedback synthesis for leader-follower consensus of
linear multi-agent systems with switching networks. We first establish uniform global exponential
stability (UGES) for a class of cascaded linear switched systems by adopting weak zero-state
detectibility (WZSD). Then a distributed output feedback controller is proposed based on the
certainty equivalent principle, employing the neighborhood output estimation error only. A
generalized uniformly joint-connected condition for switching networks is provided to check
WZSD without any dwell-time condition.
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1. INTRODUCTION

Over the last decade, control of multi-agent systems has
been extensively studied by the control community, see the
survey Olfati-Saber, Fax, and Murray [2007] and books
Qu [2009], Ren and Beard [2008]. Reaching consensus is
one of important control targets for various multi-agent
systems, see Jadbabaie, Lin, and Morse [2003], Olfati-
Saber and Murray [2004]. The network should be employed
for describing the interconnection of agents, and plays a
key role as it induces a cooperative (or distributed) form
of the multi-agent control. One of the significant and inter-
esting networks is the so-called switching network, which
is able to formulate the communication failures or changes
in practice more effectively than the static network. It is
known that the cooperative control over a switching net-
work induces a switched closed-loop system. In particular,
when the network is not connected at any time but merely
satisfies the so-called uniformly jointly-connected (UJC)
condition, the closed-loop embodies essentially a switched
system with marginally stable (or even unstable) switching
modes. Such a situation makes the closed-loop stability
analysis nontrivial even in the field of switched systems.

So far, many efforts have been devoted to the consensus
studies over UJC switching networks. One attempt is
based on the stochastic matrix analysis. Jadbabaie, Lin,
and Morse [2003] first applied this idea for studying
the single integrator multi-agent systems with undirect
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networks. Such analysis was later extended to the direct
network case in Hu and Hong [2007], Ren and Beard
[2005] and linear system with an input matrix of full row
rank in Qin, Gao, and Yu [2014]. Notice that this method
requires the dwell-time condition of the switching signal
to guarantee a well-defined transition matrix, and may be
no easy to be extended to other agent models due to the
complexity of transition matrix.

The other attempt is based on Lyapunov analysis. Since
the network may by disconnected at some instants, it is
usually difficult to construct the strict Lyapunov function
for the closed-loop switched system. Instead, one may only
find the weak Lyapunov function, and hence, additional
tools of switched systems have to be explored for reaching
the convergence, such as non-smooth analysis (Lin [2005],
Yang et.al. [2016]), small-gain theorem (Liu and Jiang
[2014]), generalized Barbalat’s Lemma (Su and Huang
[2012b,d]), LaSalle’s invariance principle (Cheng, Wang,
and Hu [2008]), Krasovskii-LaSalle theorem (Lee, Xia,
Su, and Huang [2018]). However, all of these approaches
still rely on the dwell-time condition of switching signals.
Notice that a dwell-time condition cannot be associated
with the link failures instantaneously, so it is important
to consider approaches that avoid dwell-time constraints.
For this purpose, Lee, Tan, and Mareels [2017] provided
an analytic condition that is without dwell-time condition.

It is worth mentioning that all of the aforementioned
references worked only on the full-state feedback control.
Regarding the output feedback control, some attempts
have been devoted to static networks by means of the
famous separation principle for the linear time-invariant
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system, see You and Xie [2011], Zhang, Lewis, and Das
[2011], while, the studies for the GUJC (or UJC) switching
networks is quite difficult and has been few touched, see
Su and Huang [2012c]. There are two main challenges that
has to be overcome. First, there are no results on the
separation principle for switched systems with a specified
group of switching signals. Second, the closed-loop system
can hardly admit a weak Lyapunov function even though
some partial subsystems can.

Motivating by this situation, this paper aims to investigate
the output feedback synthesis for leader-follower consensus
of linear multi-agent systems subject to GUJC switching
networks. Our contribution is of the following aspects.

• First, the uniform global exponential stability of a
class of cascaded linear switched systems is presented.
It is interesting to see that the presented system may
hardly admit a (weak/strict) Lyapunov function. It
is either not sure on the construction of the con-
verse Lyapunov function with respect to the switched
system with a specified group of switching signals.
These difficulties are overcome by adopting the so-
called weak zero-state detectibility (WZSD).
• Second, the WZSD property for the switched closed-

loop system is interpreted by the GUJC condition of
switching networks without any dwell-time condition.

2. STABILITY RESULTS ON SWITCHED SYSTEMS

This section reviews some terminologies for switched linear
systems, adopting from Lee [2018], Lee, Tan, and Ma-
reels [2017, 2020]. The concept of WZSD and a general-
ized Krasovskii-LaSalle theorem are recalled. The uniform
global exponential stability of a class of cascaded linear
switched systems is then established by adopting WZSD.

2.1 Generalized Krasovskii-LaSalle Theorem: Changing
Dynamics and Outputs

Consider the switched linear system

ẋ = Aλ(t)x,

y = Cλ(t)x (1)

where x ∈ X is the state with X being a nonempty closed
subset of Rp, y ∈ Rq is the output, λ : R≥0 → Λ
is the Λ-valued switching signal with Λ being a finite
index set, Aζ ∈ Rp×p, ζ ∈ Λ, is the system matrix, and
Cζ ∈ Rp×q is the output matrix. Here a switching signal
is defined as a piecewise constant and right-continuous
function with finitely many discontinuous points in any
finite time interval. We use Θ to denote a set of possible
switching signals.

Let (x, λ) be a forward complete solution pair (see Lee,
Tan, and Mareels [2017, 2020]) with x : R≥0 → X being
locally absolutely continuous and λ : R≥0 → λ being a
switching signal, where X is scaling-invariant, i.e., for any
ρ > 0 and any x ∈ X, ρx ∈ X. Let Φ(Θ) be the set of
all forward complete solution pairs (x, λ) with λ ∈ Θ. To
depict the limiting behavior of the solution of (1), it is
necessary to recall the concept of limiting zeroing-output
solution, see Lee, Tan, and Mareels [2017].

Definition 1. A continuous function z̄ : R → X is said
to be a limiting zeroing-output solution of (1) w.r.t.

Φ(Θ) if, there exist sequences {(zn, λn)} ⊆ Φ(Θ) and
{tn} ⊆ R≥0 with tn ≥ 2n, such that the following hold:
{zn(· + tn) : [−n, n] → X} converges uniformly to z̄ on
every compact subset of R; and for almost all t ∈ R,
limn→+∞Cλn(t+tn)z̄(t) = 0.

The key tool to describe the limiting zeroing-output solu-
tion is the so-called zeroing pair, see Lee, Tan, and Mareels
[2020]. It is defined as: given two matrices M ∈ Rq̂×p and

M̃ ∈ Rq̃×p, (M, M̃) is said to be a zeroing pair w.r.t. X
if for any x ∈ X, Mx = 0 implies M̃x = 0. As shown in
[Lee, Tan, and Mareels, 2020, Theorem 2], if there exist

switching matrices Âζ ∈ Rp×p and Ĉζ ∈ Rq̂×p such that

for any ζ ∈ Λ, (Cζ ,Aζ−Âζ) and (Cζ , Ĉζ) are both zeroing
pairs w.r.t. X, then, every bounded limiting zeroing-output
solution z̄ : R → X of (1) w.r.t. Φ(Θ) satisfies the
following conditions where {λn} ⊆ Θ and {tn} ⊆ R≥0

with tn ≥ 2n:

z̄(t) = z̄(0) + lim
n→+∞

∫ t

0

Âλn(τ+tn)z̄(τ)dτ, for all t ∈ R

(2)

and

lim
n→+∞

Ĉλn(t+tn)z̄(t) = 0, for almost all t ∈ R. (3)

Conversely, it is possible to show that any solution to the
limiting equation (2), subject to (3) and lying within X,
is also the limiting zeroing-output solution of (1) w.r.t.
Φ(Θ). This fact is summarized by the following lemma,
where its proof is omitted due to the space limit.

Lemma 1. Consider the switched system (1), where X is
scaling-invariant. Assume that Θ satisfies λ(· + s) ∈ Θ
for all s ≥ 0 and all λ ∈ Θ, and the origin of (1) is
uniformly globally stable (UGS) w.r.t. Φ(Θ). Suppose that
there exists a bounded continuous function z̄ : R → X
such that (2) holds with Âζ = Aζ for all ζ ∈ Λ. Then
there exist sequences {(zm, λm)} ⊆ Φ(Θ) and {sm} ⊆ R≥0

with sm ≥ 2m, such that {zm(· + sm) : [−m,m] → X}
converges uniformly to z̄ on every compact subset of R.
Moreover, if (3) holds with Ĉζ = Cζ for all ζ ∈ Λ, then z̄
is a limiting zeroing-output solution of (1) w.r.t. Φ(Θ).

Now weak zero-state detectability can be defined, and the
generalized Krasovskii-LaSalle theorem can be established
accordingly, see in Lee, Tan, and Mareels [2020], where
by the scaling-invariant property of X, uniform global
exponential stability of the origin is equivalent to uniform
global asymptotic stability of the origin, see [Lee and
Jiang, 2008, Lemma 1]:

Definition 2. System (1) is said to be weakly zero-state
detectable (WZSD) w.r.t. Θ if every bounded limiting
zeroing-output solution z̄ : R → X of (1) w.r.t. Φ(Θ)
satisfies inft∈R ‖z̄(t)‖ = 0.

Theorem 1. [Generalized Krasovskii-LaSalle Theorem] Co-
nsider the switched system (1), where λ ∈ Θ. Suppose that
the origin is UGS w.r.t. Φ(Θ) and the bounded-output-
energy condition∫ +∞

s

‖Cλ(τ)x(τ)‖2dτ ≤ µ(x(s)), ∀s ≥ 0 (4)

holds for any λ ∈ Θ, with some continuous function
µ : Rp → R≥0. Then the origin is uniformly globally
exponential stable (UGES) w.r.t. Φ(Θ), i.e., there exist
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a > 0 and b > 0 such that for any (x, λ) ∈ Φ(Θ),
‖x(t)‖ ≤ ae−b(t−s)‖x(s)‖ for all t ≥ s ≥ 0, provided that
(1) is WZSD w.r.t Θ.

In the remaining of this section, the terminologies of
UGES, UGS, and limiting zeroing output solution are all
with respect to Φ(Θ) and the terminology of WZSD is with
respect to Θ, where we omit “w.r.t.” for simplicity.

2.2 UGES of cascaded linear switched systems

We need the following lemma.

Lemma 2. Consider three functions κi : [s,+∞) →
R≥0, i = 1, 2, 3, for some s ∈ R. Suppose that κ1 is
locally absolutely continuous, κ2 is measurable, and κ3 is
Lebesgue integrable. If κ̇1(t) ≤ −κ2(t) + κ3(t)(1 + κ1(t))
for almost all t ∈ [s,+∞), then, for all t ≥ s, the following
inequalities hold:

κ1(t) ≤ eκ4(s)(1 + κ1(s)), (5)∫ +∞

s

κ2(τ)dτ ≤ κ4(s)eκ4(s) + (1 + κ4(s)eκ4(s))κ1(s) (6)

where 0 ≤ κ4(s) ,
∫ +∞
s

κ3(τ)dτ < +∞.

Now let us explore the UGES property of the following
general cascaded form

ξ̇1 =M1λ(t)ξ1 +M3λ(t)ξ2, (7a)

ξ̇2 =M2λ(t)ξ2 (7b)

where, for i = 1, 2, ξi ∈ Rpi is the state, and for ζ ∈ Λ,
M1ζ ∈ Rp1×p1 , M2ζ ∈ Rp2×p2 and M3ζ ∈ Rp1×p2 .
Regarding system (7), the following theorem holds.

Theorem 2. Consider the switched linear system (7) and
an interesting set Θ of switching signals satisfying that
Θ satisfies λ(· + s) ∈ Θ for all s ≥ 0 and all λ ∈ Θ.
Suppose that there exist proper quadratic positive definite
functions Vi : Rpi → R≥0, i = 1, 2, such that for all
ξi ∈ Rpi and all ζ ∈ Λ,

∂Vi(ξi)

∂ξi
Miζξi ≤ −||Niζξi||2 (8)

and the systems

ξ̇1 =M1λ(t)ξ1, Y1 = N1λ(t)ξ1, (9a)

ξ̇2 =M2λ(t)ξ2, Y2 = N2λ(t)ξ2 (9b)

are WZSD. Then the origin of (7) is UGES.

Proof: Since Vi(·) is quadratic and positive definite, there
exist µj > 0, j = 1, 2, 3, such that for i = 1, 2, µ1||ξi||2 ≤
Vi(ξi) ≤ µ2||ξi||2 and ||∂Vi(ξi)/∂ξi|| ≤ µ3||ξi||.
Step-1: to show the origin of subsystem (7b) is UGES.
From (8), we know that the origin of subsystem (7b) is
UGS. Define a virtual output Y2(t) as that in (9b). By
(8) and applying (6) of Lemma 2 with κ1(t) = V2(ξ2(t)),
κ2(t) = ||N2λ(t)ξ2(t)||2, and κ3(t) = 0, it holds that∫ +∞
s
||N2λ(τ)ξ2(τ)||2dτ ≤ V2(ξ2(s)) ≤ µ2||ξ2(s)||2. Notice

that system (9b) is WZSD. Following Theorem 1, the
origin of subsystem (7b) is UGES, i.e., there exist a2 > 0
and b2 > 0 such that for all (ξ2, λ) ∈ Φ(Θ), we have

‖ξ2(t)‖ ≤ a2e
−b2(t−s)‖ξ2(s)‖ (10)

for all t ≥ s ≥ 0.

Step-2: to show the origin of the whole system (7) is UGES.
From (8), it holds that for all ζ ∈ Λ,

V̇1(ξ1) ≤ −||N1ζξ1||2 +
∂V1(ξ1)

∂ξ1
M3ζξ2. (11)

Notice that∥∥∥∥∂V1(ξ1)

∂ξ1

∥∥∥∥ ≤ µ3

(
1 + ||ξ1||2

)
≤ µ3 max{1, 1

µ1
}(1+V1(ξ1)).

From (10) and (11), it holds that

V̇1(ξ1) ≤ −||N1ζξ1||2 + (1 + V1(ξ1)) γ(t) (12)

where γ(t) , a2µ3 max{1, 1/µ1}maxζ∈Λ{||M3ζ ||}‖ξ2(s)‖
e−b2(t−s), which satisfies

∫ +∞
s

γ(τ)dτ = γ̂‖ξ2(s)‖ with

γ̂ , (a2/b2)µ3 max{1, 1/µ1}maxζ∈Λ{||M3ζ ||}. Then ap-
plying (5) of Lemma 2 with κ1(t) = V1(ξ1(t)), κ1(t) =
|||N1λ(t)ξ1(t)||2, and κ3(t) = γ(t) gives that V1(ξ1(t)) ≤
γ̂‖ξ2(s)‖ (1 + V1(ξ1(s))) ≤ γ̂‖ξ2(s)‖

(
1 + µ2||ξ1(s)||2

)
for

all t ≥ s ≥ 0. It yields that ‖ξ1(t)‖ ≤ µ
− 1

2
1 (γ̂‖ξ2(s)‖(1 +

µ2||ξ1(s)||2))
1
2 for all t ≥ s ≥ 0. By Cauchy inequality, it

holds that

‖ξ(t)‖ ≤
√

2 (‖ξ1(t)‖+ ‖ξ2(t)‖) ≤ α(‖ξ(s)‖)
for all t ≥ s ≥ 0, where α(l) ,

√
2(µ
− 1

2
1 (γ̂l(1 +µ2l

2))
1
2 + l)

is of class K∞. Therefore, the origin of (7) is UGS.

Now applying (6) of Lemma 2 with κ1(t) = V1(ξ1(t)),
κ2(t) = ||N1λ(t)ξ1(t)||2, and κ3(t) = γ(t) gives that∫ +∞

s

||N1λ(τ)ξ1(τ)||2dτ ≤ µ(ξ1(s), ξ2(s)) (13)

where µ(u1, u2) = γ̂‖u2‖eγ̂‖u2‖+(1+γ̂‖u2‖eγ̂‖u2‖)µ2||u1||2,
for all uk ∈ Rpk , k = 1, 2. Let us define the virtual output
for the whole system (7) as

Y (t) =

[
N1λ(t)ξ1(t)

ξ2(t)

]
=

[
N1λ(t) 0

0 Ip2

] [
ξ1(t)
ξ2(t)

]
. (14)

By (10) and (13), it holds that
∫ +∞
s
‖Y (t)‖2dτ ≤

a22
2b2
‖ξ2(s)‖2 + µ(ξ1(s), ξ2(s)) for all t ≥ s ≥ 0. Therefore,

the bounded-output-energy condition for the system (7)
holds.

Since for all ζ ∈ Λ([
N1ζ 0

0 Ip2

]
,

[
M1ζ M3ζ

0 M2ζ

]
−
[
M1ζ 0

0 M2ζ

])
are zeroing pairs w.r.t. Rp1+p2 , there exist {λn} ⊆ Θ and
{tn} ⊆ R≥0 with tn ≥ 2n such that every bounded limiting
solution of (7) satisfies ξ̄2(t) ≡ 0 and

ξ̄1(t) = ξ̄1(0) + lim
n→+∞

∫ t

0

M1λn(τ+tn)ξ̄1(τ)dτ, for all t ∈ R

(15)

and

lim
n→+∞

N1λn(t+tn)ξ̄1(t) = 0, for almost all t ∈ R. (16)

According to Lemma 1, (15) and (16) imply that ξ̄1 is
a limiting zeroing-output solution of system (9a). Since
system (9a) is WZSD, inft∈R ||ξ̄1(t)|| = 0. Thus, the system
composed of (7) and (14) is WZSD.

Therefore, by Theorem 1, the origin of (7) is UGES. The
proof is thus completed. 2
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Remark 1. Theorem 2 essentially establishes a separation
principle for a class of switched linear systems with a
cascaded structure by means of UGES property of its
“diagonal” switched linear subsystems.

3. AGENT DYNAMICS AND SWITCHING
NETWORKS

This section gives first the problem formulation of leader-
follower consensus. Then a new connectivity condition,
namely, generalized uniform joint connectivity (GUJC)
is depicted for switching networks. Such a condition is
without the so-called dwell-time condition, and hence is
weaker than those conditions in the literatures. Moveover,
the WZSD property is related to the GUJC condition for
two classes of linear switched systems determined by the
switching networks.

3.1 System Model and Problem Formulation

Consider a group of N + 1 agents consisting of N follower
systems with linear dynamics

ẋi = Axi +Bui,

yi = Cxi, i = 1, . . . , N (17)

where xi ∈ Rn, ui ∈ Rm, and yi ∈ Rp are the state, input,
and output of the ith follower, respectively, and the leader
system with autonomous linear dynamics

ẋ0 = Ax0, y0 = Cx0 (18)

where x0 ∈ Rn and y0 ∈ Rp are the state and output of
the leader, respectively.

All of these N+1 agents are interconnected by a switching
network that is defined by a switching graph Ḡζ = (V̄, Ēζ),
where V̄ = {0, 1, . . . , N} represents the N agents, Ēζ ⊆ V̄×
V̄ for all ζ ∈ Λ. Here we assume that all the subgraph Gζ
of Ḡζ by removing the node 0 and the corresponding edges
is undirected. Λ represents all possible graphs which are
not necessary to be connected. For a Λ-valued switching
signal λ : R≥0 → Λ with Λ denoting a set of possible
graphs having the node set V̄, the edge (j, i) ∈ Ēλ(t) if
and only if the control of the i-th agent can make use of
the information of the j-th agent for feedback at the time
instant t. It is assumed for convenience that no edges (j, 0)
exist since the leader system needs no input.

The leader-follower consensus is said to be achieved if we
can find a distributed output feedback controller such that
for all initial states of systems (17) and (18), all solutions
of the closed-loop system exist and are bounded for all
t ∈ R≥0 with limt→∞ (xi(t)− x0(t)) = 0.

Here, without loss of generality, the initial times of the
closed-loop state and the switching signal are always
assumed to be zero. In contrast with the state feedback
case studied in the previous references, say Cheng, Wang,
and Hu [2008], Jadbabaie, Lin, and Morse [2003], Lin
[2005], Ren and Beard [2005], Su and Huang [2012b],
Yang et.al. [2016], the distributed observer based output
feedback synthesis will be considered here.

3.2 Generalized Uniform Joint Connectivity

This section presents a general condition for the network
connectivity. For any τa > 0 and any switching signal λ,

the τa-joint graph over a time interval [t1, t2) is defined as

Ḡτaλ ([t1, t2)) =

V̄, ⋃
ζ∈λτa [t1,t2)

Ē(ζ)


where

λτa [t1, t2) =

{
ζ ∈ Λ

∣∣∣∣ ∫ t2

t1

λζ(τ)dτ ≥ τa
}

with λζ(·) being the indicator function defined as

λζ(τ) =

{
1, if λ(τ) = ζ
0, if λ(τ) 6= ζ

for the given switching signal λ. In this paper, the switch-
ing graph Ḡλ(t) is assumed to satisfy the following gen-
eralized uniformly jointly connected (GUJC) condition in
the leader-follower sense, where Θ is an interested set of
switching signals.

Assumption 1. There exists a constant pair (τa, T ) with
T ≥ τa > 0 such that for all λ ∈ Θ and any t ∈ R≥0, the
τa-joint graph Ḡτaλ ([t, t+T )) contains a spanning tree with
the node 0 as the root.

Notice that the set Θ of switching signals satisfies λ(· +
s) ∈ Θ for all s ≥ 0 and all λ ∈ Θ automatically provided
that Assumption 1 holds.

Remark 2. It is worth mentioning that Lee, Tan, and
Mareels [2017] presents an equivalent analytic condition
(see condition (C2) in Lee, Tan, and Mareels [2017]) for
evaluating the WZSD of the system (19). Comparing with
that analytic condition, the GUJC condition here is easier
to be verified.

3.3 WZSD via GUJC

This section interprets the WZSD property of two classes
of switched linear systems.

For all ζ ∈ Λ, define the H-matrix Hζ = [hζij ] ∈ RN×N

associated with the graph Ḡζ , where hζij = −aζij , and

hζii =
∑N
j=0 a

ζ
ij . Here for all ζ ∈ Λ, aζij satisfy for

i, j = 0, 1, . . . , N , aζii = 0 and aζij = aζji > 0 if and only if

(j, i) ∈ Ēζ . Notice that for all ζ ∈ Λ, Hζ is symmetric and
positive semi-definite.

For a Λ-valued switching signal λ(t) and the correspond-
ing switching matrix Hλ(t), consider linear switched au-
tonomous systems

ξ̇ = ((IN ⊗A)− δHλ(t) ⊗ (BBTP ))ξ,

y =

[
IN ⊗ (−PA−ATP )1/2

√
2δH1/2

λ(t) ⊗BTP

]
ξ (19)

and

ξ̇ = (IN ⊗A− δHλ(t) ⊗ (P−1CTC))ξ,

y =

[
IN ⊗ (−PA−ATP )1/2

√
2δH1/2

λ(t) ⊗ C

]
ξ (20)

where ξ ∈ RnN , δ > 0, A,P ∈ Rn×n, B ∈ Rm×n satisfying
that (A,B,C) is stabilizable and detectable, and P is
positive definite with PA+ ATP ≤ 0. Then the following
lemma holds, where its proof is omitted due to the space
limit.
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Lemma 3. Under Assumption 1, systems (19) and (20) are
both WZSD.

Remark 3. Lemma 3 interprets the WZSD property by
means of the GUJC condition. As a consequence, it is
possible to use the separation principle providing in Sec-
tion 2 for designing the distributed observer based output
feedback controller.

4. DISTRIBUTED OUTPUT FEEDBACK SYNTHESIS

This section provides a distributed observer based output
feedback synthesis for the leader-follower consensus prob-
lem. The stability analysis relies on the WZSD from UGJC
as discussion in previous section.

4.1 Distributed Observer and Output Feedback Controller

For i = 1, . . . , N , we define the distributed output feedback
controller of the following form:

ui = −K
N∑
j=0

a
λ(t)
ij (x̂i − x̂j), (21a)

˙̂xi = Ax̂i +Bui − L
N∑
j=0

a
λ(t)
ij [C(x̂i − x̂j)− (yi − yj)]

(21b)

where K and L are the gain matrices to be determined.
Here like Zhang, Lewis, and Das [2011], it is supposed that
the leader state can be measured by those agents that are
link to the leader and hence we let x̂0 = x0 for simplicity.

Remark 4. The observer (21b) is Luenberger type based
on the neighborhood output estimation error. It has been
employed in Zhang, Lewis, and Das [2011] for solving the
leader-follower consensus subject to static networks by
means of the famous separation principle for the linear
time-invariant system. In contrast, by making use of the
separation principle for the switched linear system (see
Remark 1), we are able to develop the leader-follower
consensus subject to the switching networks satisfying the
proposed GUJC condition.

4.2 Stability of the Closed-loop System

To depict the closed-loop system, we define x̃i = xi − x̂i,
and ei = xi − x0, i = 1, . . . , N. Letting e = [eT1 , . . . , e

T
N ]T

and x̃ = [x̃T1 , . . . , x̃
T
N ]T gives that

ė = [IN ⊗A− δHλ(t) ⊗ (BBT)P ]e+ δHλ(t) ⊗ (BBPT)x̃,
(22a)

˙̃x = [IN ⊗A− δHλ(t) ⊗ (P−1CTC)]x̃, (22b)

Theorem 3. Suppose that (A,B,C) is stabilizable and
detectable and P is positive definite with PA+ATP ≤ 0.
Let K = δBTP and L = δP−1CT with δ > 0 chosen
arbitrarily. Under Assumption 1, the closed-loop system
(22) is UGES. Thus, the leader-follower consensus problem
is solved.

Proof: It is seen that (22) is of the cascaded form (7) with
ξ1 = e, ξ2 = x̃, and

M1ζ = IN ⊗A− δHζ ⊗ (BBTP ),

M2ζ = IN ⊗A− δHζ ⊗ (P−1CTC),

M3ζ = δHζ ⊗ (BBTP )

0 3

1 4

2 5

Ḡ1

0 3

1 4

2 5

Ḡ2

0 3

1 4

2 5

Ḡ3

Fig. 1. The graphs Ḡi, i = 1, 2, 3.

Consider the proper positive definite functions V1(e) =
eT(IN ⊗P )e and V2(x̃) = x̃T(IN ⊗P )x̃. Then it holds that

∂V1(e)

∂e
[IN ⊗A− δHζ ⊗ (BBTP )]e

= eT[IN ⊗ (PA+ATP )]e− 2δeT[Hζ ⊗ (PBBTP )]e.

and
∂V2(x̃)

∂x̃
[IN ⊗A− δHζ ⊗ (P−1CTC)]x̃

= x̃T[IN ⊗ (PA+ATP )]x̃− 2δx̃T[Hζ ⊗ (CTC)]x̃.

Thus, we can define

N1ζ =

[
IN ⊗ (−PA−ATP )1/2

√
2δH1/2

ζ ⊗ (BTP )

]
,

N2ζ =

[
IN ⊗ (−PA−ATP )1/2

√
2δH1/2

ζ ⊗ C

]
.

Then (8) holds. Moreover, from Lemma 3, both systems of
(9) are WZSD. In view of Theorem 2 , it can be concluded
that the origin of the system (22) is UGES. This completes
the proof. 2

4.3 Simulation

An example is provided here to illustrate the aforemen-
tioned control design. Consider a multi-agent system with
one leader and five followers, where the agent dynamics
are of the form (17) and (18) with

A =

[−1 0 0
1 0 1
0 −1 0

]
, B =

[
0
0
1

]
, C = [0 1 −1]

and the switching graph G(ζ), with ζ ∈ {1, 2, 3}, is shown
in Fig. 1. The switching signal λ(t) is defined as follows:

λ(t) =


1, if (k + l

k+1 )T ′ ≤ t < (k + l+1/3
k+1 )T ′,

2, if (k + l+1/3
k+1 )T ′ ≤ t < (k + l+2/3

k+1 )T ′

3, if (k + l+2/3
k+1 )T ′ ≤ t < (k + l+1

k+1 )T ′

where k ∈ Z+, l = 0, 1, . . . , k, and T ′ is chosen arbitrarily.
It is of interest to see that the proposed switching signal
λ(t) does not satisfy any dwell-time conditions. However,
Gλ(t) is GUJC since Assumption 1 holds with τa = T ′/6
and T = T ′. Notice that (A,B,C) is stabilizable and
detectable, and satisfies PA + ATP ≤ 0 with a positive
definite matrix P = [2, 0.5, 0.5; 0.5, 1, 0; 0.5, 0, 1].

Applying Theorem 3, a simulation with δ = 3, K =
[0.5, 0, 1], L = [0, 1,−1]T, T ′ = 10 is reported in Fig.
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Fig. 2. Time responses of the consensus errors.

2, where the responses of the consensus errors have been
shown. It can be seen that satisfactory converging behavior
is obtained.

5. CONCLUSION

This paper has established the uniform exponential stabil-
ity of a class of cascaded linear switched systems. With its
aid, a distributed output feedback controller has been de-
veloped for solving the leader-follower consensus of linear
multi-agent systems with undirect switching networks sat-
isfying a generalized uniformly joint-connected condition
without any dwell-time condition. The further work will
toward the study on direct switching networks.

REFERENCES

Cheng, D., Wang, J., & Hu, X. (2018). An extension
of LaSalle’s invariance principle and its application to
multi-agent consensus. IEEE Transactions on Auto-
matic Control, 53(7), 885-890.

Hu, J., & Hong, Y. (2007). Leader-following coordination
of multi-agent systems with coupling time delays. Phys-
ica A: Statistical Mechanics and its Applications, 374(2),
853-863.

Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination
of groups of mobile agents using nearest neighbor rules.
IEEE Transactions on Automatic Control, 48(6), 988-
1001.

Lang, S. (1983). Real Analysis. MA: Addison-Wesley.
Lee, T. C. (2018). Uniqueness of limiting solutions with

application to switched systems. In Proceeding of the
4th International Conference on Control, Automation
and Robotics, (pp. 310-315), Auckland, New Zealand.

Lee, T. C., & Jiang, Z. P. (2008). Uniform asymptotic
stability of nonlinear switched systems with an applica-
tion to mobile robots. IEEE Transactions on Automatic
Control, 53(5), 1235-1252.

Lee, T. C., Tan, Y., & Mareels, I. (2017). Analyzing the
stability of switched systems using common zeroing-
output systems. IEEE Transactions on Automatic Con-
trol, 62(10), 2282-2297.

Lee, T. C., Tan, Y., & Mareels, I. (2020). Detectability
and uniform global asymptotic stability in switched

nonlinear time-varying systems. IEEE Transactions on
Automatic Control, 65(5), 2123-2138.

Lee, T. C., Xia, W., Su, Y., & Huang, J. (2018) Expo-
nential consensus of discrete-time systems based on a
novel Krasovskii-LaSalle theorem under directed switch-
ing networks. Automatica, 97, 189-199.

Lin, Z. (2005). Coupled Dynamic Systems: From Structure
Towards Stability and Stabilizability. Ph.D. dissertation,
University of Toronto, Toronto, Canada.

Liu, T., & Jiang, Z. P. (2014) Distributed nonlinear control
of mobile autonomous multi-agents. Automatica, 50,
1075-1086.

Ni, W., & Cheng, D. (2010). Leader-following consensus of
multi-agent systems under fixed and switching topolo-
gies. Systems & Control Letters, 59(3), 209-217.

Olfati-Saber, R. & Murray, R. M. (2004). Consensus prob-
lems in networks of agents with switching topology and
time-delays. IEEE Transactions on Automatic Control,
49(1), 1520-1533.

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007).
Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE, 95(1), 215-223.

Qin, J., Gao, H., & Yu, C. (2014). On discrete-time
convergence for general linear multi-agent systems under
dynamic topology. IEEE Transactions on Automatic
Control, 59(4), 1054-1059.

Qu, Z. (2009). Cooperative Control of Dynamical Systems:
Applications to Autonomous Vehicles. London: Springer
Verlag.

Ren, W., & Beard, R. W. (2005). Consensus seeking in
multiagents systems under dynamically changing in-
teraction topologies. IEEE Transactions on Automatic
Control, 50(5), 655-661.

Ren, W., & Beard, R. W. (2008). Distributed Consensus in
Multi-vehicle Cooperative Control. Communications and
Control Engineering Series, London: Springer-Verlag.

Su, Y., & Huang, J. (2012a). Cooperative output regula-
tion of linear multi-agent systems. IEEE Transactions
on Automatic Control, 57(4), 1062-1066.

Su, Y., & Huang, J. (2012b). Stability of a class of linear
switching systems with applications to two consensus
problems. IEEE Transactions on Automatic Control,
57(6), 1420-1430.

Su, Y., & Huang, J. (2012c). Cooperative output reg-
ulation with application to multi-agent consensus un-
der switching network. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 42(3), 864-
875.

Su, Y., & Huang, J. (2012d). Two consensus problems
for discrete-time multi-agent systems with switching
network topology. Automatica, 48(9), 1988-1997.

Yang, T., Meng, Z., Shi, G., Hong, Y., & Johansson, K.
H. (2016). Network synchronization with nonlinear dy-
namics and switching interactions. IEEE Transactions
on Automatic Control, 61(10), 3103-3108.

You, K., & Xie, L. (2011). Coordination of discrete-
time multi-agent systems via relative output feedback.
International Journal of Robust and Nonlinear Control,
21(13), 1587-1605.

Zhang, H., Lewis, F. L., & Das, A. (2011). Optimal design
for synchronization of cooperative systems: state feed-
back, observer and output feedback. IEEE Transactions
on Automatic Control, 56(8), 1948-1952.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3086


