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Abstract: Plastic injection molding is characterized by high design flexibility of the manufac-
tured parts. Consequently, it is one of the most important processes for mass production of
plastic parts. The setup of the manufacturing process is very complex due to numerous impact
factors. In addition, material fluctuations or changing ambient conditions require the adaption
of the setup during manufacturing to guarantee a constant product quality.
In order to reduce the setup effort and to control the quality, the concept of model-based self-
optimization is applied to injection molding. Therefore, a model-based Norm-Optimal Iterative
Learning Controller (NOILC) is used to track a desired reference for the cavity pressure during
the entire cycle. This reference is determined by the so-called pvT-optimization which considers
the cooling behavior of the melt within the cavity. It is shown by experiments that the cavity
pressure can be controlled with high accuracy using the presented NOILC. Furthermore, the
accuracy of the quality, especially the part weight is improved by combining the NOILC with
an additional pvT-optimization.

Keywords: Lifted System Notation, Iterative Learning Control, Extended Kalman Filter,
Quality Control, Injection Molding, pvT-Optimization, Manufacturing

1. INTRODUCTION

Injection molding of thermoplastics is one of the most
important processes for manufacturing of plastic parts.
The parts are manufactured by injection molding machines
which in a simplified way consist of a plasticizing unit and
a mold (Fig 1). The task of the plasticizing unit (5) is to
melt the thermoplastic granulate, to dose it and inject it
into the cavity (2) of the mold (1). Consequently, the shape
depends on the geometry of the cavity. Therefore, the mold
has to be designed and manufactured individually for each
part.
Plastic injection molding is a discontinuous manufactur-
ing process, since the process steps are repeated cyclical.
At the beginning of each cycle, the granulate is fed via
the hopper (6) into the plasticizing unit by a rotation
of the screw (4), which in this case is actuated by a
servo-electric drive (7). As a result of the friction between
plastics, screw and the wall of the barrel the granulate
is plasticized. At the same time the melt temperature
is controlled by heating elements which are mounted on
the outer wall of the plasticizing cylinder. During dosing,
the screw performs a rotational movement superposed by
a translational rearward movement, filling and enlarging
the screw antechamber (3) until the desired melt injection
volume is reached. The plastic melt is then injected into
the cavity by a translational screw movement. Once the
melt enters the tempered mold, it is cooled down. This

results in shrinkage of the melt during the solidification
process which is compensated in the so-called packing
phase by a mass flow from the screw antechamber into
the cavity until the gate is solidified. The melt within the
cavity cools further down until the part is ejected and a
new cycle begins.
Injection molding machines have numerous sensors al-

ready integrated and thus have a high potential for au-
tomation. In order to increase the level of automation
e. g. Thombansen et al. (2018); Djurdjanovic et al. (2018)
propose the establishment of both process and quality
control loops. Therefore, further sensors have to be in-
tegrated in the process to monitor e. g. temperature and
pressure within the cavity. This enables the observation of
these values and consequently the development of higher
control loops. Due to the nonlinear material behavior clas-
sical controllers (e. g. PID-controllers) are not suitable for
the application in such control loops, see e. g. Agrawal
et al. (1987). For this reason, the parameters of the PID-
controllers are adapted to the current system state, as
done by Gao et al. (1994); Kazmer and Barkan (1997).
However, these approaches have to be parameterized for
each mold which is time-consuming. In order to simplify
the parameterization, numerous model-based controllers
are researched. Here different controlled variables were
examined in the related literature, which are applied for
the screw velocity, the injection velocity, the drive pressure
or the drive force, the cavity pressure as well as the melt
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Fig. 1. Schematic structure of a plastic injection molding
machine with the geometry of the manufactured plate
and the positions of the pressure sensors.

temperature. See for example Dubay et al. (2014); Lindert
et al. (2014); Li et al. (2010); Michaeli and Schreiber
(2009); Froehlich et al. (2019).
First approaches, e. g. Chen et al. (2008b), use quality
models in order to control the part quality. However, since
no physical correlation exists between the machine values
and the quality values, empirical models are used. Further-
more, an adaptive, iterative learning controller is described
by Chen et al. (2008a), which is based on a repetitive pa-
rameter estimation. In addition, Schiffers (2009); Tellaeche
and Arana (2013) adapt the machine settings with respect
to an empirical quality model. In the cited literature all
system models are based on empirical data. Thus, the
models and in consequence the derived controllers are only
valid for a known and trained combination of machine,
mold and material.

In prior work two different model-based predictive con-
troller approaches as well as a Norm-Optimal Iterative
Learning Controller (NOILC) were researched for cavity
pressure control which are described in Reiter et al. (2014);
Hopmann et al. (2017); Stemmler et al. (2019). In this
contribution the concept of model-based self-optimization,
which is described in Brecher (2017); Thombansen et al.
(2018) is applied and validated in injection molding. It
enables part Therefore, the proposed NOILC is used as a
process controller which tracks an optimal cavity pressure
reference during the entire cycle. In contrast to prior work
a physically-motivated model is explicitly used within the
NOILC, which increases the tracking performance for cav-
ity pressure. Furthermore, this NOILC enables cross-phase
cavity pressure control. The cavity pressure reference is
determined by the pvT-optimization, which considers a
material model in order to describe the specific volume and
in consequence the weight with respect to process values.
The proposed control architecture is depicted in Fig. 2,
which is also reflected in the following.

2. PROCESS MODEL

In order to develop the model-based NOILC, the process
has to be modeled. For this purpose, the injection molding
process is described in accordance to Stemmler et al.
(2019) by two pressure vessels which are connected by
a flow channel (Fig 3). While the first pressure vessel
describes the cavity (2) with a constant geometric volume,
the second pressure vessel represents the plasification unit
(3). Its geometric volume depends on the position of the
screw (4) which is actuated by a servo-electric drive (7)
whose velocity is already controlled by machine-oriented
control loops. Based on this assumptions, the state vector

X = (X1 X2 X3 X4 X5)
T

:= (x v v̇ ps pc)
T

(1)

is introduced. Both the position x and the velocity v of the
screw are given in terms of screw antechamber’s volume:

v = vsAs =
dx

dt
= As

dxs
dt

, (2)

with the screw area As, the screw position xs and the screw
velocity vs regarding Fig. 3. Furthermore, the state vector
(1) is defined by the acceleration v̇, the screw pressure ps
and the cavity pressure pc. The screw pressure ps describes
the pressure in front of the screw which is approximated
by the applied force of the drive. The cavity pressure pc is
measured by a pressure sensor within the cavity (Fig. 1).
According to Stemmler et al. (2019), the state equations

Ẋ =



X2

X3

−2Dω0X3 − ω2
0 X2 +KD ω

2
0 Uv

βs
X1

(
−X2 − π R4

8Lη (X4 −X5)
)

f5 (X)

 (3)

are established. Thereby, the parameters D, w0 and KD

parameterize a second order system which is assumed to
describe the dynamic behavior of the drive. The control
voltage Uv is the input of the system which corresponds
to a desired screw velocity. Since the plasticizing unit is
assumed as a pressure vessel, its dynamic behavior is de-
scribed by the mass-continuity equation and thus depends
on the bulk modulus βs. Furthermore, the screw pressure
ps depends on the mass flow ṁn through the gate which is
characterized by its radius R, length L, the dynamic vis-
cosity η and the pressure gradient. The dynamic viscosity
η is identified empirically and approximated by

η (t) :=

{
η0 for pc,far ≤ psw
η0 + ∆η (t− tsw) for pc,far > psw

(4)

with the viscosity η0 during the injection phase and
the slope ∆η. Thus, nonlinearities of the process can
be approximated and lumped into the viscosity. As its
behavior depends on the filling level of the cavity the
pressure pc,far is measured at the end of the flow path
(Fig. 1). If the pressure pc,far is greater than the threshold
pressure value psw the cavity is assumed to be completely
filled and the time tsw is determined. Similarly, the sixth
state equation of (3) is distinguished:

f5 (X) :=

{
−ω2X5 +K2 p

?
s for pc,far ≤ psw,

βc
V0

π R4

8Lη (X4 −X5) for pc,far > psw.
(5)

According to Stemmler et al. (2019), the cavity pressure
is approximated by a first order system with time delay
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Fig. 2. Control architecture of the proposed quality control based on the pvT-optimization and a process control scheme
which consists of an iterative learning controller and an extended kalman filter.

Td,c during the injection phase. The screw pressure ps is
defined as the input of this first order system. The state
equation is parameterized by the parameters K2 and w2.
To account for the time delay of the first order system the
screw pressure is delayed by

p?s (t) :=

{
X4 (t− Td,c) for t > Td,c,

0 otherwise.
(6)

When the cavity is fully filled, the behavior of the cavity
pressure vessel is described by the mass continuity equa-
tion, too. Accordingly, its dynamics depend on the bulk
modulus βc of the melt, the geometric volume V0 of the
cavity and the mass flow ṁn through the channel (Fig. 3).

3. PVT-OPTIMIZATION

As discussed in Hopmann et al. (2016) the quality de-
pends significantly on the cavity pressure during the cool-
ing phase. Due to the melt cooling, the specific vol-
ume decreases and thus volume shrinkage occurs. This
can be described by the pressure-volume-temperature
diagram (pvT-diagram) which is depicted for a semi-
crystalline thermoplastic in Fig. 4. In this contribution the
7-coefficient approach

vc (pc, Tc) :=


Ks

1

pc+Ks
4

+
Ks

2 Tc
pc+Ks

3
+K? for Tc < Tf ,

Kf
1

pc+K
f
4

+
Kf

2 Tc

pc+K
f
3

otherwise,
(7)

K? (pc, Tc) := Ks
5 eK

s
6 Tc−K

s
7 pc . (8)

is used, which was proposed by Schmidt (1986). As a
result, the melt’s specific volume vc within in the cavity
can be derived from the cavity pressure pc and the melt
temperature Tc. The transit temperature Tf , at which the
melt changes from the solid state to the liquid state is
given by

Tf (pc) := K8 +K9 pc. (9)

xs, vs

Uv

ṁn

pc, Tc, mc

Vc, vc

ps, Ts
Vs, ms

2 3 4 7

Fig. 3. Schematic sketch of the simplified process model.
Its elements are numbered in analogy to Fig. 1.

The material-dependent parameters Ks
1 , Ks

2 , Ks
3 , Ks

4 , Ks
5 ,

Ks
6 , Ks

7 , Kf
1 , Kf

2 , Kf
3 , Kf

4 , K8 and K9 are determined
empirically and given in Tab. 1 for polypropylene of type
PP579S (Sabic Germany GmbH & Co. KG, Dusseldorf,
Germany), which is used in this contribution.
Assuming a homogeneous distribution of both the pressure
and temperature within the cavity an optimal pressure
trajectory can be determined in accordance to Hopmann
et al. (2016, 2017) which is depicted in Fig. 4 in red.
Accordingly, the melt should be isothermally injected into
the cavity (A to B) until the cavity is fully filled. For
this purpose, the melt must be injected as quickly as
possible. Afterwards, the melt cools down and thus the
specific volume decreases. The shrinkage is compensated
during the isobaric pressure holding phase (B to C) by
an additional mass flow into the cavity. Subsequently, the
melt cools down isochorously until the gate is fully freezed
(C to D). As a result, no further melt flows into the cavity.
If point D can be reproduced exactly in each manufactur-

ing cycle, the volume shrinkage and thus the part weight
is identical for all manufacturing cycles. Consequently, the
desired part weight md has to be defined in a first step.
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Fig. 4. pvT-diagram of semi-crystalline thermoplastic
(top) with the optimal pressure trajectory (red line)
and the corresponding melt temperature Tc within the
cavity (bottom).
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Table 1. Material parameters of polypropylen (PP579S).

Symbol Value

Kf
1 21 406.79 s−2

Kf
2 1.82 ◦C−1 s−2

Kf
3 1695.67 bar

Kf
4 17 977.94 bar

K8 122.33 ◦C

K9 2.04·10−2 ◦C bar−1

Symbol Value

Ks
1 28 683.12 s−2

Ks
2 1.04 ◦C−1 s−2

Ks
3 1261.56 bar

Ks
4 25 397.45 bar

Ks
5 7.41 ·10−6 cm3 g−1

Ks
6 7.72 · 10−2 ◦C−1

Ks
7 1.85 · 10−3 bar−1

Then, the required specific volume vd has to determined
with respect to the geometric volume V0 of the cavity
according to

vd :=
V0
md

(10)

which is given for an ambient temperature T0 and pressure
p0, respectively. Since the melt is solidified below the
transition temperature Tf (pc) no further melt flows into
the cavity for Tc < Tf (pc). However, the melt close to
the pressure sensor 1 (Fig. 1) freezes before the gate. For
this reason, an offset has to be considered and therefore
the specific volume vc (p0, TD) is defined in point D for
temperature TD. Afterwards, the optimization problem

min
r
||vc (p0, TD)− vc (r, Tc)|| (11)

is solved in each time instance in order to determine the op-
timal cavity pressure reference r. Moreover, the constraint
r < pc,max is considered in order to limit the maximum
cavity pressure during the isobaric pressure holding phase.
Furthermore, the melt temperature Tc as well as its pre-
diction is required for the mentioned optimization problem
(11). For this reason, the temperature Tc is approximated
by the cooling equation

Tc (t) := Tm +
8

π2
(Ts − Tm) e−α (πd )

2
(t−tsw) (12)

for t > tsw. Otherwise it is assumed as constant with
Tc (t = tsw) in order to approximate the isothermal injec-
tion phase. This approach is discussed in Bongart (1982)
and depends on the mold temperature Tm, the tempera-
ture Ts and the thermal conductivity α of the melt as well
as the part thickness d at the sensor position. The opti-
mization problem (11) is solved by the bisection method
which is described in Quarteroni et al. (2007).

4. NORM-OPTIMAL ITERATIVE LEARNING
CAVITY PRESSURE CONTROL

In order to track the reference r a NOILC is applied which
uses a piece-wise linearized model around the trajectories
of the previous cycle. For this, the state vector x has to be
estimated by an Extended Kalman Filter (EKF) as not all
of its states can be measured. The EKF also linearizes the
process model in each time instance. For this reason, the
piece-wise linearization is first introduced. Then the EKF
as well as the NOILC are presented.

4.1 Piece-wise Linearization

In accordance to Stemmler et al. (2019), the state equa-
tions (3) are linearized in each time instance in order to
determine the time-variant, linear state-space model

ẋ = At x + bt uv (13)

y = Ct x (14)

with the time-variant system matrices At, bt, Ct and the
relative values

x := X−Xop, uv := Uv − Uop, y := Y −Yop. (15)

The operation points (Xop, Uv,op,Yop) are determined by
the values (X, Uv,Y) of the previous cycle. The output
equation (14) is different for the EKF and the NOILC and
thus is discussed later. The mentioned time-variant state-
space model is then discretized with the sample time T in
each time instance in order to get the time discrete state-
space model

x (k + 1) = Ak x (k) + bk uv (k)

y (k) = Ck x (k)
(16)

with the time-variant system matrices Ak, bk and cT.

4.2 Extended Kalman Filter

In the presented case, only the position x as well as the
velocity v of the screw, the pressure ps at the tip of
the screw and the cavity pressure pc can be measured.
Consequently, the output vector is defined by

Y = Ck X = (X1 X2 X4 X5)
T

. (17)

Since the complete state vector X is required for the piece-
wise linearization, the state vector X̃ is estimated by an
EKF and then used as the operation point in (15).
In accordance to Grewal and Adrews (2008), the EKF is
divided into a correction step and a prediction step. The
correction step is defined by

K (k) = P̂ (k) AT
k

(
Ck P̂ (k) CT

k + R
)−1

(18)

X̃ (k) = X̂ (k) + K (k)
(
Y (k)−Ck X̂ (k)

)
(19)

P̃ (k) = (I−K (k) Ck) P̂ (k) (20)

with the kalman gain K, the corrected covariance matrix
P̃ and the identity matrix I. The predicted state vector X̂
and the corresponding predicted covariance matrix P̂ are
determined during the prediction step of the EKF:

X̂ (k + 1) = X̃ (k) + T ϕ
(
f
(
X̃ (k) , Uv (k)

))
(21)

P̂ (k + 1) = AkP̃ (k) AT
k + Q (22)

with the sample time T of the EKF. The positive definite
covariance matrices

Q = δ I, R = ε I (23)

are parameterized by the tuning parameters δ, ε with
respect to the process noise and the measurement noise,
respectively. The calculation of the progress functions ϕ
is realized by the Runge-Kutta-method of fourth order,
which is described in Butcher (2008).

4.3 Lifted System Notation

To control the cavity pressure pc by adapting the control
voltage Uv the output equation (14) yields

Y = ck X = (0 0 0 0 1) X. (24)

Furthermore, the cavity pressure pc is controlled by a P-
controller in order to realize a desired transfer behavior
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(see Fig. 2). Therefore the closed loop has to be considered
in the NOILC by defining

Uv = Uc + U = KpX5 + U (25)

with the output Uc of the P-controller and the output U
of the NOILC. Consequently, the time discrete model (16)
can be reformulated by

x (k + 1) = Ãk x (k) + b̃k u (k)

y (k) = c̃k x (k)
(26)

with the state matrix Ãk, the input matrix b̃k and the
measurement matrix c̃k of the controlled system. Based
on this model the NOILC can be formulated.

In contrast to most control approaches, the NOILC con-
siders the input sequence uj and the output sequence yj
of the complete cycle j. They are defined by

uj = (u (1) u (2) . . . u (Nc))
T

, (27)

yj = (y (1) y (2) . . . y (Nc))
T

, (28)

with the number Nc of time steps within one cycle. Taking
this definition into account, the transfer behavior of the
controlled system is described by the lifted system notation

yj = G uj + y? (29)

with the transfer matrix G and the initial output vec-
tor y?. Here, the initial output vector y? describes the
influence of the initial system states x (0) to the output
sequence yj . Refering to Hakvoort et al. (2007) the transfer
matrix G and the initial output vector y? are defined by

G :=



0 0 · · · 0

c̃2 b̃1 0 · · · 0

c̃3 Ã2 b̃1 c̃3 b̃2 · · · 0

c̃4 Ã3 Ã2 b̃1 c̃4 Ã2 b̃2 · · · 0
...

...
. . .

...

c̃Nc

(
Nc−1∏
i=2

Ãi

)
b̃1 c̃Nc

(
Nc−1∏
i=3

Ãi

)
b̃2 · · · 0


,

(30)

y? =



c̃1 Ã0

c̃2 Ã1 Ã0

c̃3 Ã2 Ã1 Ã0

...

c̃Nc
Nc−1∏
i=0

Ãi


x (0) , (31)

which is considered explicitly in the optimization problem
of the NOILC.

4.4 Optimization Problem

In accordance to Hopmann et al. (2017) the control law of
the NOILC yields

uj+1 = uj + γ∆ uj+1 (32)

Accordingly, the input sequence uj+1 for the next cycle
is calculated with respect to the input sequence uj of the
previous cycle and an optimal control deviation ∆uj+1

which is weighted by the learning operator γ. The optimal
control deviation ∆uj+1 is determined by an optimization.
The computing time of the optimization is influenced
significantly by the number of optimization variables. In

order to reduce the number of optimization variables piece-
wise splines of third order are defined, whose parameters
are determined by the optimization. This reduces the
number of optimization variables and thus the computa-
tion time. Consequently, the optimal control deviation is
substituted by

∆uj+1 = MT Pj+1 (33)

with the parameter vector Pj+1 and the transformation
matrix MT . The parameter vector Pj+1 depends on the
number of intervals NI which are defined for the cycle.
The parameter vector is defined by

Pj+1 :=
(
pT
1 pT

2 pT
3 . . .pT

NI

)T
(34)

with the parameter vector of the i-th polynomial

pi := (a3,i a2,i a1,i a0,i)
T

. (35)

and its coefficients a3,i, a2,i, a1,i, a0,i. The transformation
matrix MT is defined by

MT :=


T 0 0 . . . 0
Te T 0 . . . 0
Te Te T . . . 0
...

...
...

. . .
...

Te Te Te . . . T

 , (36)

with the time matrix

T :=
[
t3I t2I t1I t0I

]
. (37)

Its elements are defined for each interval by

tI := (0 T 2T 3T . . . Ns T )
T

, (38)

with the sample time T and the number Ns of time steps
within an interval. In order to prevent discontinuity at
the interval boundaries, the terminal functional values
of each interval must correspond to the initial values of
the following interval. For this purpose, the terminal time
matrix

Te := INs×1 te (39)

is defined, with the identity matrix I and the time vector

te :=
(
(NsTs)

3
(NsTs)

2 · · · (NsTs)1 (NsTs)
0
)

. (40)

In order to track the reference sequence

rj = (r (1) r (2) . . . r (Nc))
T

, (41)

which is determined by the pvT-optimization, the tracking
error ê := rj+1−ŷj+1 has to be minimized by the optimiza-
tion. Furthermore, the controller output deviations within
a cycle shall be penalized in order to prevent large changes
of the controller output. For this reason, the cost function

Jj+1 (∆uj+1) = ||rj+1 − ŷj+1||2S + ||Mδ ∆uj+1||2T (42)

is defined with the positive definite weighting matrices

S = λ I, T = κ I, (43)

which are parameterized by the tuning parameters λ and
κ. The matrix Mδ is defined by

Mδ :=



1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1

 . (44)

in order to determine the controller output changes be-
tween two time instances. The predicted output sequence

ŷj+1 = yj + G ∆uj+1 + y0. (45)
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is given by (29) and the output sequence yj of the
previous cycle j, where G represents the block impulse
response. Substituting (33) in (42) results in the quadratic
optimization problem

min
Pj+1

PT
j+1 H̃ Pj+1 + g̃T Pj+1 (46)

with the hessian matrix H̃ and the gradient vector g̃

H̃ := MT
T GT S G MT + Mδ T, (47)

g̃ := 2 eT
j+1 S G MT . (48)

The free tracking error ej+1 is defined by

ej+1 = rj+1 − yj . (49)

Furthermore, the controller output is constrained by

umin ≤ uj + γMT Pj+1 ≤ umax. (50)

have to be considered in order to taking technical lim-
itations into account in the optimization problem. This
constraints can be transformed into[

γMT I
−γMT I

]
∆uj+1 ≤

(
umax − uj
−umin + uj

)
(51)

and thus be considered explicitly in the optimization
problem (46), which is solved by the qpOASES solver, refer
to Ferreau et al. (2014).

5. EXPERIMENTAL RESULTS

The derived control structure (see Fig. 2) is applied to
a servo-electric injection molding machine of the type
“Allrounder 370 A 600-170/170” which is manufactured
by Arburg GmbH & Co KG, Lossburg, Germany. Further-
more, a screw with As = 30 mm and a cavity volume V0 =
33.5 cm3 is used. The controller model is parameterized in
accordance to Tab. 2. Process and machine parameters,
which are not taken into account in the NOILC, are set in
accordance to the manufacturer’s recommendations in or-
der to guarantee real production conditions. In particular,
this applies to the melt temperature Ts = 220 ◦C in the
plastification unit and the supply temperature of the mold
control which corresponds in good approximation to the
mold temperature Tm = 30 ◦C. For further informations
see Stemmler et al. (2019).
For safety reasons, the injection process is started with
a constant injection velocity. When a screw pressure of
ps = 10 bar is reached the controller is activated. The con-
troller is deactivated after the screw pressure falls below
50 bar. To prevent high velocities of the screw, the control
voltage is constrained to

−0.5 V ≤ Uv ≤ 0.5 V. (52)

Furthermore, the NOILC is parameterized by λ = 1,
κ = 104 and γ = 0.5. The sampling time is Ts = 8 ms and
the number of sampling steps amounts to Nc = 1000 are
used, which correspond to a cycle time of 8 s. The length
of the spline intervals is set to Ns = 25.
The experimental results are shown in Fig. 5 and Fig. 6,
respectively. During the first cycle, only the P-controller
is active in order to generate initial data for the NOILC.
The P-controller is parameterized conservatively in order
to prevent overshooting or oscillations of the cavity pres-
sure. In consequence, the cavity pressure reacts slow to
tracking errors. In addition, the reactive behavior of the
P-controller can be seen at the end of the cycle. From the
second cycle onwards, the NOILC is active and optimizes

Table 2. Model parameterization for EKF and NOILC.

Symbol Value

L 8.0 cm

R 0.2 cm

η0 60/105 kg m−1 s−1

∆η 360/105 kg m−1 s−2

KD 23.4 cm3 (s V)−1

K2 0.352 s−1

Kp −0.005 V bar−1

α 7.03 · 10−2s mm−2

Symbol Value

D 0.79

ω0 133 s−1

ω2 4.9 × 10−10 s−1

Td,c 0.94 s

βs 8662 bar

βc 8662 bar

psw 10 bar

d 2 mm

the manipulated variable so that the measured cavity
pressure converges continuously to the the reference curve.
After 10 cycles the reference r, which is determined by the
pvT-optimization, is almost tracked perfectly.
After 15 cycles the tempering system of the mold is
switched off. As a consequence, the mold temperature
Tm increases and thus the cooling behavior of the
melt changes. This is considered in terms of the pvT-
optimization. Therefore, the determined optimal cavity
pressure reference is adapted by the pvT-optimization. For
this reason, the final ramp in the reference r is shifted. Nev-
ertheless, the NOILC shows good tracking performance
steering the cavity pressure to the new reference. Only in
the transition phase between the isobaric pressure holding
phase and the ramp a tracking error occurs, because the
NOILC cannot follow the continuous change in the refer-
ence r fast enough.
In general, it can be stated that the NOILC shows a very
small tracking error after a few cycles. This high learning
speed results from the learning factor in combination with
the accuracy of the used process model. It describes the
general behavior of the process, which is consequently con-
sidered for prediction within in the controller. If the model
shows greater uncertainties, the learning factor should be
reduced. However, this also decreases the learning speed
of the NOILC.

In order to validate the quality control loop, experiments
are carried out with a constant reference r = 300 bar as
well as with the pvT-optimization (Fig. 7). As mentioned
before, the tempering system of the mold is deactivated
after 15 cycles and thus the mold temperature increases.
After 30 cycles, the tempering system is switched on and
thus the mold cools down again. At the beginning of each
manufacturing cycle, the mold temperature is measured.
The part weight m is measured at the end of each cycle
using the precision weighting machine “LA 620S-OCE”,
Sartorius AG Germany.
The desired weight is set to 29.1 g. Without the pvT-
optimization, the minimum weight is 27.25 g and the max-
imum weight is 28.11 g. Accordingly, an absolute tolerance
of 0.86 g results. When deriving the pressure reference from
the pvT-optimization, a minimum weight of 27.93 g and a
maximum weight of 28.41 g is achieved. This corresponds
to an absolute tolerance of 0.48 g, which approximately
halves the wight interval in comparison to the parts man-
ufactured with non-optimized reference values. The main
reason for the weight deviations refers to the single measur-
ing point within the cavity. In reality, the melt cools down
inhomogenously which is not considered in the mentioned
approach. Furthermore, the pvT-diagram is determined
under laboratory conditions, so that the pvT diagram does
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Fig. 5. Experimental results of the process controller for a constant (left) and a varying mold temperature (right). The
reference r represents the trajectory which is determined by the pvT-optimization.
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Fig. 6. Detailed view of the cavity pressure from Fig. 5 for a constant (left) and a varying mold temperature (right).

not exactly represent the real process conditions. However,
the weight accuracy is more important for production than
the absolute desired weight.

6. CONCLUSION

The presented contribution describes an approach for qual-
ity control, especially the control of the part weight, in
plastic injection molding. The aim was to increase the
accuracy of the part weight by combining a model-based
cavity pressure controller with the pvT-optimization. For
this purpose, sensors are used within the cavity which
enable the consideration of process behavior in a model-
based, norm-optimal iterative learning cavity pressure con-
troller. This allows a better tracking of any cavity pressure
trajectory. Also, the part weight spectrum can be halved
by application of the pvT-optimization in comparison to
experiments with an constant cavity pressure reference. In
further work, the practicability of the presented concept
for different molds and materials have to be researched.
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Fig. 7. Comparison of part weight m for a constant cavity
pressure r = 300 bar and pvT-optimized reference.
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