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Abstract: Q-design is a powerful method for designing approximately optimal LTI controllers
and assessing the achievable control performance. Unfortunately, numerical issues are often
encountered in Q-design which limits its applicability. This paper warns about two numerical
pitfalls in Q-design when using H2 costs and Laguerre-type basis functions.

1. INTRODUCTION

Many control design problems can be formulated as
optimization of transfer functions between external inputs
(measurement noise, disturbances, reference signals) to
external outputs (controlled variables and control errors)
(Zhou et al., 1996). The objective and constraints on
the transfer functions are often convex, in which case
an approximately optimal LTI controller can be found
by the so-called Q-design (Boyd and Barratt, 1991).
Q-design is a useful tool for exploring the limits of
control performance (Boyd and Barratt, 1991), and for
benchmarking of low-order controllers (e.g., PID) against
the optimal LTI controller (Garpinger, 2009; Larsson and
Hägglund, 2011). Q-design can also be used as a basis
for control design (Du et al., 2006; Scherer, 1995), where
the latter contributed details on the convergence of finite-
dimensional approximations.
Although the basic principles of Q-design are straightfor-
ward and well known in the control community, it has seen
little use relative to its utility. We believe that a main
reason is that the resulting convex programs tend to be
numerically ill-conditioned, which makes solvers fail from
numerical issues. To avoid ill-conditioning it is necessary
to select the basis functions carefully and to keep their
number small, which limits the usability of Q-design.
In this contribution, we consider numerical issues that arise
in connection with quadratic terms and two popular basis
expansions for the Q parameter. First, we need to introduce
some background to explain our contributions adequately.

Q-design

The Q-parameterization (Youla et al., 1976; Zhou et al.,
1996; Boyd and Barratt, 1991) parametrizes all internally
stabilizing LTI controllers in a parameter Q∈H∞, so that
the closed-loop transfer function from external inputs w to
external outputs z becomes affine in Q, i.e.,

Hzw = T1 + T2QT3, (1)
with T1, T2, T3 ∈ H∞. This makes many closed-loop
properties convex in Q, e.g., H2-norms, H∞-norms, and
overshoot (Boyd and Barratt, 1991).
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Q-design (Boyd and Barratt, 1991) amounts to approxi-
mating Q with a linear combination of a finite-dimensional
basis {qk}Nk=1. We will assume that Q is single-input single-
output (SISO), since this is sufficient to illustrate our main
points. In this case, Q can be expanded as

Q =
N∑
k=1

βkqk = Gqβ, qk ∈ H∞, (2)

where the coefficient vector β = [β1 · · ·βn]T ∈ RN , and
Gq = [q1 q2 · · · qn] (3)

is a 1 ×N transfer function matrix. If the objective and
constraints on Hzw are convex then standard optimization
software can find the optimal coefficients β?, from which
the corresponding controller can be recovered (Boyd and
Barratt, 1991).

Considered Bases

We will consider two closely related families of bases. What
we call repeated-pole expansions (Boyd and Barratt, 1991,
(15.10))(Hespanha, 2009),

qk(s) =
(

a

s+ a

)k
, k = 1, 2, . . . (4)

and Laguerre bases (Heuberger et al., 2005)

qk(s) =
√

2a
s+ a

·
(
a− s
a+ s

)k−1
, k = 1, 2, . . . (5)

where a is real and positive. It is clear that their truncations
to the first N terms have the same span. The constant term,
k = 0, is omitted to ensure finite H2 cost.

Quadratic Costs

We will consider 2-norms of transfer function matrices
between subsets of the inputs z and outputs w, i.e., of a
submatrix of (1). Such terms can be written

‖G1 +G2Q‖2 = ‖G1 +G2Gqβ‖2, (6)
where G1 and G2 single-input multiple-output transfer
functions 1 . To include terms of the form (6) in a convex

1 A submatrix of Hzw can be written H̃zw = T̃1 + T̃2QT̃3. Let
G1 := vec(T̃1) and G2 := vec(T̃2T̃3) where vec denotes vectorization
(stacking the matrix columns into a vector). Then, since Q is SISO,
||H̃zw||2=‖G1 +G2Q‖2. See (Kjellqvist, 2018) for the MIMO case.
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program they need to be written as quadratic forms in the
coefficients 2 β ∈ RN ,

‖G1 +G2Gqβ‖2
2 = βTMβ + 2mTβ + ‖G1‖2

2, (7)
where M ∈ RN×N , and m ∈ RN . The computational
details of obtainingM and m will be discussed in Section 2.

Contributions

1. We show that the repeated-pole expansions (4) typically
give poorly conditioned optimization problems and that the
Laguerre bases (5) are a better option. This is an important
observation since the repeated-pole expansion is prevalent
in existing Q-design literature (Boyd and Barratt, 1991,
Ch. 15), (Hespanha, 2009). A rare use of Laguerre bases is
seen in (Ferreres, 2014).
2. We show that state-space-based computation (Sec. 2)
of M and m in (7) is prone to numerical problems
if the realization of Gq is not carefully selected. We
give an example of a natural-looking realization of the
Laguerre bases that leads to horribly conditioned matrix
computations. We suggest a realization of the Laguerre
bases that avoids these problems.
3. We show by an example that there is a trade-off in the
choice of a in (5) between the conditioning of M , and the
ability to approximate the optimal, infinite-dimensional Q.

2. REDUCTION OF 2-NORMS TO
FINITE-DIMENSIONAL QUADRATIC FORMS

To find the matrix M and vector m in (7) we write

‖G1 +G2Q‖2
2 = ‖G1 +G2Gqβ‖2

2

= ‖G1‖2
2 + 2〈G1, G2Gqβ〉+ ‖G2Gqβ‖2

2.

Introducing state-space realizations[
Ai Bi
Ci 0

]
, i = 1, 2,

where Di = 0 follows from requiring the norm to be finite.
For G1, and G2Gq we have

2〈G1, G2Gqβ〉 = 2
∫ ∞

0
BT

1 e
AT

1tCT
1C2e

A2tB2dt︸ ︷︷ ︸
=mT

β,

‖G2Gqβ‖2
2 = βT

∫ ∞
0

BT
2 e
AT

2tCT
2C2e

A2tB2dt︸ ︷︷ ︸
=M

β.

We can now compute mT = 2BT
1XB2, where X =∫∞

0 BT
1 e
AT

1tCT
1C2e

A2tdt solves the Sylvester equation
AT

1X +XA2 + CT
1C2 = 0. (8)

Similarly, M = BT
2Y B2, where the observability Gramian

Y solves
AT

2Y + Y A2 + CT
2C2 = 0. (9)

Remark: In Matlab it is typically preferable to use the
command lyap rather than sylv to solve (8).
Remark: To include a term (7) in a second-order cone
program requires a Cholesky factorM1/2 ofM . The elegant
method in (Hammarling, 1982) allows M1/2 to be obtained
directly from (9).
2 For complex-coefficient systems (Troeng et al., 2017), let β ∈ CN ,
replace allT’s by ∗’s, and change the term 2mTβ in (7) to 2 Re{m∗β}.

K P0
e u ypr +

d

−

n

Figure 1. Standard feedback interconnection.
3. NUMERICAL ISSUES

3.1 Example System

To exemplify the numerical issues that we discuss in this
section, we consider the standard feedback interconnection
in Fig. 1, with a stable SISO plant P0. A parametrization
of internally stabilizing controllers is then given by K =
Q/(1 − P0Q), Q ∈ H∞ (Zhou et al., 1996, Thm 12.7).
With this parametrization the transfer function from
measurement noise n to control action u becomes

Hun = K/(1 + P0K) = Q.

In control design, it is often important to limit the
amplification of measurement noise to the control signal,
which corresponds to a bound on ‖Hun‖2 = ‖Q‖2. Thismotivates that a basis expansion for Q-design needs to give
a numerically well-conditioned Hessian M in

‖Q‖2
2 = ‖Gqβ‖2

2 = βTMβ. (10)

The simplistic case (10) is considered in the following
sections to allow easy analytic computations that illustrate
our main points. Our numerical example in Sec. 4 show
that these issues also arise in practical Q-design.
In Sec. 3.2 we consider how the choice of basis affects the
conditioning of M , and in Sec. 3.3 we discuss how a poor
realization of Gq gives numerical issues when computing
M according to Sec.2.

3.2 How the Q basis affects conditioning of the Hessian M

A state-space realization of Gq for the repeated-pole
expansion (4) is given by

Aq =


−a 1

−a
. . .
. . . 1
−a

 , (11a)

Bq =


a
a2

. . .
aN

 , (11b)

Cq = [1 0 · · · 0] . (11c)

For this realization it can be shown (App. A) that the Y
in (9) takes the form

Y = 1
2a diag(1, 1/2a, (1/2a)2, . . .)

· PS · diag(1, 1/2a, (1/2a)2, . . .), (12)
where PS is the symmetric N ×N Pascal matrix (defined
in (A.2)). It follows that the Hessian M is given by
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Figure 2. Condition number of symmetric Pascal ma-
trices PS as a function of their dimension N . The
blue, solid line shows the true condition number
(κ(PS) ∼ 16N/(Nπ) (Higham, 1996, Sec. 26.4)). The
green, dashed line shows the condition number of
MatLab’s slightly inaccurate pascal(N) computed
with variable precision arithmetic (vpa, 150 digits
accuracy). The red, dotted line shows the condition
number of pascal(N) computed with double-precision
arithmetic. Note that the true condition number of
PS turns out to be significantly worse than what can
be inferred with double-precision arithmetic.
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Figure 3. Condition number of the Hessian M in (13)
computed with the same three approaches as in Fig. 2.

M = a

2 diag(1, 1/2, 1/22, . . .) ·PS ·diag(1, 1/2, 1/22, . . .).
(13)

Unfortunately, Pascal matrices are poorly conditioned (see
(Alonso et al., 2013; Higham, 1996), and Fig. 2). The same
goes for M as seen in Fig 3. The poor conditioning of
(13) may give optimization software numerical problems for
even a modest number N of basis functions. Note that the
poor conditioning of M is independent of the realization of
Gq. For the Laguerre basis (which is orthonormal), we have
that M = I, and hence the condition number κ(M) = 1.

3.3 How the realization of Gq can give problems when
computing the Hessian M

A natural realization of the transfer function matrix Gq in
(3), for the Laguerre basis (5), would be to use the same
Aq and Cq as in (11), and 3

3 P−1
U in the expression below is the inverted upper-triangular Pascal

matrix (Brawer and Pirovino, 1992), for which PS = PT
UPU ; thus

κ(PS) =
√
κ(PU ).

Bq=
√

2adiag
(
1, 2a, . . . , (2a)N−1)


1 −1 1 −1 · · ·
0 1 −2 3 · · ·
0 0 1 −3 · · ·
0 0 0 1 · · ·
...

...
...

... . . .


︸ ︷︷ ︸

P−1
U

.

(14)
The Gramian Y for computing M = BT

qY Bq is the same
as in (12). Thus, the condition numbers of both Y and Bq
grow exponentially with respect to N , preventing reliable
computations of M with the approach in Sec. 2.
Note that in the specific case that we consider here
(G2 = I), we already know that M = I since the basis
is orthonormal. As we see in the next section, the same
numerical issues also arise in the general case G2 6= 1.
One approach to alleviate the numerical issues is to insist
that the realization of Gq has the following property.
Definition 1. A state-space realization is output-orthogonal
if the observability Gramian is the identity matrix.

An output-orthogonal realization (i.e., Y = I) of the
Laguerre basis is seen to be given by

Aq =



−a 2a −2a · · · (−1)N2a

−a 2a . . . ...

−a
. . . −2a
. . . 2a

−a


,

Cq =
√

2a [1 −1 1 −1 · · ·], Bq = I.

(15)

See App. B for a full derivation. It should be noted that
neither Aq nor Cq has elements that increase in magnitude
with increasing N , and that Aq is on triangular form
allowing stable computations of quadratic forms (7).

4. DESIGN EXAMPLE

We now illustrate the two numerical issues from the
previous section with a simple design example. We also
consider how the impact of the parameter a in (4) and (5)
affects the approximation performance.

Example Problem from (Boyd and Barratt, 1991, Sec 2.4)

Consider the feedback interconnection in Fig. 1 with

P0(s) = 1
s2 ·

(
10− s
10 + s

)
. (16)

The process disturbance d, and the measurement noise n are
stationary white processes with intensities W 2

d = 0.042 and
W 2
n = 0.012, respectively. The goal is to find the optimal

LTI controller with respect to the design specification
minimize J = ‖u‖2
subject to ‖yp‖2 ≤ 0.1. (17)

This corresponds to minimizing the rms control signal
activity, subject to a constraint on the control error.
The optimum of (17) is J? = 0.0397 (Boyd and Barratt,
1991, p. 355).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4476



Finding Approximately Optimal Controller with Q-design

The plant (16) is not asymptotically stable, so we use the
following nominal controller (Boyd and Barratt, 1991, Sec
2.4)

K0(s) = 44.14s2 + 107.3s+ 39
s3 + 10s2 + 55.25s+ 78.14 (18)

to stabilize the system, allowing the relevant closed loop
transfer functions to be written as (1) with w = [d n]T to
z = [u yp]T.
The quantities of interest in (17) can be expressed using
the 2-norms of the closed-loop transfer functions,

‖u‖2
2 = ‖Hud‖2

2W
2
d + ‖Hun‖2

2W
2
n , (19a)

‖yp‖2
2 =

∥∥Hypd

∥∥2
2W

2
d +

∥∥Hypn

∥∥2
2W

2
n . (19b)

Applying the method in Sec. 2 to each 2-norm ‖Hµν‖2
2

gives us Mµν , mµν , and cµν , and lets us re-write (17) as
minimize J = βTMuβ/2 +muβ + cu

subject to βTMyβ/2 +myβ + cy ≤ 0.12 (20)

where Mu = MudW
2
d + MunW

2
n , etc. Now, (20) can be

solved by standard optimization software.

Results

To numerically solve (20) we used cvx with Gurobi as
the solver. Figs. 4a and 4b show the resulting costs for
the Laguerre basis expansion (on output-orthogonal form)
and the repeated-pole expansion, respectively. For given
N and a the two expansions have the same span, which
should imply that the figures are identical—however, this
is clearly not the case. In Fig. 4b it is seen that repeated-
pole expansion gives sub-optimal solutions for small a and
makes Gurobi fail for large a. The problems for large as
can be traced back to the poor numerical conditioning
of Mu illustrated in Fig. 5 (consistent with Fig. 3). The
suboptimal solutions for small a might be better explained
by the matrix multiplication BTY B, where B, given by
(11b), has increasing powers of a on the diagonal. Picking
a � 1 results in elements that quickly approach zero,
effectively removing the influence of higher-order basis
functions. Comparing the poor condition numbers of Mu
when using the repeated-pole expansion with the better
ones when using Laguerre basis functions in Fig. 5, we find—
just like in the special case of Sec. 3.2—that Laguerre bases
give superiorly conditioned quadratic programs.
Another interesting observation can be made by comparing
Figs. 4a and 4b; the region of the lowest cost and the region
of the best numerical conditioning are not the same. This
means that there is a trade-off in the parameter a in (5)
between the numerical conditioning of M and the ability
to approximate the optimal Q. The impact of this for the
simple problem in this section is small, but this may not
be the case for larger, difficult-to-solve problems.

Computing M for Laguerre Bases with Jordan Realization

In Sec. 3.3 we saw that the choice of realization of
Gq was crucial to get reasonable conditioning in the
computation of Hessians M . As an illustration, we consider
the computation (in double precision) of Mu in (20) for
the Laguerre basis (5) with a = 4 and N = 20.
Using the Jordan realization ((11a), (14), (11c)) for
Gq, we get an Mu with λmin(Mu) = −7× 10−4 and

10−1 100 101 102 103
0.0

0.05

0.1
N = 10

N = 100

Pole location a [a.u.]

C
os

t
[a

.u
.]

(a) Optimal cost of (20) when using Laguerre bases.
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C
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t
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.u
.]

(b) Optimal cost of (20) when using repeated-pole expansions.

Figure 4. Optimal costs of (20) (solid lines) and true
optimal cost J? (dashed) plotted against the Pole
location a. The number of basis functions ranges from
N = 10 (blue) to N = 100 (red) in increments of 10.
We see that the rate of convergence is highly dependent
on a and that for a < 1 increasing N improves optimal
cost when using Laguerre basis functions, but not
repeated-pole expansions. For a > 100 and N > 60
the solver fails to find a solution when using a repeated-
pole expansion, whereas it is possible to increase N
further if the Laguerre basis functions are used.

10−1 100 101 102 103

101

104

107

1010

Laguerre
N = 10

Laguerre
N = 100

Repeated-pole
expansion, N = 10

Pole location a

co
nd

(M
u

)

Figure 5. The condition number (double precision) of Mu
when using Laguerre basis expansions with N = 10
(blue) to N = 100 (red), and repeated-pole expansions
with N = 10 (dashed) against the pole location a.
The condition number of Mu for the repeated pole
expansions was worse than 1016 for N > 20.
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λmax(Mu) = 3× 10−3. Clearly, thisMu is far from positive
semi-definite, indicating severe numerical errors in its
computation. The output orthogonal realization (15) gives
a matrix Mu with λmin(Mu) = 9× 10−5 and λmax(Mu) =
3× 10−3, that is close to the correct matrix.

5. CONCLUSIONS

We have seen that although the repeated-pole expansion
(4) has received much attention in the Q-design literature,
it typically gives poorly conditioned optimization problems.
Clearly, the Laguerre basis seems to be numerically prefer-
able. We have also illustrated that the choice of state-space
realization is crucial when computing quadratic forms for
the objective and constraints.
We hope that this article has shed light on some common
numerical issues in Q-design and that a better understand-
ing of these issues will allow wider adoption of Q-design
throughout the control community.

Appendix A. ANALYTIC EXPRESSION FOR (12)

With A and C given by (11a) and (11c) the elements of
the solution Y to the Lyapunov equation (9) satisfies the
two-dimensional recursion equation

Yj,k = Yj−1,k + Yj,k−1
2a ,

Y1,1 = 1
2a.

(A.1)

The solution to (A.1) is given by

Yj,k = (j + k − 2)!
(j − 1)!(k − 1)!

(
1
2a

)j+k−1
.

Introducing the symmetric Pascal matrix

PS :=


1 1 1 1 · · ·
1 2 3 4 · · ·
1 3 6 10 · · ·
1 4 10 20 · · ·
...
...

...
... . . .

 , (A.2)

we can write

Y = 1
2a diag(1, 1/2a, (1/2a)2, . . .)

· PS · diag(1, 1/2a, (1/2a)2, . . .).

Appendix B. DERIVATION OF (15)

The Laguerre bases (5) are given by the recursion

q1(s) =
√

2a
a+ s

qk(s) =
(
a− s
a+ s

)
qk−1(s).

Starting at qk(s) we can get a closed form solution by
working our way backwards,
sqk(s) = −aqk(s) + (a− s)qk−1(s)

= −aqk(s) + aqk−1(s)
− (−aqk−1(s) + (a− s)qk−2(s))

Expanding each sqk−l(s) results in

= −aqk(s) + 2a
k−1∑
i=1

(−1)i+1qk−i(s) + (−1)k−1√2a.

By taking xk(s) = qk(s)u(s) as the internal states the real-
ization of the differential equation y(s) =

∑N
k=1 βkqk(s)u(s)

becomes

A =


−a 0 0
2a −a 0
−2a 2a −a

. . . . . . . . .

 , B =
√

2a


1
−1
1
...

 , C = βT

where β is a column vector containing all βk. To better fit
the context of the article we use the transposed version
Â = AT, B̂ = CT and Ĉ = BT. Factoring out β from
B̂ = βI gives the realization (15).
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