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Abstract: Wind turbine components are subject to considerable stress and fatigue due to
extreme environmental conditions to which they are exposed to, especially when located offshore.
Interest in the integration of control with system health monitoring has increased in recent
years. The integration of a health management module with model predictive control (MPC)
provides the wind turbine a mechanism to operate safely and optimize the trade-off between
components’ life and energy production. In this paper, a health-aware LPV model predictive
control approach for wind turbines is proposed. The proposed controller establishes a trade-off
between the economic objective based on maximizing the energy production but at the same
time taking into account the minimization of accumulated stress on the wind turbine blades.
The controller uses an LPV model for dealing with the non-linearity of the wind turbine model
and the inclusion of the stress model. The proposed approach is tested on a well-known wind
turbine case.

1. INTRODUCTION

Wind energy has seen an immense growth over the last
decades, becoming one of the most promising renewable
energy resources that exists today. However, wind turbines
operate in turbulent and often times unpredictable en-
vironmental conditions which makes their efficiency and
reliability highly dependent on a well designed control
strategy. The wind turbine control objectives are mainly to
optimize wind energy conversion, and to reduce dynamic
loads experienced by the plant’s mechanical structure.

Wind turbines exhibit non-linear dynamics and operate
in different operating zones depending on the range of
wind speeds, which motivates their modelling and con-
trol using parameter-varying models (Shirazi et al., 2012),
(Inthamoussou et al., 2014). The Linear Parameter Vary-
ing (LPV) paradigm has become a standard formalism for
analysis and controller synthesis (Shamma, 2012) for non-
linear systems. The advantage of using this class of systems
is the use of an extension of linear techniques to perform
gain-scheduling control of non-linear systems.

On the other hand, wind turbines are subject to highly
irregular loadings due to wind, gravity, and aerodynamic
effects which makes them especially vulnerable to fa-
tigue damage. Thus, integrating wind turbine components’
health information in the control algorithm will make wind
turbines operate safely and enable an optimization process
involving trade-offs between components’ life and energy
production.

? This work has been funded by the Spanish State Research
Agency (AEI) and the European Regional Development Fund
(ERFD) through the project SCAV (ref. MINECO DPI2017-88403-
R) and by the DGR of Generalitat de Catalunya (SAC group ref.
2017/SGR/482).

MPC has attracted particular interest for implementing
health-aware control schemes for wind turbines owing in
part to the ability to explicitly include in the optimization
certain engineering requirements such as health indices
for a desired outcome. In (Barradas Berglind and Soltani,
2015), a data-based MPC strategy that incorporates fa-
tigue estimation has been presented. In (Odgaard et al.,
2015), an approach that includes dynamic inflow into the
MPC controller has been proposed to decrease fatigue
load. (Sanchez et al., 2015) also presents an approach
of integrating MPC with a fatigue-based prognosis based
on blade root moments to minimize the damage of wind
turbine blades.

This paper presents a health-aware control (HAC) that
takes into account the information about the system’s
health in the control law, with the objective of extending
the useful life of the wind turbines, specifically the blades.
The controller is implemented using MPC where some
new terms that take into account the system’s health,
i.e. the accumulated blade loadings are included in the
control objectives. This leads to solving a multi-objective
optimization problem where a trade-off between system’s
health and performance is established. The MPC HAC
approach is based on an LPV model of the wind turbine
to accommodate the time-varying nature of the system
leading to a convex optimization problem. Finally, the pro-
posed approach is tested using the same wind turbine case
study proposed in Sanchez et al. (2015), where a linearized
model of the wind turbine was considered instead of an
LPV one.

The remainder of the paper is organized as follows. Section
2 introduces the fatigue analysis and estimation of the
wind turbine blades. In Section 3 the wind turbine quasi-
LPV model is presented. The health-aware MPC controller
is introduced in Section 4 and some simulation results
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are presented and discussed in Section 5. Finally, some
concluding remarks are given in Section 6.

2. FATIGUE ESTIMATION OF WIND TURBINE
BLADES

Fatigue in structures occurs when subjected to cyclic stress
resulting in a localized, progressive and eventual perma-
nent structural alteration (cracks or complete fracture)
(Boyer, 1986). Estimating fatigue in wind turbine struc-
ture subjected to stochastic wind loadings is not new in lit-
erature. There have been many studies to compute fatigue
life of components of wind turbines to enable predesigns,
either active or passive, which averts rapid loss of struc-
tural strength for a longer operational lifetime enhancing
the economic viability of wind energy technology against
other competing options.

The most common method used in literature and in prac-
tice is the rain flow counting (RFC) method together with
the Palmgren-Miner to compute resultant damage from a
history of stress. The rain flow counting method was ini-
tially proposed by Endo et al. (1967) to interpret complex
cyclic behaviour of stress as the probability of occurrence
of load cycles in different ranges, ideally extracting closed
loading reversals (or cycles). Fluctuating stress and strain
on structures are represented as peaks in the RFC method.
Counting these peaks results in a histogram of peaks in
which the random history of stress (or strain) can be
transformed into a statistical distribution of amplitudes
of the fluctuating stress or strain as a function of time.

For this study, only the flap-wise loading which is de-
pendent on aerodynamic load, wind is considered. The
cyclic stress signals from the flap-wise root moment is
consequently used as input into the RFC algorithm.

Many cumulative damage procedures exists that seek to
predict the fatigue of materials. Palmgren-Miner’s rule,
first proposed by (Palmgren (1924)) and developed by
(Miner (1945)) is the predominant method used due to
it’s simplicity. In using this method, the stress is assumed
to be constant, neglecting iterations and sequence effects
that may have significant impart on the overall estimated
damage (Berglind and Wisniewski (2014)). The S-N curve,
a relation of cycle amplitude of the stress and the number
of cycles to failure .i.e. stress (s) versus number of stress
cycles (N) is used to compute damage accrued at each
cycle, given as a line in a log-log scale:

scN = K, (1)

where the constants c and K are the composite’s parame-
ters and N is the number of cycles to failure at an ampli-
tude of stress s. Given a time history of stress, damage is
given per the Palmgren-Miner rule as:

D(T ) ≡
T∑
j=1

∆Dj =

T∑
j=1

1

Nt
, (2)

from (2), and with the associated incremental damage
∆Dj at each counted cycle of the load factor and consid-
ering the relation between the number of cycles to failure,

Nt and the stress amplitude from the S-N curve (1), the
accumulated damage after T counted cycles is given as:

Dac =

T∑
j=1

1

K
scj . (3)

With available time series data of the load factor (flap-wise
blade root moment), the RFC method and the Palmgren-
Miner’s rule can thus be used to estimate the accumu-
lated damage. From a previous work done by Sanchez
et al. (2015), which will be shown in the preceding sec-
tion, a linear model of the blade root moment MB,i(k)
is estimated from the time series data, which is then
incorporated into the MPC controller for a multi-objective
optimization process of maximizing extracted power from
kinetic wind energy whilst minimizing accumulated stress
from the blade root moment, a function of the accrued
damage as shown in (4) and other conflicting performance
indices. The accumulated damage is therefore calculated
as a function of time with the RFC method, obtained at
each time step k as

D(k) =

{
0 if I(k) = I(k − 1)
1

K
(s(k))c if I(k) 6= I(k − 1)

(4)

where s(k) is the stress at time instant k (5), I(k) is the
signal adapted to detect cycles (6), L is the number of
samples per cycle and MB,i is the blade root moment of
each blade i.

s(k) =
1

L

k∑
p=k−L

MB,i(p), (5)

I(k) = MB,i(k)− s(k). (6)

The accumulated damage can thus be calculated from (3),
which is normally restricted to a predefined failure thresh-
old beyond which damage is assumed to be above tolerance
levels, but not necessarily a complete non-usability of the
material under study. In the next sections the accumulated
stress which is an input to the damage model (2) from
the rainflow and Palmgren-Miner rule will be setup in an
optimization problem of an the MPC formulation with the
objective of decreasing stress MB,i from (5) from loadings
hence reducing damage accumulation D(k) against pro-
ducing power from the turbine.

3. LPV MPC OF WIND TURBINES

3.1 Non-linear model

In this work, a suitable low order model that captures key
dynamics of the wind turbine is used for the MPC design,
even though more detailed models exist. Neglecting torsion
angle and friction and with the assumption that the low
and high speed shaft are one complete model, the model
is described as:
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ẇr =
1

J
(Ta −NgTg), (7a)

V̈t =
1

Mt
(Tr −KtVt −BtV̇t), (7b)

β̇ =
1

τp
(−β + βr), (7c)

Ṫg =
1

τg
(−Tg + Tgr ), (7d)

where wr is the rotor speed, Tg is the generator torque,
β, the pitch angle for capturing wind depending on wind
speeds w and V̇t is the the nacelle fore-aft velocity from
the tower oscillations. The model parameters J , Ng, Mt,
Kt, Bt, τp, τg are the rotor inertia, gear ratio, the tower
fore-aft inertia, the tower fore-aft rigidity, the mechanical
damping, the time constant of the pitch and the time
constant of the generator respectively. The rotor and
aerodynamic torques (Tr and Ta) which are dependent on
the power and thrust coefficients Cp and Cq, both of which
are functions of the pitch angle β and blade tip speed λ
are given as:

Ta =
1

2
ρπR3Cp(λ, β)

λ
w2, (8a)

Tr =
1

2
ρπR2Cq(λ, β)w2, (8b)

λ =
Rwr
w

. (8c)

3.2 LPV model

An LPV model of the wind turbine can be obtained
from the non-linear model (7) by means of the non-linear
embedding approaches described in (Rugh and Shamma
(2000)). After Euler discretization with a sampling time
of Ts for MPC control purposes, the dynamic model can
be expressed as follows:

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k) +Bw(θ(k))w(k),
(9)

where x = [wr Vt V̇t β Tg]
T ∈ Rn are the states, u =

[Tgr βr]
T ∈ Rm the inputs and w(k) ∈ Rd is the distur-

bance from the wind.

The system matrices of the LPV model (9) are as follows:

A(θ(k)) = I + Ts



0 0 0 −Ng
J

0

0 1 0 0 0

0 −Bt
Mt
− kt
Mt

0 0

0 0 0 − 1

τp
0

0 0 0 0 − 1

τg


,

B(θ(k)) = Ts



0 0
0 0
0 0

0
1

τp
1

τg
0


,

Bw(θ(k)) = Ts


k1θ1(k)

0
k1Rθ2(k)

0
0

 .
where the matrix, Bw(θ(k)) depends on the follow-

ing varying parameters: θ1(k) =
Cp(λ(k),β(k))

λ(k) and θ2(k)

=Cq(λ(k), β(k)) under the assumption of known states
and wind speed at each time instant k. The rest of the
parameters are constant as defined in (7).
Hence at every time instant the dynamics of the system
is obtained from a linear model determined by parameters
θi, ∀i ∈ Z≤4, that varies in the defined operational region.

An LPV model of the wind turbine which is dependent
on the system states in a polytopic form is setup. The
system matrices are linear time variant and functions of
the scheduling parameters which are bounded in a compact
polytopic set. This enables the non-linear terms in (7)
from (8) and the bilinearity in (15) which would have
otherwise warranted a complex optimization procedure to
be subsequently solved with linear optimization tools.

Therefore with nθ varying parameters, a polytopic repre-
sentation of the dynamic matrices is given as the linear
combination of nv = 2nθ vertices (θpi) of a polytope as
follows

A(θ(k)) =

nv∑
i=1

αi(k)A(θpi) , B(θ(k)) =

nv∑
i=1

αi(k)B(θpi)

(10)

Bw(θ(k)) =

nv∑
i=1

αi(k), Bw(θpi),

where

nv∑
i=1

αi = 1, αi = [0, 1]. (11)

3.3 LPV MPC of wind turbines

The MPC controller uses the mathematical model (9) of
the wind turbine to calculate the optimal control actions
using a receding horizon philosophy.

The control goal is to minimize the cost function in the
prediction horizon

Ψw(wr − w∗
r )2 + Ψβ(β − β∗)2 + Ψt(Tg − T ∗

g )2 + Ψ∆β(∆βr)
2.
(12)

where w∗
r , T ∗

g and β∗ are the reference rotor speed,
reference torque and reference pitch angle respectively,
with ∆βr as the slew rate of the blade actuator. Control
strategies are undertaken differently at specific ranges of
wind speeds for maximizing extraction of energy from wind
and maintaining rated power to a certain speed limit with
the aid of tuning appropriate weights Ψw, Ψβ , Ψt and Ψ∆β .

The model (9) cannot be assessed before solving the MPC
optimization problem, due to the future state sequence is
unknown and cannot be determined. In reality, x(k + 1)
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depend on future control inputs u(k) and also on the
future scheduling parameters, thus LPV model cannot be
instantiated offline but instead should be evaluated online
at each time instant k. In this way, the MPC optimization
problem can be formulated as a quadratic programming
(QP) problem by using an estimation of scheduling vari-

ables, θ̂ instead of utilizing θ. That means the scheduling
variables in the prediction horizon are estimated using the
values from the previous MPC iteration and applied to
update the model matrices of the MPC controller. Indeed,
the sequence of the control input is utilized to change the
model matrices used in the prediction horizon. Therefore,
the predicted parameters and sequence of states can be
obtained.

Hence, the LPV MPC controller design is based on the so-
lution of the following finite horizon optimization problem
(FHOP):

min
u(0:`)

`−1∑
i=0

J (x(i), u(i)) (13a)

subject to:

x(i+ 1) = A(θ(k))x(i) +B(θ(k))u(i) +Bw(θ(k))w(i),

x(i+ 1) ∈ X , ∀i ∈ Z`1,
u(i) ∈ U , ∀i ∈ Z`−1

0 ,

w(k) = ŵi, ∀i ∈ Z`−1
1 ,

θ(k) = θ̂i, ∀i ∈ Z`−1
1 ,

x(0) = x0, w(0) = w0, θ(0) = θ0.

where x0, w0 and θ0 is the initial state, disturbance

and parameters obtained from measurements. ŵi and θ̂i
corresponds to the predicted value of disturbances and
parameters all obtained at time instant k. Notation Zba
expresses the set of integer numbers from a to b, both
limits included, i.e., {a, a+ 1, . . . , b}.
Assuming that (18) is feasible, i.e., there exists a non-
empty solution given by the optimal sequence of control
inputs (u∗(0), u∗(1), . . . , u∗(`−1)), then the receding hori-
zon philosophy commands to apply the control action

u(k) = u∗(0). (14)

and disregards the rest of the sequence of the predicted
manipulated variables. At the next time instant k, the
optimization problem (18) is solved again using the current
measurements of states and disturbances which is assumed
known at each time instant and the most recent forecast
of these latter over the next future horizon.

4. HEALTH-AWARE LPV MPC OF WIND TURBINES

Component replacement costs and downtime lead to an
increased overall cost of operation and those are some
consequences of not taking into consideration a plant’s
health in design of machines. Due to the ability to pose
a multi-objective optimization problem in MPC, it al-
lows for the addition of objectives mostly conflicting to
the main performance index, such that certain important
engineering requirements (e.g. health of components) can
be considered. In this breath, most MPC applications in
wind turbines include health-aware capabilities to ensure

a longer operational lifetime keeping in mind that wind
turbines are exposed to extreme conditions. In most re-
search works, for example in (Körber and King (2010))
and (Evans et al. (2015)), minimization of the velocity
of the nacelle fore-aft from the tower oscillations is taken
into account. In this work, the accumulated stress from
the blade root moment which is included in the model is
minimized to ultimately decrease the rate of fatigue on the
blades. The result is subsequently a trade off between the
maximization of power and the health aware index.

As stated in the Section 2, the load factor for fatigue
estimation, in this case the blade root moment is estimated
as done by (Sanchez-Sardi et al., 2017). The blade root
moment was parametrically estimated as a first order
linear function of the generator torque, the rotor speed and
wind speed resulting in a bilinear function of the states Tg
and wr in the form

Mb = a0 + a1Tgwr + a2w, (15)

The accumulated stress on the blades (Mbacc) due to wind
thrust over it’s lifetime which inherently leads to fatigue
and in the long run failure is posed as:

Mbacc(k + 1) = Mbacc(k) +Mb(k). (16)

For an in depth understanding on how the function (15)
is acquired, reader is referred to (Sanchez et al. (2015)).
The LPV model (9) is augmented to include the ac-
cumulated stress (16) as a new state, such that x̄ =

[wr Vt V̇t β TgMbacc ]
T . The augmented system matrices ob-

tained considering the dynamic stress equation (16) are as
follows:

x̄(k + 1) = Ā(θ(k))x̄(k) + B̄(θ(k))u(k) + B̄w(θ(k))w(k),
(17)

where

Ā(θ(k)) = I +Ts



0 0 0 −Ng
J

0 0

0 1 0 0 0 0

0 −Bt
Mt
− kt
Mt

0 0 0

0 0 0 − 1

τp
0 0

0 0 0 0 − 1

τg
0

a1θ3(k) 0 0 0 a1θ4(k) 1


,

B̄(θ(k)) = Ts



0 0
0 0
0 0

0
1

τp
1

τg
0

0 0


,

B̄w(θ(k)) = Ts



k1θ1(k)
0

k1Rθ2(k)
0
0

ao
θ5(k)

+ a2

 .
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The varying parameters in the augmented LPV model are

the same as the LPV model including θ3(k) =
Tg(k)

2 , θ4(k)

=wr(k)
2 and θ5 =w(k) from the stress model (16).

Hence, the MPC controller optimization problem pre-
sented in (18) is modified by including the augmented
LPV model (17) with a modified objective function,
J̄ (x̄(i), u(i)), which includes an extra term ΨmbMbacc that
accounts for the accumulated stress (i.e stress model, a
function of Damage (4) ) with the remaining objectives in
(12) as follows:

min
u(0:`−1)

∑̀
i=0

J̄ (x̄(i), u(i)) (18)

subject to:

x̄(i+ 1) = Ā(θ(k))x̄(i) + B̄(θ(k))u(i) + B̄w(θ(k))w(i),

x̄(i+ 1) ∈ X̄ , ∀i ∈ Z`1,
u(i) ∈ U , ∀i ∈ Z`−1

0 ,

w(k) = ŵi, ∀i ∈ Z`−1
1 ,

θ(k) = θ̂i, ∀i ∈ Z`−1
1 ,

x̄(0) = x̄0, w(0) = w0, θ(0) = θ0.

5. SIMULATION RESULTS AND DISCUSSIONS

In this section, the MPC-LPV controller design procedure
is implemented on a 5MW non-linear wind turbine plant
that is modelled with the non-linear model (7) with the
parameters detailed in Table 1.

Table 1. Model parameters

Parameter Value

Ng 97 [ - ]
J 4.217 × 107 [ kg/m2 ]
R 63 [ m ]
ρ 1.23 [ kg/m3 ]
Bt -9025 [Ns/m]
Mt 4.054 × 105 [ kg/m2 ]
Kt −1.719 × 106 [N/m]
τp 0.02 [ s ]
τg 0.02 [ s ]
a0 6468 [ - ]
a1 7.82 [ - ]
a2 -248.83 [ - ]

k1 7.6684 × 103 ( 1
2
ρA) [ kg/m ]

Normal operations of reference tracking to achieve max-
imum wind energy capture, from low wind speeds and
ensuring nominal power for speeds above the rated speed
(windrated) of 12.5 m/s through pitch and generator
torque actuator actions are illustrated. The wind speed
profile considered is a gradient wind speed profile of two
regions of operation for figure 1 to validate the LPV
model. The behaviour with the inclusion of the health ware
performance index is then shown accordingly considering
constant wind speed of 13 m/s.

From Figure 1, with a sampling time Ts of 0.05 sec at
low wind speeds w ≤ windrated, appropriate weights Ψ
in (12) are selected to ensure the pitch angle is at 0◦,
allowing maximum exposure of the blades to wind for

Fig. 1. Control of wind turbine subjected to gradient wind
profile

utmost energy available. Therefore below windrated, only
the reference torque actuator is operational. For wind
speeds w ≥ windrated but less than the cut- off wind
speed 25 m/s, the blade actuator varies accordingly to
information of varying wind which is assumed known,
such that the blade angle of attack is reduced accounting
for less energy from wind to ensure rated power without
overspeeding, protecting plant components. In this region
both the torque (Tg) and the rotor speed (wr) is kept
at their respective rated values, see Figure 1. For the
purpose of calculating the accumulated damage with a
constant stress input, wind speeds above the rated speed
(windrated) which produces constant power is considered
for the health ware LPV-MPC design.

Fig. 2. Health Aware LPV-MPC control with varied
weights Ψmbi

There is a trade off between the minimization of accumu-
lated root moment mb and the maximization of output
power from Figure 2, after selection of weights Ψmbi =
[Ψmb4 > Ψmb3 > Ψmb2 > Ψmb1 ] in the updated health
aware cost function (18). Considering that wind speed >
windrated, the torque Tg is therefore kept constant from
figure 3. The blade pitch angle therefore increases (i.e re-
duced angle of attack) with more priority on minimization
of the accumulated stress resulting in a decrease in rotor
speed (wr) leading to less output power as shown in figure
2.

Table 2 shows the trade-off in numbers between the
steady state power and it’s associated accumulated stress
calculated as the area under each function, Mb from figure
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Fig. 3. Torque and Power coefficient after varied weights
Ψmbi

2 with respect to different selected Ψmb after simulation
time of 1000 seconds.

Table 2. Table showing power and accumulated
stress with varied weights, Ψmbi .

Ψmb Power(MW) Mbacc (kN.m)

Ψmb1 5 4.11×1010

Ψmb2 4.54 3.74×1010

Ψmb3 4.164 3.43×1010

Ψmb4 3.97 3.26×1010

Fig. 4. Pareto front of power and accumulated stress

Depending on Ψmb, it could be realised from the Pareto
front in figure 4 that for a reduced accumulated stress on
the blades, the control actions from the MPC results in the
deration of power, which involves an increase of pitch angle
to decrease the blades exposure to varying wind loading,
decreasing aerodynamic thrust in the process.

6. CONCLUSIONS

This research paper investigated the integration of health
aware capabilities in a wind turbine control action for
a longer operational lifetime of components. Taking into
account that the wind turbine presents a non-linear system
and the stress estimated is a bilinear function, the model
was approximated as an LPV system in a polytopic form.
Results from simulations of the multi-objective problem
subsequently showed a trade off between the power pro-
duced from the wind turbine and the minimization of
the accumulated stress which is an input to the fatigue
estimation model described in section 2 on the wind tur-
bine blades, therefore necessitating a deration of wind
turbines for a longer blade lifetime. As further research
it will be interesting to explore Economic MPC due to

the difficulty in appropriately tuning the tracking weights,
a problem cited by practitioners as stated by (Gros and
Schild (2016)).
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