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Abstract: Inspired by the random packet dropout problem widely existing in the networked
control systems, we investigate the stability of Kalman filter with random coefficients. We
present an excitation condition about the regression vectors to establish the Lp-stability and
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system matrix and noises, without relying on any stationarity or independence assumptions
about the regressors.
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1. INTRODUCTION

Kalman filter ( R. E. Kalman (1960); T. Kailath, A. H.
Sayed, B. Hassibi (2000)) is widely used to estimate the
states and the parameters in many practical engineering
systems (cf., L. Shi, M. Epstein, A. Tiwari, R.M. Murray
(2005); Q. S. He, C. Wei, Y. Z. Xu (2017)), such as guid-
ance and navigation of vehicles, signal processing. The in-
vestigation of the stability and optimality of Kalman filter
and its variants attract much attention of researchers for
several decades. With the development of communication
and computation, Kalman filter has also great importance
in networked control systems, and correspondingly the
theoretical study of Kalman filter brings more and more
challenge to us.

For the deterministic linear time-invariant systems, a clas-
sical result is that the iterative Riccati equation converges
to a steady state under some detectable and stabilizable as-
sumptions. More results about deterministic situation can
be found in the paper by J. Deyst, C. Price (1968). How-
ever, for the networked control systems, data transmission
over networks may be randomly dropped or delayed due to
the malicious network attacks or the limited computation
ability at the sensors, which leads to random evolution
of regression vectors. The theoretical results for the de-
terministic systems can not be used to deal with such a
case since the deterministic hypotheses are unsuitable for a
general stochastic model as pointed out by Guo (1990). In
order to provide theoretical illustration for the feasibility
of Kalman filter in a random framework, a large number of
literature has been devoted to the study of the properties
of Kalman filter, for example, the boundedness of the
estimation error covariances for system with independent
? This work was supported by the National Key R&D Program
of China under Grant 2018YFA0703800 and the National Natural
Science Foundation of China under grants 11688101, 61621003 and
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and identically distributed (i.i.d.) packet dropouts (cf., B.
Sinopoli, et al (2004); A. S. Leong, D. E. Quevedo, D. Dolz,
& S. Dey (2019)), and Markovian packet dropouts (cf., K.
Y. You, M. Y. Fu, L. H. Xie (2011); H. Lin, J. Lam, Z. D.
Wang, & H. Lam (2019); M. Y. Huang, S. Dey (2007); L.
Xie, L. H. Xie (2019)).

To the best of our knowledge, very few results are ob-
tained concerning with a general stochastic process(cf., P.
Bougerol (1993); V. Solo (1996)). But these papers require
that the regression vector and system matrix satisfy the
stationarity assumptions. For the case where the system
matrix is taken as the identity matrix, Guo (1994) estab-
lish a general excitation condition to guarantee the stabil-
ity of Kalman filter without relying on the independence
and stationarity assumptions of random regressors. The
concept of stochastic observability was proposed by Wang
and Guo (1999) for the general system matrix, under which
the stability of Kalman filter with random coefficients are
established. However, the stochastic observability condi-
tion proposed by Wang and Guo (1999) is not valid, even
for the i.i.d. packet losses.

In this paper, we focus on the case where the system matrix
A is deterministic and time-invariant, and the regression
vector ϕk is a random vector. It is clear that the framework
studied in the current paper can include the system with
random packet losses. We extend the excitation condition
proposed by Guo (1994) for the standard linear regression
system to the model with the system matrix A, under
which the Lp-stability and Lp-exponential stability of
random Riccati equation can be established. Furthermore,
the stability of the error equations of Kalman filter can
also be obtained under the excitation condition and some
conditions on the system matrix and the noises. We remark
that the excitation condition in this paer is weaker than
the so-called stochastic observability condition proposed
by Wang and Guo (1999).
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The remainder of this paper is organized as follows.
We first introduce some notations and preliminaries on
Kalman filter in Section 2. The main results including the
conditions for stability of Kalman filter are presented in
Section 3, followed by some conclusions in Section 4.

2. PROBLEM FORMULATION

2.1 Some Preliminaries

In this paper, we use X ∈ Rm×n to denote an m × n-
dimensional matrix. For a matrix X, ‖X‖ denotes the

Euclidean norm, i.e., ‖X‖ = (λmax(XXT ))
1
2 , where the

notation T denotes the transpose operator and λmax(·)
denotes the largest eigenvalue of the matrix. LetA ∈ Rn×n
and B ∈ Rn×n be two symmetric matrices, then A ≥ B
means A-B is a positive semidefinite matrix. In order
to proceed our discussions, we need to introduce some
definitions (see, Guo (1994)).

Definition 1. A random matrix sequence {Ak, k ≥ 0}
defined on the basic probability space (Ω,F , P ) is called
Lp-stable (p > 0) if supk≥0E‖Ak‖p < ∞. We define

‖Ak‖Lp , (E‖Ak‖p)
1
p as the Lp-norm of the random

matrix Ak.

Definition 2. A sequence of n × n random matrices A =
{Ak, k ≥ 0} is called Lp-exponentially stable (p ≥ 0) with
parameter λ ∈ [0, 1), if it belongs to the following set

Sp(λ) =
{
A :

∥∥∥ k∏
i=j+1

Ai

∥∥∥
Lp

≤Mλk−j ,∀k ≥ j,

∀j ≥ 0, for some M > 0
}
.

For convenience of discussions, we introduce the subclass
of S1(λ) for a scalar sequence a = {ak, k ≥ 0}:

S0(λ) =
{
a : ak ∈ [0, 1), E

k∏
i=j+1

ai ≤Mλk−j ,∀k ≥ j,

∀j ≥ 0, for some M > 0
}
.

Remark 1. It is clear that if there exist a constant a0 ∈
[0, 1) such that ak ≤ a0, then {ak} ∈ S0(a0). More
properties about the set S0(λ) are introduced by L. Guo
(1993).

Definition 3. Let {Ak} be a matrix sequence and {bk} be
a positive scalar sequence. Then by Ak = O(bk) we mean
that there exists a constant M > 0 such that

‖Ak‖ ≤Mbk ∀k ≥ 0.

2.2 Kalman Filter

In this paper, we consider the following discrete-time linear
dynamical system:{

θk+1 = Aθk +wk+1

yk = ϕTk θk + vk
, (1)

where θk ∈ Rn(k ≥ 0) is the state to be estimated
and A ∈ Rn×n is a deterministic matrix, yk is a scalar
observation and ϕk is an n-dimensional random regression

vector, {wk, vk, k ≥ 0} is an independent noise process and
satisfies:

E(wkw
T
k ) = Q > 0, E(v2k) = R > 0, E(vkw

T
k ) = 0.

The initial condition θ0 is a random vector with mean θ̂0
and covariance matrix P ′0 ≥ 0, and is independent of the
sequence {wk, vk, k ≥ 0}.
First, let us define

θ̂′k , E(θk|Fk−1), θ̂k , E(θk|Fk),

P ′
k , E((θ̂′k − θk)(θ̂′k − θk)T |Fk−1),

Pk , E((θ̂k − θk)(θ̂k − θk)T |Fk)),

where Fk , σ{yi,ϕi, i ≤ k}.
Then the Kalman filter algorithm of system (1) can be
stated as follows (cf., G. Welch, G. Bishop (2000)).

State prediction process:

θ̂′k+1 = Aθ̂k, (2)

P ′k+1 = APkA
T +Q, (3)

Measurement update process:

P−1k = P ′−1
k +ϕkR

−1ϕTk , (4)

θ̂k = θ̂′k +Lk(yk −ϕTk θ̂′k), (5)

Lk = P ′kϕk(ϕTkP
′
kϕk +R)−1.

Remark 2. From the above Kalman filter algorithm, we
obtain the following random Riccati equation,

P ′k+1 = A(I −LkϕTk )P ′k(I −LkϕTk )TAT +Qk (6)

with Qk = ALkRL
T
kA

T +Q.

What we concern in this paper is the Lp stability of the
random Riccati equation. Our purpose is to establish the
conditions on the regressors {ϕk} and the system matrix
A to guarantee the boundedness of the random process
{P ′k}.

3. STABILITY OF KALMAN FILTER

3.1 Lp-Stability of Random Riccati Equation

In this section, the Lp-stability of random Riccati equation
is analyzed. To this end, we first introduce the following
preliminary assumptions.

Assumption 1. The system matrix A is invertible.

Assumption 2. (Excitation Condition) There exists an
positive integer h such that {1 − λk} ∈ S0(λ) for some
λ ∈ (0, 1), where λk is defined by

λk , λmin

{
E

[
1

1 + h
G((k + 1)h, kh)|Fkh−1

]}
,

with

G((k + 1)h, kh) ,
(k+1)h−1∑
i=kh

(Ai−kh)Tϕkϕ
T
kA

i−kh

1 + ‖ϕTkAi−kh‖2
.
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Remark 3. It can be proved that the following two typical
cases satisfy Assumption 2,

i) The regression vector {ϕk, k ≥ 0} is deterministic time-
invariant, and (A,ϕk) satisfy the observable condition.

ii) The regression vector {ϕk, k ≥ 0} is generated by an
i.i.d. packet dropout with some observable conditions.

Assumption 3. The norm of the system matrix A satisfies

2
p−1
ph ‖A‖2 · λ

1
8nph2(1+R) < 1 for some p ≥ 1,

where n is the dimension of θk, λ and h are defined in
Assumption 2.

Remark 4. Wang and Guo (1999) proposed the following
random observability condition, for any ε > 0, there exists
δ > 0 such that

P

{
λmin

[
k+h0∑
k+1

(Ai−k)Tϕkϕ
T
kA

i−k

]
< δ

∣∣∣∣∣Fk−1

}
< ε,(7)

where h0 is an integer. We can prove that under the
condition supk E‖ϕk|Fk−1‖4 <∞, the above random ob-
servability condition implies Assumption 2, which means
that Assumption 2 is in some sense weaker than (7).

To proceed our analysis, we first introduce two lemmas.

Lemma 1. (Guo (1994)) Let {1 − βk} ∈ S0(λ), and βk ≤
β < 1, where β is a positive constant. Then for any
ε ∈ (0, 1), {1− εβk} ∈ S0(λ(1−β)ε).

Lemma 2. (Guo (1994)) Let {zm,Fm} be an adapted
process with zm ≥ 1, and

zm+1 ≤ αm+1zm + ηm+1, m ≥ 0, Ez20 <∞,
where {αm,Fm} and {ηm,Fm} are two adapted nonneg-
ative process with properties:

αm ≥ ε0 > 0, ∀m,
E[η2m+1|Fm] ≤ N <∞, ∀m,∥∥∥∥∥∥

k∏
m=j

E[α4
m+1]|Fm

∥∥∥∥∥∥ ≤Mηk−j+1, ∀k ≥ j, ∀j,

where ε0,M,N and η ∈ (0, 1) are constants. Then we have

(i)

∥∥∥∥∥∥
k∏

m=j

αm

∥∥∥∥∥∥
L2

≤M 1
4 η

1
4 (k−j+1), ∀k ≥ j, ∀j;

(ii) sup
m
E‖zm‖ <∞;

(iii)

{
1− 1

zk

}
∈ S0(λ) for some λ ∈ (0, 1).

Remark 5. In Lemma 2, for the conclusions of (i) and (ii),
the condition zm ≥ 1 is not critical because we can use a
new process {zm + 1} to substitute {zm}.
Theorem 1. Let {P ′k} be generated by (6), then under
Assumption 1, we have

Tm+1 ≤ (1− am+1)‖A‖2hTm + bA. (8)

where

Tm+1 ,
(m+1)h−1∑
k=mh

tr(Amh−(k+1)P ′k+1(Amh−(k+1))T ),

T0 = 0,

am+1 ,
tr[(Smh,h)2G((m+ 1)h,mh)]

h(1 +R)tr(Smh,h)[1 + λmax(Smh,h)]
,

Smh,h ,P
′
mh +

h∑
j=1

A−jQ(A−j)T ,

bA , htr[

h∑
j=0

AjQ(Aj)T ] + 2h

h∑
j=1

tr[A−jQ(A−j)T ].

Proof. Note that by (4), we get Pk ≤ P ′k. Combining this
with (3), we have for any k ∈ [mh, (m+ 1)h− 1],

P ′k ≤AP ′k−1AT +Q

≤A(AP ′k−2A
T +Q)AT +Q

=A2P ′k−2(A2)T +AQAT +Q

≤ · · ·
≤Ak−mhP ′mh(Ak−mh)T

+

k−mh∑
j=1

Ak−mh−jQ(Ak−mh−j)T (9)

≤Ak−mhP ′mh(Ak−mh)T

+

h∑
j=1

Ak−mh−jQ(Ak−mh−j)T . (10)

For convenience, we denote

S1
k,mh = Ak−mhP ′mh(Ak−mh)T ,

S2
k,mh =

h∑
j=1

Ak−mh−jQ(Ak−mh−j)T .

Then by (10), we have

P ′k ≤S1
k,mh + S2

k,mh.

Hence by the matrix inverse formula, we have

P ′k+1 =A(P ′−1
k +ϕkR

−1ϕTk )−1AT +Q

≤A[(S1
k,mh + S2

k,mh)−1 +ϕkR
−1ϕTk ]−1AT +Q

=S1
k+1,mh + S2

k+1,mh +Q−
A(S1

k,mh + S2
k,mh)ϕkϕ

T
k (S1

k,mh + S2
k,mh)AT

R+ϕTk (S1
k,mh + S2

k,mh)ϕk
.

(11)

By the definition of Smh,h, it is easy to see that

Smh,h = Amh−k(S1
k,mh + S2

k,mh)(Amh−k)T .

for any k ∈ [mh, (m + 1)h − 1] holds. Moreover, by (11),
we have for any k ∈ [mh, (m+ 1)h− 1]
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Amh−(k+1)P ′k+1(Amh−(k+1))T

≤Smh,h +Amh−(k+1)Q(Amh−(k+1))T

−Smh,h(Ak−mh)Tϕkϕ
T
kA

k−mhSmh,h
R+ϕTkA

k−mhSmh,h(Ak−mh)Tϕk

≤Smh,h +

h∑
j=1

A−jQ(A−j)T

−
Smh,h

(Ak−mh)Tϕkϕ
T
k Ak−mh

1+‖ϕT
k
Ak−mh‖2 Smh,h

(1 +R) · λmax(Smh,h)

≤Smh,h +

h∑
j=1

A−jQ(A−j)T

−
Smh,h

(Ak−mh)Tϕkϕ
T
k Ak−mh

1+‖ϕT
k
Ak−mh‖2 Smh,h

(1 +R) · (1 + λmax(Smh,h))

· htr(P ′mh)

htr((Smh,h))
(12)

Summing both sides of (12), by the definition of Tm+1,
Smh,h, and am+1, we obtain

Tm+1 ≤ htrP ′mh − am+1htrP
′
mh

+2h

h∑
j=1

tr[A−jQ(A−j)T ], (13)

Again by (3) and (4), for any i ∈ [(m − 1)h,mh − 1], we
have

P ′mh ≤Amh−(i+1)P ′i+1(Amh−(i+1))T

+

mh−(i+1)∑
j=1

Amh−(i+1)−jQ(Amh−(i+1)−j)T .

Then

htrP ′mh =

mh−1∑
i=(m−1)h

trP ′mh

≤ tr

Ah
mh−1∑

i=(m−1)h

S1
(m−1)h,i+1(Ah)T


+tr

(
mh−1∑

i=(m−1)h

mh−(i+1)∑
j=1

Amh−(i+1)−j

·Q(Amh−(i+1)−j)T

)

≤ ‖A‖2hTm + htr(

h∑
j=0

AjQ(Aj)T ).

Substituting this into (13), we obtain the results of the
theorem. �
Theorem 2. Under Assumptions 1-3, the random Riccati
equation defined in (6) is Lp-stable, i.e., supk≥0E‖P ′k‖p <
∞.

Proof. If ‖A‖ < 1, then by (3) and (4), it is easy to see
that

‖P ′k‖ ≤ ‖AP ′k−1AT ‖+ ‖Q‖
≤ ‖A‖2‖P ′k−1‖+ ‖Q‖

≤ ‖A‖2k‖P ′0‖+

k−1∑
j=0

‖A‖2j‖Q‖

≤ ‖P ′0‖+
‖Q‖

1− ‖A‖2
<∞.

If ‖A‖ ≥ 1, denote

cm+1 = 2p−1(1− am+1)‖A‖2ph[I(trP ′mh ≥ 1)].

By Theorem 1, Cr-inequality, (13), we have

T pm+1 = T pm+1[I(trP ′mh ≥ 1)] + T pm+1[I(trP ′mh < 1)]

≤
[
(1− am+1)‖A‖2hTm + bA

]p
[I(trP ′mh ≥ 1)]

+[(1− am+1)htrP ′mh + bA]p[I(trP ′mh < 1)]

≤
[
2p−1(1− am+1)‖A‖2phT pm + 2p−1bpA

]
·[I(trP ′mh ≥ 1)] + [2p−1hp + 2p−1bpA]

≤ cm+1T
p
m + (2bA)p + 2p−1hp. (14)

We denote Gm = Fmh−1, then P ′mh ∈ Gm. By the defi-
nition of am+1 and the fact tr(Smh,h)2 ≥ n−1(trSmh,h)2

and EtrB = trEB for any matrix B, then we have

E(am+1|Gm)

=
tr
[
(Smh,h)2E[G((m+ 1)h,mh)]

∣∣∣Gm]
h(1 +R) ·

[
1 + λmax(Smh,h)

]
tr(Smh,h)

≥ (1 + h)λmtr(Smh,h)2

h(1 +R) ·
[
1 + λmax(Smh,h)

]
tr(Smh,h)

≥ (1 + h)λm · tr(Smh,h)

nh(1 +R) ·
[
1 + λmax(Smh,h)

]
≥ (1 + h)λm

2nh(1 +R)
on tr(P ′mh ≥ 1).

Hence by the definition of cm+1, we have

E(c4m+1|Gm)≤E
(

16p−1(1− am+1)‖A‖8ph

·[I(trP ′mh ≥ 1)]
∣∣∣Gm)

≤ 16p−1‖A‖8ph
(

1− (1 + h)λm
2nh(1 +R)

)
·[I(trP ′mh ≥ 1)]. (15)

Denote

dm+1 =


cm+1, trP ′mh ≥ 1;

2p−1‖A‖2ph
(

1− (1 + h)λm
2nh(1 +R)

)
, otherwise.

By (14), we have

T pm+1 ≤ dm+1T
p
m + (2bA)p + 2p−1hp.

Hence by (15) and the definition of dm+1, we have
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∥∥∥ k∏
m=j

E(d4m+1|Gm)
∥∥∥
L1

≤

∥∥∥∥∥∥
k∏

m=j

[
16p−1‖A‖8ph

(
1− (1 + h)λm

2nh(1 +R)

)]∥∥∥∥∥∥
L1

. (16)

By Assumption 2, we have {1 − λm} ∈ S0(λ) for some
λ ∈ (0, 1). Applying Lemma 1 and the fact λm ≤ h

1+h , we

obtain
{

1− (1+h)λm

2nh(1+R)

}
∈ S0(λ

1
2nh(1+R) ). Hence by (16) and

Assumption 3, we see that there exists a constant M such
that

∥∥∥ k∏
m=j

E(d4m+1|Gm)
∥∥∥
L1

≤Mλ1
k−j+1, (17)

where λ1 , 16p−1‖A‖8phλ
1

2nh(1+R) ∈ (0, 1). By Lemma 2
(ii), we have supmET

p
m <∞.

Now, we prove the stability of random Ricatti equation.
By the definition of Tm, we have

ET pm+1

=

(m+1)h−1∑
k=mh

E
[
tr(Amh−(k+1)P ′k+1(Amh−(k+1))T )

]p
≥

(m+1)h−1∑
k=mh

E

 ‖P ′k+1‖p

λpmax

(
A(k+1)−mh(A(k+1)−mh)T

)


=

(m+1)h−1∑
k=mh

E

[ ‖P ′k+1‖p

‖A(k+1)−mh‖2p

]

≥
(m+1)h−1∑
k=mh

E

[ ‖P ′k+1‖p

‖A‖2p[(k+1)−mh]

]

≥ 1

‖A‖2ph

(m+1)h−1∑
k=mh

E‖P ′k+1‖p.

Hence we can obtain that supk E‖P ′k‖p < ∞. This com-
pletes the proof. �

3.2 Lp-Exponential Stability of Random Riccati Equation

In this section, we establish the Lp-exponential stability of
random Riccati equation.

Theorem 3. Under Assumptions 1-3, there exits a constant

λ2 ∈ (0, 1) such that
{

1− 1
1+‖Q−1‖‖P ′

k
‖

}
∈ S0(λ2).

Proof. Denote

xm = h+MA‖Q−1‖Tm,

ym =

mh−1∑
k=(m−1)h

[
1 + ‖Q−1‖trP ′k+1

]
,

where MA , max{1, ‖A‖2h} and Tk is defined in Theorem
1. Then by Theorem 1, we have

xm+1 = h+MA‖Q−1‖Tm+1

≤ h+MA‖Q−1‖
[
(1− am+1)‖A‖2hTm + bA

]
≤ (1− am+1)‖A‖2h(h+MA‖Q−1‖Tm) + h

+MA‖Q−1‖bA
= (1− am+1)‖A‖2hxm + h+MA‖Q−1‖bA.

Denote

fm+1 =


(1− am+1)‖A‖2hI(trP ′mh ≥ 1), trP ′mh ≥ 1;

‖A‖2ph
(

1− (1 + h)λm
2nh(1 +R)

)
, otherwise.

Note that am ∈ [0, 1
1+R ]. Similar to the analysis of (17),

there exists a constant M1 and λ3 ∈ (0, 1) such that

∥∥∥ k∏
m=j

E[f4m+1|Gm]
∥∥∥
L1

≤M1λ
k−j+1
3 .

Then by Lemma 2 (iii), we have {1 − 1
xm
} ∈ S0(γ) for

some γ ∈ (0, 1). By the definition of Tm,

xm =

mh−1∑
k=(m−1)h

[
1 +MA‖Q−1‖

· tr
(
A(m−1)h−(k+1)P ′k+1(A(m−1)h−(k+1))T

)]

≥
mh−1∑

k=(m−1)h

[
1 +MA‖Q−1‖

λmin

(
A(m−1)h−(k+1)(A(m−1)h−(k+1))T

)
trP ′k+1

]

≥
mh−1∑

k=(m−1)h

[
1 +

MA‖Q−1‖trP ′k+1

‖A‖2[(k+1)−(m−1)h]

]

≥
mh−1∑

k=(m−1)h

[
1 + ‖Q−1‖trP ′k+1

]
= ym.

Hence we have {1 − 1
ym
} ∈ S0(γ). Using the proof idea

of Lemma 5 given by Guo (1990), it is easy to see that
{1 − 1

1+‖Q−1‖trP ′
k
} ∈ S0(λ2) for some λ2 ∈ (0, 1), which

completes the proof of this theorem. �
Theorem 4. Under Assumptions 1-3, the sequence {A(I−
Lkϕ

T
k ), k ≥ 0} is Lp-exponentially stable, where p is

defined in Assumption 3.

We omit the proof of this theorem due to space limitations.

In the following, we consider the stability of the Kalman
filter. We first introduce the conditions about the initial
value θ0 and noises wk+1 and vk.

Assumption 4. The initial value and noises satisfy the
following conditions,

E‖θ0‖p <∞, sup
k
E[‖wk+1‖p + ‖vk‖2p] <∞.

Theorem 5. Under Assumptions 1-4, the estimate error

θ̃′k , θk − θ̂′k satisfies supk ‖θ̃′k‖L p
2

<∞.
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Proof. By (2) and (5), we have

θ̂′k+1 = Aθ̂′k +ALk(yk −ϕTk θ̂′k).

Combining this with (1), we obtain the following error
equation

θ̃′k+1 = A(I −LkϕTk )θ̃′k +wk+1 −ALkvk. (18)

Denote ξk+1 = wk+1 −ALkvk. Then from (18), we have

θ̃′k+1 =

k∏
j=0

(A(I −LjϕTj ))θ̃′0

+

k+1∑
j=1

k∏
i=j

(A(I −LiϕTi ))ξi+1.

By Theorem 4 and the Hölder inequality, we obtain

‖θ̃′k+1‖L p
2

≤

∥∥∥∥∥∥
k∏
j=0

(A(I −LjϕTj ))

∥∥∥∥∥∥
Lp

‖θ̃′0‖Lp

+

k+1∑
j=1

∥∥∥∥∥∥
k∏
i=j

(A(I −LjϕTj ))

∥∥∥∥∥∥
Lp

‖ξj+1‖Lp

≤Mλk+1
4 O(1) +

k+1∑
j=1

Mλk−j+1
4 ‖ξj+1‖Lp

=O(1) +M

k∑
j=0

λj4‖ξk−j+2‖Lp

with λ4 ∈ (0, 1). Then by Assumption 4, we have

supj ‖ξj‖Lp
<∞ since ‖Lk‖ ≤ ‖P

′
k‖

1
2

(2
√
R)

is holds. Therefore,

‖θ̃′k+1‖L p
2

= O(1) +O(1)

k∑
j=0

λj = O(1),

which completes the proof. �

4. CONCLUSION

In this paper, we studied the stability of Kalman filter
under a general random framework including the widely
investigated packet dropout problems. The theoretical re-
sults on the Lp-stability and Lp-exponentially stability of
Kalman filter were established under the excited condition
we proposed, without requiring on the independence and s-
tationarity assumptions on the regressors. And the bound-
edness of the state estimation error can also be obtained
under the excitation condition. Some interesting problems
deserve to be further investigated, e.g., relaxation of the
the assumptions on system matrix (Assumptions 1 and
3), performance analysis of the Kalman filter under this
general framework, and the extension to the distributed
Kalman filter.
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